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W. S. Yeung1 

Department of Mechanical Engineering, 
University of California, 
Berkeley, Calif. 94720 

DEC 1 § f^g 

UBRte \UY 

Laminar Boundary-Layer Flow 
Near the Entry of a Curved 
Circular Pipe 
The fluid mechanics of a viscous, incompressible fluid entering a circular curved pipe at 
large Reynolds number is investigated numerically. The flow field is divided into two re
gions, the boundary-layer region and the inviscid core region. The boundary layer is as
sumed to be laminar and the method of integral relations is used to solve the governing 
equations. The core region, on the other hand, is assumed irrotational and is solved by a 
modified version of Telenin's method. The coupling of the two regions is accounted for 
through the imposition of the outer edge normal velocity as a boundary condition for the 
core region. Results are presented for a Reynolds number of 104 and a curvature ratio of 
0.1. It has been shown that the cross flow in the core region is initially directed from the 
outer to the inner bend and reverses its direction downstream for the entry condition of 
uniform axial motion. The core velocity profiles are consistent with a recent experimental 
investigation, while the boundary-layer results are qualitatively similar to those of Yao 
and Berger, although a direct quantitative comparison is not applicable, due to the differ
ent range of Reynolds number considered. 

Introduction 
Curved pipe flow has long been a subject of interest in fluid me

chanics. Most of the earlier literature deals with the fully developed 
region of the flow [1-5]. Earlier analyses in the entry region were 
mainly made using an inviscid rotational model developed by Haw-
throne [6]. The first complete analyses of a viscous fluid flowing into 
a curved pipe were, to the author's knowledge, those of Yao and Berger 
[7] and Singh [8]. Most recently, Agrawal, Talbot, and Gong [9] have 
measured experimentally the velocity profiles in the entry region. 
They found that the initial uniform velocity profile changes to a po
tential vortex profile immediately downstream of the entry sec
tion. 

In the present study, we investigate the entry flow problem at large 
Reynolds number of the order of 104 for a uniform entry condition. 
The physical situation corresponds to a gas leaving a large reservoir 
and entering a 90° elbow. We shall only discuss the solution in the 
region where the boundary layer is laminar and attached. In view of 
the large Reynolds number considered, the boundary layer will 

1 Present address: Thayer School of Engineering, Dartmouth College, Han
over, New Hampshire 03755. 

Contributed by the Applied Mechanics Division for publication in the 
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Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, January, 
1980; final revision, May, 1980. 

Fig. 1 Toroidal coordinate system 

eventually become turbulent and the present method must be mod
ified to take account of turbulent effects. For the core region, the flow 
is always treated as inviscid regardless of the nature of the boundary 
layer. Furthermore, we shall assume that the core flow is irrota
tional. 

Governing Equations 
For the sake of completeness, we give in this section the full Nav-

ier-Stokes equation for the motion in the curved pipe. The coordinate 
system is shown in Fig. 1. i? is the radius of curvature of the pipe axis, 
a is the radius of the cross section, and u, v, w are the velocity com
ponents in the direction of increasing r, \j', <j>, respectively. Thus, for 
the /•-momentum, 
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du u du 
u — + r + 

w2 cos \p 

dr r dip R + r cos \p dtj> 

1 d 

du u 2 

r R + r cos \p 

l d p 

p dr 

+ v 
(R + r cos \p)2 d 0 

du to 
tt> cos \p — (R + r cos i/O — 

d $ d r 

1 d sin \p du v 

r dip R + r cos \pl\dr r 

for t h e i ^ -momen tum 

du i) du w dv uu w2sin\p 
— t- -t- — + — + r -
dr r dip R + r cos \p d(f> r R + r cos \[> 

J _ d p 

vp dip 

1 

+ v 
d cos \p \idv v 

— + Y—— — + - • 
d r R + rcos\p]\dr r 

1 d u 

r d^j 

1 d u 

r di/<j 

du 

(1) 

(R + r cos f ) 2 dtf> 

a n d for t h e ^ - m o m e n t u m 

w dw 

R + r cos \p dw 
w s in \p — - • 

r di/' d 0 

BIO cos \p vw sin ^ dw v dw 
u — + + • 

d r r dip R + r cos ^ d</> R + r cos i^ R + r cos i/* 

l d p 
h V 

R + r cos \p p d<t> 

dw 1 

_d 1 

dr r 

d r J? + r cos \p \d<f> 

1 _d_ ft du; 1 

r di/* 

UJ COSl/' 

r dip R + r cos ^ \ d 0 

T h e con t inu i ty equa t ion is given by 

du . , 
h w sin \p 

d ( u r ) du 
• + — • + • 

dw ur cos \p — vr sin i// 

(3) 

0. (4) 
d r dip R + r cos i/< d $ i? + r cos \p 

In e q u a t i o n s ( l ) - ( 3 ) , p deno te s t h e p ressure , p t h e dens i ty , a n d v t h e 

k i n e m a t i c viscosity of t h e gas as usual . T h e d o m a i n of in te res t is 

0 < r < l , 0 < \ K T T , O < 0 < 7i72, (5) 

w i th t h e p l anes \p = 0 a n d i/* = T be ing t h e p lanes of symmet ry . T h e 

b o u n d a r y condi t ions consis t of t h e no-sl ip condi t ions a t t h e wall, 

un i fo rm en t ry condi t ion a t 4> — 0 a n d requ i red exi t condi t ion a t 0 = 

TT/2. 

B o u n d a r y - L a y e r R e g i o n 

By m e a n s of an order-of-magnitude analysis, one can readily obtain 

t h e bounda ry - l aye r equa t ions from ( l ) - ( 4 ) . W e in t roduce t h e fol

lowing d imens ionless quan t i t i e s : 

u D 1 ' 2 

U = - V = — , W 
We 

W 

We 

P = -
pWi2' 

T I = ( a - r ) D 1 / 2 / a , ip = ip„ 

where D is t h e D e a n n u m b e r given by 

D 

a n d a is t h e cu rva tu r e ra t io 

We = -
W: 

s = —, 
a 

•• R e V a , R e = 

a = a/R. 

(6) 

(7) 

(8) 

Subsc r ip t e refers t o t h e outer edge of t h e bounda ry layer a n d Wi t h e 

c o n s t a n t e n t r y axial velocity. T h e a p p r o p r i a t e boundary- layer 

e q u a t i o n s can t h e n be expressed as follows: 

d P 

dr; 

-V— v— ——=V— + - — 
dr) d\p J ds dip J ds 

•0. (9) 

+ - (1 - W2) sin t + — 
J We 

dWe 

dip 
(Ve

2-V2) (10) 

S^iVe-WV) 
J ds 

T1dW , dW WdW asm\p 
-U + V + = -(VW 

dr] d\p J ds J 

V~a~ d2V 

We dr]2' 

(10) 

(Cont.) 

+ -We 

dWe 

d*p 
(Ve vw) + l-^(i. 

J ds 
W2)\ + 

Vce d2W 

We dr)2 (11) 

a n d t h e con t inu i ty equa t ion 

dU dV ldW__aV_sinip 

dr] dip J ds J 

1 

We\ dip J ds 

(2) where J is def ined as 

J = 1 + a cos \p. 

= 0 (12) 

(13) 

In der iv ing equa t ions (10)-(12) , t h e rad ia l coord ina te r has been ap 

p r o x i m a t e d by t h e r ad ius of t h e p ipe , a, since t h e b o u n d a r y layer is 

a s s u m e d t h i n c o m p a r e d wi th t h e p ipe rad ius . T h e b o u n d a r y condi

t ions a re 

U=Ue, 

U= V = 

V=Ve, W=l, 

W=0 a t n = 0; 

dU _dV dW 

dr] dr] dr] 

a n d U, V, W given a t s = s;, an ini t ial s ta t ion . 

(14) 

B a s i c I n t e g r a l R e l a t i o n s 

T o solve equa t ions (9)-(12) subject t o (14), we employ the M e t h o d 

of In t eg ra l Re la t ions (M.I .R. ) , which h a s b e e n app l i ed by n u m e r o u s 

invest igators t o a wide var ie ty of cu r ren t p rob lems in fluid dynamics . 

T h e in t e r e s t ed r eade r should consul t t h e book by H o l t [10] for a full 

desc r ip t ion of M.I .R. a n d its re la ted appl ica t ions . 

W e shal l now der ive t h e basic in tegra l re la t ions from equa t ions 

(10)- (12) . I n t r o d u c i n g a comple te se t of l inearly i n d e p e n d e n t func

t ions \gk(W)\ t h e e l e m e n t s of which satisfy t h e condi t ion 

limgk(W) = 0, for all k (15) 

one ob ta ins t h e first in tegra l by mul t ip ly ing (12) a n d (11) by gk(W) 

a n d gk'iW), respect ively, a d d i n g and in tegra t ing t h e resul t from t] 

= 0 t o r] —•• °> and finally changing the variable of integrat ion to W by 

def ining Z t o be 

'-GT (16) 

T h e resu l t is 

d r 1 1 d r 1 

— VZgkdW+— - — WZgkdW 
d\p Jo 1 + a cos \p ds «/o 

a s in \p 1 dWe\ C1
 r V e] [(VW- Ve)gk'+ Vgk]ZdW 

Jo 1 + a cos \p We d\p 

1 1 dWe 

+• r 
1 + a cos \p We ds 

C[(l-W2)gk'-Wgk}ZdW 
Jo 

Va gk'(0) Va f1gk 

We Z0 We P 
Jo 

-dW, (17) 

where 

gk'(W) = 
dgk(W) 

dW 

a n d ZQ is t h e value of Z a t t h e wall. 
T h e second in tegra l re la t ion is der ived by first t r ans fo rming (77, \p, 

s) t o (W, \p, s) in e q u a t i o n (10), t h e n mul t ip ly ing t h e t r ans fo rmed 
e q u a t i o n by a weight ing funct ion hk(W), an e l e m e n t of ano the r 
comple t e l inear se t \hh (W)}. T h e resu l t is in t eg ra ted from W = 0 t o 
W = 1, a n d we have 
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riv2 i d rl 

j — hkdW + -— I WVhkdW 
Jo 2 1 + a cos w ds Jo dV 

C\(Ve2-V)-^~r(Ve-VW) 
Jo dW 

1 i>We 

We di 

hk(W)dW 

1 i>We 

1 + a cos \p We ds J'M dV 

v.-w- —u-vn 
o [ dW + g8in* r| ( i-m-—(vw-v, 

1 + a cos y «/o I 3W 

+ l v e ^ + - dV< 

di/' 1 + a cos i// ds I Jo 

+ 
y/H P1 d2V 1 

We Jo d W 2 Z 2 

TudW7 

)[MW)dW 

Chk(W)dW 
Jo 

hk(W)dW. (18) 

On the plane of symmetry, \p = 0, we obtain two auxiliary integral 
relations from (17) and from (18) after differentiation with respect 
toxp: 

1 d r1 r1 

— r - WZdW=- ZSgkdW 
1 + a cos ip ds Jo Jo 

1 1 dW, 
+ • 

1 + a cos \j/ We ds Jo 
£[(\-W2)gk'-Wgh]ZdW 

V W ( 0 ) V ^ C^Sh" 
WeZ0 

^ C'—dW, (19) 
We Jo Z 

i d r1 r1 

- — ( WShkdW=- j S2hkdW 
1 + a cos li as «̂ o Jo 

1 dW, 

1 + a cos i/< We ds 

a cos ii 
+ r 

C1\(Se-WS)-^-(l-W2) 
Jo [ dW 

, pd-w^hAdw 
1 + a cos if' «/o 

hkdW 

+ Se
2 + -

1 dS« 
f hkdW 

Jo 1 + a cos i/< ds I Jo 

+ We JO dW2Z2 hkdW, (20) 

respectively. The new variable S is given by 

i>V 
s=vy (21) 

The boundary condition on S can be readily deduced as 

S = 0 at W = 0 (22) 

and 

S = Se at W = 1. 

The unknowns Z, V, and S in equations (17)-(20) are represented 

Z = boi+ T, bjlgj(W) 
7 - 1 

AT 

/ ( l - WO, 

V = V.-+ Ebj2hj(W) 
7 - 1 

Se + £ eA(W) 
7 = 1 

w, 

TV. 

(23) 

(24) 

(25) 

Furthermore, for reasons of efficiency [11], [gfc(WO) and (^(W7)) are 
chosen as orthonormal sets derived from the functions (1 — W)k, k 
= 1, 2 , . . . as follows: 

gk(W) = L o w ( l - WV, 
7 = 1 

hk(W)=t ckj(l - W)i 
7 = 1 

(26) 

(27) 

I / f t W f i W ^ dW- &ii 

and 

C W2hdW)hj(W)dW = h, 

(28) 

(28) 

where 5,j is the Kronecker delta. The existence and uniqueness of gk 
and hk are the content of the Gram-Schmidt process [12]. 

Substitution of (23)-(25) into the basic integral relations yield a 
system of first-order partial differential equations of hyperbolic type. 
In the JVth approximation, there are 27V such equations in 2N un
knowns generated from equations (17)-(18) or (19)-(20). Before 
discussing the numerical procedure of solving the basic integral 
relations, let us first discuss the flow in the core region. 

F l o w in t h e Core R e g i o n 
We first define the following outer variables for use in the core re

gion: 

u°=Wr v^¥r w°' 
w 

wi 
, Po = 

r 
ro = ~ 

P 
pWi2' 

ipo = *. so (30) 

Since we have assumed an irrotational core, we can define a potential 
function fi such that 

i dfi „ i an i i7 i m 
[/„ = - — V0 = — - t 1̂ 0 = — 7 — 

a oro aro o\po 1 + aro cos y/ oso 
and fi satisfies the Laplace equations 

(3D 

1 a cos \po d2fi dfi 

dr0
2 dro [ro 1 + ar0 cos \po. 

a sin i/'o dfi 

1 d2fi 

' r0
2 di/-o2 

d2fi 
: = 0. (32) 

1 + aro cos i/'o d*Po (1 + aro cos i/'o)2 dso2 

The boundary conditions used in the present study are the fol 
lowing: 

(i) Uniform entry: 

dfi/dso = 1 + aro cos i/'o at so = 0. 

(ii) Flow in or out of the boundary-layer region: 

dfi 

dr0 

(Hi) Exit condition: 

: /(i/'o, so) at r0 = 1. (33) 

fi = 0 at s0 = ir/2. 

Some comments are in order. The second boundary condition rep
resents the coupling between the core and the boundary layer region, 
i.e., the function f(\po, so) is supplied from the solution of the bound
ary-layer equations. The crucial assumption is that the boundary layer 
must be thin enough so that this condition can be applied at the pipe 
wall ro = 1. Since the boundary-layer thickness is of order 0(D~1/2), 
this assumption is reasonable for large Dean number. The third 
condition is imposed mainly to close the boundary-value problem. 
Some authors impose the fully developed condition at the exit. 
However, it is very unlikely that this is valid for flow into a 90° elbow 
at high Reynolds number. By means of a simple perturbation analysis 
on (32) [13], it can be shown that the flow adjusts itself to whatever 
exit conditions applied in a region of order a.2 Since a, the curvature 
ratio, for most practical situations is small, the use of (33«i) does not 
invalidate our results for the flow development over most parts of the 

such that 

2 Since the perturbation analysis given in [13] is for the potential equation, 
this conclusion is valid only if the irrotationality assumption is valid itself. In 
actual situations, the exit conditions may influence a larger region. Experimental 
investigation should be the ultimate means of justifying this conclusion. 
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Fig. 2 Grid size representation for the core region 

curved pipe. Should an experimental exit profile be available, it might 
be of use in place of (33tii)-

For the solution of equation (32) subject to (33), we have chosen 
Telenin's method [14], modified to overcome certain difficulties in
volved in the present problem. Fig. 2 shows the grid system for the 
core region. The indices i, k, n identify the ro, i/'o, so coordinates, re
spectively. Thus, for example, Jik " represents the value of 7 at ro = 
'"o.i, ^ = ipo.k and so = so,n- Also, owing to the artificial singularity at 
ro = 0, we exclude the center of the semicircular region in our calcu
lation. Following the method of Telenin, on planes of constant i/'o, ft 
is approximated by a Lagrange polynomial, determined from values 
at NXl points and the boundary condition at ro = 1. On planes of 
constant ro, ft is approximated by a finite cosine series, determined 
from values at NX2 points. These approximations are introduced into 
(32) to yield a system of NX1 • NX2 second-order ordinary differ
ential equations in ft,/;, i = 1 , . . . , NXl and k = 1 , . . . , NX2, together 
with the entry and exit conditions. An implicit, second-order finite-
difference scheme is employed to solve the resulting two point 
boundary-value problem. The final system consists of NXl • NX2 
• (NX3 + 1) algebraic equations for fl;* n at each node, the coefficient 
matrix of which is of block tridiagonal type. We shall now discuss the 
numerical procedure for the whole region of interest. 

N u m e r i c a l P r o c e d u r e 
The outer flow is initially represented by a two-dimensional point 

vortex profile to provide the values of Ve, We and their derivatives 
in the basic integral relations. The cross derivatives, i.e., dZ/d\p and 
dV/d\p in (17)-(20) are approximated by a backward first-order dif
ference scheme and the resulting ordinary differential equations are 
integrated by means of a variable order Adams-Moulton method. The 
necessary initial conditions are approximated by the Blasius solution 
for flow over a flat plate. The outer edge normal velocity is then 
evaluated from this boundary-layer solution to provide a current es
timate off in (33) and ft is recalculated. This gives new values of Ve, 
We and their derivatives for the next integration of the integral 
relations. The process is repeated until there is no appreciable change 

Fig. 3 Displacement thickness along the pipe 
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Fig. 4 Variation of displacement thickness with azimuthal angle ip 

in the results between successive iterations. For a more detailed de
scription of the numerical procedure, see [13]. 

R e s u l t s and D i s c u s s i o n 
Numerical results have been obtained for the whole flow field inside 

a 90° elbow for a = 0.1 and Re = 104. Convergence is achieved after 
10 iterations for N = 1 and about 40 iterations for N = 2. 

Fig. 3 shows the displacement thickness Si defined as 

« i - r1 
'1/2 Jo 

fll/2 
(1 - W)ZdW. (34) 

along the curved pipe at different azimuthal locations. The streamwise 
variable is modified as s = <j>h/2. It is relatively thin compared with 
the radius of the pipe, except at the inner bend, i/< = 180°, where it 
increases continuously as the flow moves downstream, as one would 
expect physically. The variation of 5i azimuthally is shown in Fig. 4. 
In the early stages of the flow, the boundary layer is thinner at the 
inner bend than it is at the outer bend. This is because initially the 
outer flow is faster at the inner bend than at the outer bend and the 
curvature effect is small. As the flow develops, curvature effect be-
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Fig. 5 Average nondlmensional velocity In the boundary layer along the 
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Fig. 6 Variation of V with \p at different streamwise stations 

comes dominant and the boundary layer is thicker at the inner bend 
than at the outer bend. Further downstream, the boundary layer stays 
quite uniform around the pipe and increases abruptly as \p approaches 
180°. This indicates secondary flow separation somewhere ahead of 
\p = 180°. 

Next, the variations of the average azimuthal velocity, V, defined 
as 

"-S1 
Jo 

VdW (35) 

along and around the pipe are shown in Figs. 5 and 6, respectively. The 
absolute magnitude of the azimuthal velocity inside the boundary 
layer is small everywhere, as indicated in the figures. Finally, typical 
profiles of the axial velocity and azimuthal velocity across the 
boundary layer are shown in Fig. 7. 

We now turn to the flow in the core region. The development of the 
secondary flow at different streamwise sections is shown in Fig. 8. The 
crossflow velocity vector at each node is drawn. The direction of the 
flow is represented by the direction of the arrow and the magnitude 
by the arrow's length base on the scale shown on the bottom right of 
each figure. The predicted secondary motion is directed from the outer 
bend (\j/ < 90°) toward the inner bend (\j/ > 90°) very near the entry, 
as shown in Fig. 8(a). Physically, since the flow develops from a uni
form profile to the potential vortex profile immediately downstream 

0.2 

"e 

_L _L 
0 5 10 15 

(b) 

Fig. 7 Velocity profiles across the boundary layer 

(c) S =0.2 (f) S =0.6 

Fig. 8 Crossflow In the core region: (a)s = 0.05, (b) s = 0.1, (c)s = 0.2, 
(d) s = 0.4, (e) s = 0.5, (f) s = 0.6 

of the entry section, the fluid must move from the outer bend to the 
inner bend for reasons of mass conservation requirement. As the flow 
develops, the predicted secondary motion begins to reverse its di
rection and, in Fig. 8(c), the fluid has already moved from the inner 
bend toward the outer bend. This is due to the subsequent bound-
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ary-layer growth around the pipe. It is interesting to note that the 
direction of the crossflow is essentially parallel to the plane of sym
metry at all the stations shown in Pig. 8, an assumption used by many 
investigators of curved pipe flow. 

The axial velocity profiles are shown in Fig. 9. The uniform entry 
profile develops into a potential vortex type profile immediately 
downstream as shown in Fig. 9(a). Since the boundary layer in the 
present study is very thin, except near \p = 180° when the flow de
velops further downstream, the axial velocity profile does not change 
much over the entire elbow. Thus the characteristic of the potential 
vortex profile is seen at every station shown in Fig. 9. Furthermore, 
the velocity results are almost independent of the vertical distance 
measured from the symmetry plane. In Fig. 9(c) the boundary-layer 
profile is joined to the outer profile at the inner symmetry plane be
cause the boundary layer there is relatively thick. The present model 
does not predict the shift of the maximum axial velocity toward the 
outer bend which occurs eventually when the viscous region in the 
inner bend extends further into the core region. This is not surprising 
because we have assumed that the viscous region is confined near the 
pipe wall everywhere. Moreover, the assumption of irrotationality will 
be invalid. 

Conclusion 
A numerical investigation has been carried out concerning the de

velopment of steady, laminar, incompressible flow in the entry region 

of a curved pipe at high Reynolds number for uniform entry condi
tions. The flow field is divided into an irrotational core region and a 
viscous boundary-layer region. An efficient scheme based on Telenin's 
method was used to solve the Laplace equation in three dimensions 
and the orthonormal method of integral relations was applied to ob
tain numerical solution to the present three-dimensional boundary-
layer equations. The irrotational assumption causes the uniform entry 
profile to develop into a potential vortex profile very near the entry. 
Due to the effect of the boundary layer, it has been shown that there 
is a novel reversal of the direction of the secondary motion in the core 
region, a result which has not been reported before. For the bound
ary-layer region, the present results are qualitatively the same as those 
obtained by Yao and Berger [7], but any direct quantitative com
parison is not applicable because of the different range of Reynolds 
number considered and different assumptions concerning the core 
region. It must be emphasized that it is not appropriate to apply the 
present model to describe the fully developed region since viscous 
effect is no longer confined to the pipe wall. Finally, any results pre
sented here must be eventually checked against reliable experimental 
data. Such data are now being assembled in experiments performed 
at the Lawrence Berkeley Laboratory. 
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A Family of Early-Time 
Approximations for 
Fluid-Structure Interaction 
A hierarchical family of early-time, high-frequency asymptotic, surface interaction ap
proximations is derived for a structure submerged in an infinite acoustic fluid. Kirchhoff's 
retarded-potential integro-differential formulation is used as exact source formula. The 
well-known plane-wave and curved-wave approximations result as the first two members 
of the hierarchy. Acoustic impedance characteristics of the first four members are exhib
ited for several sample geometries. 

Introduction 
A structure is submerged in an infinite acoustic fluid satisfying the 

three-dimensional scalar wave equation. The structure is subjected 
to impulsive loading; e.g., a compressive shock wave propagates 
through the fluid and impinges on the structure. If the fluid is com
putationally viewed as a "magic membrane" that envelopes the 
structure, the ensuing interaction between fluid and structure can be 
exactly expressed through Kirchhoff's retarded potential formula 
(RPF), which is the boundary-integral formulation of Huygens' 
principle [1]. 

For structures of arbitrary geometry, the direct application of the 
RPF to transient response calculations is computationally cumber
some. A key drawback is the need for preserving a vast amount of 
historic information as the coupled equations of motion are numeri
cally integrated; and this amount grows linearly with the number of 
time steps taken. In addition, tracking of wavefront discontinuities 
at each time step demands nontrivial logic [2], Because of these dif
ficulties, a variety of simpler interaction approximations of current-
time form (i.e., memoryless) have been proposed. Geers [3] categorizes 
these approximations into three classes: 

1 Early-time approximations (ETA), which are valid for short 
acoustic wavelengths (high frequencies) and are useful for modeling 
early stages of the transient interaction; 

2 Late-time approximations (LTA), which are valid for long 
acoustic wavelengths (low frequencies) and are useful for modeling 
late stages of the response; and 
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3 Doubly asymptotic approximations (DAA), which are valid for 
both short and long acoustic wavelengths [4,5] and thus are applicable 
to complete response calculations. 

Doubly asymptotic approximations have been particularly suc
cessful in large-scale calculations involving complex structures [6, 7]. 
They can be constructed by pairing early and late-time approxima
tions through the method of matched asymptotic expansions in the 
frequency domain [8]. 

From the preceding considerations it follows that the derivation 
of ETA families is not only useful in its own right, but also provides 
one of the two required ingredients for building DAA families. In the 
present paper an ETA family is precipitated from the RPF through 
a simple local source analysis. 

Retarded Potential Formulation 
Consider an infinite acoustic fluid governed by the isotropic, scalar 

wave equation 

c2A<j> = ij>, (1) 

where c is the acoustic wavespeed, superposed dots denote temporal 
differentiation, and the velocity potential § is related to the acoustic 
excess pressure p and fluid-particle velocity v as 

1 P<t>, (2) 

We assume that the potential <j> has no singularities outside a closed 
interaction surface S (the "wet surface" of the submerged structure) 
for all values of the time t from — °> up to the instance under consid
eration, and decays as R~l at a large distance R from S. Then 
Kirchhoff's retarded potential formula (RPF) can be expressed as 
[1,9] 

47T£(/> : "/J*"1 
dn 

+ pR-HM +-[*]) 
c 

dS + iired (3) 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 703 
Copyright © 1980 by ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where <p = <p(X, t) is the velocity potential at a field point F of coor
dinates X = (X, Y, Z), and 

R - 11R112 = | X — Xs |, the distance from the field point to a source 
point P of coordinates Xs on S 

n = outward normal to S at the source point (positive going into the 
fluid) 

13 = dR/dn, cosine of the angle formed by vectors Ft and n 
[/] = the retarded value, f(X, t — R/c), of a field function /(X, t) 

<j>u, = incident wave potential 
( = li V2,0 depending on whether the field point is within the fluid, 

on the surface S (assumed to be smooth), or inside S, respec
tively. (At a sharp corner of S with enclosed solid angle a, e = 
a/4ir) 

For deriving surface interaction approximations, the field point 
F is considered to be on S(e = ^ and the incident-wave potential <j>w 

is dropped; i.e., only the scattered component of the pressure field will 
be retained. The resulting formula is 

2ir<l>- X R-

in which 

•(3R-2(M+%])\dS 

Ml 
drals 

(4) 

(5) 

denotes the normal fluid-particle velocity at S. Equation (4) is a 
homogeneous "retarded" integro-differential equation in which all 
variables pertain to S. This is complemented by the initial rest con
ditions 

<t>(t) = u(t) = 0 t < 0 (6) 

for every field point on S. Note that 0(0+) may be nonzero, however; 
that is, occurrence of a step-pressure at t = 0 (or at other positive 
values of t) is not precluded. 

L o c a l G e o m e t r y Ana lys i s 
The Contributing Surface. Early-time approximations (ETA) 

are interaction expressions asymptotically valid for 

ct « a (7) 

where a is a characteristic dimension of S. These approximations are 
local in nature, i.e., depend only on geometric information collected 
in the neighborhood of an individual field point, F. The "contributing 
cap" Sp(t) for t > 0 is constituted by surface source points P located 
at a distance R < ct from F, as illustrated in Fig. 1. 

A local orthogonal Cartesian system (x, y, z) is defined with (x, y) 
in the tangent plane and z along the external normal at-F, respectively. 
(The approximations will turn out to be invariant with respect to the 
orientation of x and y, as could be expected.) A cylindrical coordinate 
system (r, 8, z) with r2 = x2 + y2 and 8 = angle (r, x) is also used (cf. 
Fig. 1). The distance R between P and F is then expressable as R2 = 
r2 + z2. Now the Taylor expansion of z about a regular point F can 
be written as 

z = Ar2 + Br3 + Cr4 + Drb + . . AR2 + BR3 

+ (C - AS)R4 + \D - - A2B W6 + . . . , 

where A, B, . . . are functions of the angle 8 only: 

A = (zxx cos2 6 + 2zxv cos 8 sin 6 + zy ' 8)/2l, 

B = (zXxx cos3 8 + 3zxxy cos2 8 sin 8 + ... + zv 
1 0)/3!s 

(8) 

(9) 

in which zxx = d2z/dx2, , . . etc., are assumed to exist at F. 
The expansion (8) permits us to express the "cap" SF in the para

metric series form 

x = r(R, 8) cos 8, y = r(R, 8) sin 8, z = z(R, 8), (10) 

tangent plane at F 

/ 

Fig. 1 Coordinate systems for local source analysis 

in which r(R, 8) = +\R2 - z2(R, 0))1/2. Hence R and 6 will play the role 
of surface coordinates. 

Surface Metric Coefficients. The two geometric quantities 
needed for (4) are the element of area dS and the combination 
/3R~2dS. Now 

dS = WtdRdB = \r2(r\ + z2
R) + (rRzg - zRr0W

2dRd8, (11) 

/3R~2dS = W2dRd8 = -(r/R)s(z/r)RdRd8, (12) 

where subscripts denote partial derivatives with respect to the surface 
coordinates R, 8. Inserting (8) into (11) and (12) yields 

Wi/R = 1 + - AIR2 + (AB + AeBg)R
3 + -(16AC - 16A4 

2 8 
+ 12B2 + 4B? - 2042A2 - Al)R* + .. 

-W2 = A + 2BR + 3(C - AS)R2 + (AD - UA2B)RS 

+ 5(E + 2A5 - 4AB2 - 4,A2C)R* + . . 

(13) 

(14) 

For a spherical surface, Wi = R and W2 = —A exactly, which pro
vides some checks on the coefficients of the series (13) and (14). For 
a circular cylinder of radius a, W\/R = |1 — sin2 8 cos2 8 (R/a)2}-1^2 

and W2 = (1 — W\/R)I(R2 sin2 8), which provides further verifica
tion. 

Retarded Field Integrals. In the following section we shall en
counter integrals of the form: 

(15) 8
 2TT Jo 

Jm= P'Rm[u\dR, 
Jo 

Km= rc(
JR'"([0]+-[^)dfl. 

Jo c 

0 , 1 , . (16) 

The change of variable t' = t — R/c, R = c(t — t') transforms the 
"retarded" integrals (16) into ordinary momentum integrals. These 
are easily evaluated through repeated integration by parts: 

5/0 = cu*, J\ = c2u**, Ji = 2c3u*", . . 

K0 = 2c<t>*, Kt = 2 C y , K2 = 8c 3 0"*, . (17) 

in which each superscript asterisk denotes temporal integration from 
t = 0 [at which both u and 4> vanish on account of the initial conditions 
(6)] through t. 

Early-Time Approximation Family 
Derivation. The formal procedure for obtaining an ETA family 

is now straightforward: insert (11) through (14) into (4); integrate in 
8 (from 0 to 2ir) and divide through by 27r; integrate in R (from 0 to 
ct); and insert the values (17) for the momentum integrals. Finally, 
time-differentiate once and use the first of (2) to pass from velocity-
potential to pressure variables on the left-hand side. The resulting 
expression is 
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p + P ip* + P2p" + ... = pc(u + Uiu* + U2u" + . . . ) , (18) 

where 

P i = -2cA, 

P 2 = - 6 c 2 B = 0, 

P 3 = -24c 3(C - A3), 

P 4 = -120 c4(D - 3.5 A^B) = 0, 

P 6 = -720 c 6 ( I + 2A3 - 4AB2 - 4A2C) , . . . 

Ux = 0, 

l/3 = c3(AB + AWo) = 0, 

(74 = 3cHl6AC - 1 6 1 * + 8 l ^ - 20 AMI 

~Ai
g + 12B2 + 4B|), . . . (19) 

The reader is reminded that a bar over a ^-dependent expression 
is used to denote its circumferential average, as defined by equation 
(15). 

For a regular field point [i.e., one at which the Taylor-series ex
pansion (8) holds], all coefficients P2j, Uy-i (j = 1,2...) vanish. The 
nonvanishing ones can be expressed in terms of surface metric in
variants such as 

K = (zXx + zyy)/2 = mean curvature, 

T = zxxzyy — zly = total curvature. (20) 

For example, 

2A = K, 

16A$ = K(5K2 - 3r), 

iA\ = K2 - r, 

b4C = ZXxxx "<" ^Zxxyy "r Zyyyy- v^l/ 

ETA Family Members. The integro-differential series (18) can 
be used to generate specific members by truncating it to a finite 
number of terms taken from both sides. The lowest order member, 
ETAj, is the well-known plane wave approximation (PWA) of 
Mindlin and Bleich [10]. 

p = pcu. (22) 

The second member, ETA2, is the curved wave approximation 
(CWA) 

p - Kcp* = pcu. (23) 

The CWA was first used by Haywood [11] but specialized to a cy
lindrical geometry, and later generalized by Bedrosian and DiMaggio 
[12]. 

The next two members, ETA3 and ETA4, are 

p - Kcp*+ P3p*** = pc(u+U2u"), (24) 

p - Kcp* + P3p*** + P5p*"" = pc(u + U2u" + Utu""). (25) 

Any of (23)-(25) can be readily transformed to an ordinary differ
ential equation by repeated temporal differentiation. Potential users 
should beware, however, that such an operation introduces spurious 
initial conditions at t = 0 (or, in general, at any time where the 
pressure is not sufficiently i-differentiable). Ensuing numerical dif
ficulties should be taken care of appropriately in any computational 
implementation. 

Specific Geometries. Consider a torus obtained by rotating a 
circle of radius a about a coplanar axis displaced a + b from the circle 
center. If b = — a and <=, the torus reduces to a sphere and cylinder, 
respectively. We focus our attention on points of the inner generated 
circle. These points will be hyperbolic, parabolic, or elliptic according 
to whether \a + b\ > a, b = °°, or \a + b\ <a, respectively. 

Table 1 ETA coefficients for some geometries 

aPj/c 

a3P3/c
3 

*V<5 

? ? 

4 4 

Sphere* 
(b = -a) 

1 

0 

0 

0 

0 

Cylinder* 
(b = -) 

1/2 

3/16 

135/256 

1/8 

27/128 

* All points 

At points of inner 

Torus 
(b = a) 

0 

3/4 

0 

1/2 

3/8 

Torus 
(b = a/2) 

-1/2 

9/16 

-3375/256 

9/8 

315/128 

generated circle 

If the local axis x is taken along the meridional direction, then the 
only nonzero partials contributing to the first four ETA members are: 
Zxx = - 1 / a , zyy = lib, zXXxx = - 3 / a 3 , Zxxyy = -1/ab2, 2y : m , = 3/63, 
Zxxxxxx = -45 /a 5 , zXxxxyy = ~3 /a 3 b 2 + 2/a362, zXxyyyy = -9/afc4, and 
zyyyyyy = 45/b6. The coefficients P i . . . Ui are listed in Table 1 for the 
four specific cases b = —a (sphere), b = «> (cylinder), b = a, and b = 
a/2. Note that for the sphere all coefficients but P i vanish, as noted 
in the "Surface Metric Coefficients" section. 

C o m p u t e r I m p l e m e n t a t i o n 
Suppose that the submerged structure is discretized as an assembly 

of finite elements. Because of the local nature of ETA formulas, their 
implementation in terms of "boundary fluid elements" is straight
forward. One could attach, for instance, such elements to "wet face" 
centroids of structural finite elements [7]. In the case of low-order 
ETA members, interpretation in terms of mechanical components 
is immediate; e.g., the "PWA fluid element" is nothing more than a 
pc dashpot. 

If refined ETA formulas are used, high-order geometry information 
is required to calculate the coefficients (19) at control points. For 
simple geometries, such as the circular cylinder, this may be fed a 
priori as part of the input data. For arbitrary shapes, a logical pro
cedure is to resort to local surface interpolation using coordinates of 
a sufficient number of adjacent surface node points. 

The resulting fluid-structure semidiscrete equations of motion may 
be either solved as a full coupled system (in which case an explicit time 
integration method would normally be used), or through a partitioned 
integration approach such as the staggered solution procedure [13]. 

S p e c t r a l C h a r a c t e r i s t i c s 
Acoustic Impedance. Insight into the properties of ETA family 

members can be gained through examination of their impedance as 
a function of driving frequency. Following Junger and Feit [14] and 
Geers [3], the specific acoustic impedance (impedance per unit of 
surface area) of a memoryless pressure-velocity expression such as 
(18) can be defined as the ratio 

f M = ̂ ^ = £(«) - .70^(0,), (26) 
U(-J0)) 

where to is driving circular frequency, p (s) and u (s) are the one-sided 
Laplace transforms of p(t) and u(t), respectively, and j 2 = —1. The 
specific acoustic resistance £ = Re (f) characterizes the radiation 
damping power; while /x = —Im (f)/o) is either specific acoustic inertia 
(also called specific accession to inertia) if positive (pressure in phase 
with acceleration) or effective acoustic spring stiffness if negative 
(pressure in phase with displacement). 

Impedance Diagrams for Sample Geometries. Figs. 2-5 show 
dimensionless ratios %/pc and p.lpa as functions of the dimensionless 
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PWA PWA, CWA 

Fig. 2 Specific acoustic resistance £ (solid lines) and inertia (i (dashed lines) 
exerted by an external acoustic medium on points of the surface of a sphere 
of radius a, for the first four members of the ETA family (18) 
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Fig. 4 Specific acoustic resistance £ (solid lines) and effective spring stiff
ness fi (dashed lines) exerted by an external acoustic medium on points of 
the inner generator of a torus of meridional radius a and inner generation radius 
b = a, for the first four members of the ETA family (18) 

PWA 

PWA 

Fig. 3 Specific acoustic resistance £ (solid lines) and inertia n (dashed lines) 
exerted by an external acoustic medium on points of the surface of a cylinder 
of radius a, for the first four members of the ETA family (18), and for the exact 
breathing-mode impedance (cf. Appendix A) 

driving frequency uc/a, for the four specific geometries of Table 1 and 
the first four members of the ETA family. These are physical coor
dinate "local" impedances rather than the more usual modal im
pedances [3,14]. Inasmuch as p and A are effectively assumed to be 
constant over the cap of Fig. 1, (26) can be interpreted in global sense 
only for uniformly pulsating bodies; e.g., breathing motions of spheres 
and cylinders. Another "globalization" restriction is related to the 
use of the series (8) to describe nonlocal geometry. 

The sphere diagrams (Fig. 2) offer no surprises, as it is well known 
that the CWA expresses the exact interaction for uniformly pulsating 
spheres. 

The cylinder diagrams (Fig. 3) are contrasted with the exact £ and 

Fig. 5 Specific acoustic resistance £ (solid lines) and effective spring stiff
ness fi (dashed lines) exerted by an external acoustic medium on points of 
inner generation of a torus of meridional radius a and inner generation radius 
b = a/2, for the first four members of the ETA family (18) 

y, for breathing motions [14]. The curves clearly display the high-
frequency asymptotic character of the ETA family; e.g., for coa/c < 
1.5, ETA4 is inferior to ETA3, which in turn collapses for aa/c < 1. 
As shown in Appendix A, the low-frequency performance of higher-
order ETAs can be improved by transforming to a Pade-quotient 
representation. 

For the 6 = 0 torus (Fig. 4) the surface points under consideration 
are hyperbolic and of zero mean curvature. As Pi = —KC vanishes, the 
PWA and CWA coalesce, and it is necessary to proceed to ETA3 to 
obtain some frequency dependence. Note that for both ETA3 and 
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ETA4, fi(oi) is negative, i.e., the external acoustic medium acts as a 
distributed spring stiffness. This is caused by the near-field "en-
trainment" of fluid brought about by the concavity of sectors of the 
surface; the effect resembles that of a fluid partly enclosed in a vi
brating container [14, Section 2.8]. No exact impedance solutions for 
the torus are known. 

For the b = a/2 torus (Fig. 5) the surface points are hyperbolic with 
heavy dominance of concavity, i.e., positive mean curvature. The 
CWA does not coincide with the PWA as in Fig. 4, but provides a poor 
(and unconservative) approximation of the resistance £, which char
acterizes radiation damping. 

Usage Recommendations. A tentative conclusion from this 
preliminary study is that for convex interaction surfaces (those con
taining only elliptic or parabolic points) there seems little point in 
going beyond the CWA. Application of more refined ETA formulas 
deserves consideration, however, if the surface contains hyperbolic 
points with zero or positive mean curvature. In the latter case, use of 
the CWA may incur significant radiation damping overestimation, 
which can in turn translate into unconservative predictions of early 
time peak responses. 

Concluding Remarks 
In view of the elementary mathematical tools used, the derivation 

of the ETA family "spawner" (18) seems surprisingly straightforward. 
The two underlaying physical assumptions are: the external fluid is 
an acoustic medium, and the early-time interaction is governed by 
local effects. A similar derivation procedure appears feasible to con
struct ETA families for coupled-field problems where a retarded 
boundary-integral formulation is available; for example, structure-
rock interaction. 

As noted in the Introduction, the application range over which 
stand-alone ETA formulas are useful is restricted to high-frequency 
dominated interactions such as impulsive acoustic transients. But this 
range can be significantly enlarged by utilizing such formulas as outer 
expansions in doubly asymptotic approximations valid over the entire 
frequency spectrum. The range-expanding reformulation described 
in Appendix A, although promising, cannot be expected to replace 
doubly asymptotic forms because it does not account for added mass 
effects and thus remains local in nature. 

The approximations presented here may be contrasted with the 
short-wavelength approximations of optics and geometric acoustics. 
The main objective of the latter is to provide a simplified description 
of the scattered near-field. Here the structural response of the scat-
terer is of main concern. Hence, what happens at the interaction 
surface is of primary importance, and the resulting approximations 
are expressed only in terms of surface values. 
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APPENDIX A 

Pade Early-Time Approximations 
A powerful technique for extending the range of applicability of 

a one-sided asymptotic power-series expansion is transformation to 
Pade approximants [15], which are instances of the so-called ratio
nal-function or continued-fraction approximations. The technique 
will be illustrated here for the circular cylinder. The Laplace trans
form of ETA4, with s normalized to c/a, is (cf. Table 1): 

P + -PS-
3 

l + - s 
128 I \ 8 128 

(27) 
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APPENDIX B 
Derivation of Surface Metric Coefficients 

The expression for the element of area of an (x, y, z) space surface 
described in terms of surface coordinates (R, 6) is [16, Chapter 2]: 

dS = \(xR + yR + zRKxl + y$ + z$) 
- (XRXS + yBye + zRz „)2\^dRde. (29) 

Replacement of x and y by r cos 6 and r sin 0, respectively, yields 
equation (11). Derivation of the next expression starts from the cosine 
formula, 

/? = cos (n, R) = [x(yRz0 - yezR) 

+ y(.ZRXo ~ zoyR) + z(xRye - xoyiiWiWtR) 

= -r(zRr - zrR)/(WiR) = - r 3 —(z/rViWrR), (30) 
dR 

from which (12) follows. (The author has been unable to find this 
remarkably compact expression in differential geometry text
books.) 

STANDARD INTERNATIONAL UNITS 
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use Standard International Units wherever units are 
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ASME is also preparing a series of text booklets 

See page 890 for a list of titles. 

for specific applications to various fields. 

Express the terms in parenthesis as quotients of quadratic poly
nomials, and match their descending expansions in s with (27). The 
result is the Pade (2, 2) approximant: 

/ 1 , s2-39/16\ /s2-25/16\ , % j9 1 + - S - 1 — — \ = pcu\— -— 28 
\ 2 s2- 45/16/ Is2 -27/16/ 

Fig. 6 shows components of the specific acoustic impedance of (28) 
and of the exact impedance f = jH0(wa/c)/H'0(o)a/c), a> = jcs/a;Hn(x) 
being the Hankel function of first kind and order n. Comparing to Fig. 
3 it is seen that (28) does not collapse at low frequencies as (27) does; 
furthermore, it retains good accuracy (~3 digits) for wa/c > 1.5. One 
computational drawback of the Pade reformulation is that all pres
sure-integral terms survive on rationalizing (28) and transforming 
back to the time domain; whereas about half such terms vanish on the 
left-hand side of equation (25). 

The effectiveness of this technique for more complex geometries 
such as the torus is presently difficult to assess, as exact impedance 
solutions are unknown. 
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Parametric Resonance Oscillations 
of Flexible Slender Cylinders in 
Harmonically Perturbed Axial Flow 
Part 1: Theory 
This paper studies theoretically the dynamical behavior of a flexible slender cylinder in 
pulsating axial flow. The dynamics of the system in steady, unperturbed flow are exam
ined first. For various sets of boundary conditions the eigenfrequencies of the system at 
any given flow velocity are determined, and the critical flow velocities are established, be
yond which buckling (divergence) would occur. The behavior of the system in pulsating 
flow is examined next, establishing the existence of parametric resonances. The effects 
of the mean flow velocity, boundary conditions, dissipative forces, and virtual (hydrody-
namic) mass on the extent of the parametric instability zones are then discussed. 

Introduction 
The study of flow-induced vibrations and fluid-elastic instabilities 

of structural components has been intensified in recent years. This 
is partly due to the increased need for reliability, especially in the 
power generating industry where repeated equipment failures have 
evidenced the inadequate state of the art [1]. Thus it has now become 
imperative to try to understand and to be able to predict the dy
namical behavior of slender flexible structures in flow, such as might 
be found in boilers, nuclear reactors, heat exchangers, and steam 
generators [2]. Although most failures are associated with conditions 
of crossflow, cases of axial flow have also been shown to be of impor
tance. However, quite apart from practical considerations, these 
problems are of sufficient intrinsic interest, in the realm of dynamics 
of systems subjected to circulatory or gyroscopic forces, to merit study 
for their own sake. This paper deals with an idealized model of a 
system, not directly related to any particular problem. 

The study of the dynamics of slender cylinders in steady axial flow 
began seriously in the 1960's [3,4], and has progressed impressively 
since then [5,6]. This is not the case when the flow is unsteady, with 
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only one previous attempt to study the problem theoretically, when 
the flow is harmonically perturbed [7]. 

Harmonic perturbations to the mean flow may arise both in internal 
(contained) flows and in the atmospheric or oceanic environment. 
Thus, in circulating systems, such perturbations may occur, e.g., 
through the action of a pump, as a result of thermohydraulic insta
bilities in two-phase flows, or by periodic vortex shedding somewhere 
upstream of the structure of interest. This last mechanism may also 
be at work in the case of atmospheric flows. Finally, harmonic per
turbations may arise about ocean structures, as a result of wave ac
tion. 

Whenever such periodic perturbations are present in the axial flow 
about cylindrical structures, there exists the distinct possibility that 
they may cause parametric resonances, otherwise known as para
metric instabilities. It has been shown [7] that such resonances may 
occur if the circular frequency of the periodic flow component, Q, lies 
in the vicinity of a fractional multiple of one of the natural frequencies 
of the cylinder, Qn, i.e., if fl — 2Qn/k, where k = 1, 2 , 3 . . . . The most 
important of these resonances, the so-called principal primary 
parametric resonance, occurs when k = 1, so that U ^ 2fl„—a well-
established result from the'analogous problem of a column subjected 
to a harmonically perturbed axial load [8-10]. 

This study is presented in two parts. This paper, Part 1 of the study, 
presents the theoretical model and its predictions of the dynamical 
behavior of the system. Part 2 [11] describes the complementary ex
perimental program. 

The Equation of Motion 
Consider a flexible slender cylinder immersed in an incompressible 
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Fig. 1 Definition diagram of the system under consideration 

fluid, flowing with velocity U parallel to the x-axis, which coincides 
with the center line of the cylinder at rest (Fig. 1). The flow velocity 
is composed of a steady component, UQ, and of a small oscillating 
component, p.Uo cos Qt, where p. and Q are sufficiently small for the 
flow to be essentially uniform within the flow channel at any given 
instant. The cylinder is considered to be clamped at its upstream end. 
The downstream end is pinned, but rotation at that point is resisted 
by a spring; hence, through the use of a very large or a vanishingly 
small spring constant, one may retrieve an ideally clamped or pinned 
downstream end, respectively. 

Consider next, the forces to which the cylinder is subjected, as a 
result of small lateral displacements, y(x, t). In addition to the usual 
forces associated with motions of an Euler-Bernoulli beam, which 
models the cylinder itself, gravity and hydrostatic forces will also be 
considered, as well as the hydrodynamic forces; the latter will be 
distinguished as inviscid and viscous, as the case may be, for ease of 
formulation. 

For an element bx of the cylinder, according to inviscid slender-
body theory [3], there will be a normal force 

FAbx = [(d/dt) + U(d/dx)]\XpA[(dy/dt) + U(dy/dx)]\8x, (1) 

where XP-A is the virtual, or hydrodynamic, mass of the fluid per unit 
length, p being the fluid density, and A the cylinder cross-sectional 
area. For an unconfined fluid, x is equal to unity, and the virtual mass 
takes on its classical value of pA; for confined fluid, larger fluid ac
celerations associated with cylinder motions result in x > 1 [12]. 

Assuming turbulent flow, the viscous hydrodynamic forces may be 
approximated [3] by 

FL8x = hpDU2Cfbx and 

FN8x = FL\[(dy/dt) + U(dy/dx)]/U\8x (2) 

in the longitudinal and normal directions, respectively, D being the 
cylinder diameter and C/ the frictional coefficient. 

Finally, the hydrostatic forces in the axial and lateral directions may 
be expressed by 

and 

Fy
p8x = (d/dx)[pA(dy/dx)]8x, (3) 

where p is the static pressure. Furthermore, assuming that the pres
sure varies linearly along the channel, the pressure drop may be ex
pressed as 

-A(dp/dx) « FL(D/Dh) - pgA + pA(dU/dt), (4) 

where Dh is the hydraulic diameter of the annular flow and g is the 
acceleration due to gravity [12]. 

The problem is simplified here by assuming that there is no con
straint to axial extension of the cylinder at the downstream support 
(i.e., axial sliding is permitted there), so that external tensioning of 
the cylinder is not possible, and effects due to the mean external 
pressure do not arise (cf. [12]). Denoting next the flexural rigidity of 
the cylinder by EI, its viscoelastic Kelvin-Voigt dissipative coefficient 
by E*, its length by L and mass per unit length by m, and the form 
drag coefficient at the downstream end by Cb, the force and moment 
balance equations may be written. Utilizing then equations (l)-(4), 
the equation of small lateral motions may be obtained, i.e., 

dx4 d£dx4 dt2 dxdt dx2 dt dx) 

lpDuMi+§-} + (m - pA)g + pA 
dU_ 

dt 
(L-x) 

v ^ 4 S + ^ ^+udy 

dt 

(m - pA)g + pA — + - pDU2Cf — 
dt 2 Dh 

dxj 

dy 

dx 

a2;y 
+ m-~- = 0. 

d t 2 

The cylinder is subject to the boundary conditions 

y ( 0 , t ) = y ( L , t ) = 0 

0, and EIz-^z + cj. — = 0 at x = L, — = 0 at 
dx 

d2v dv 
and EI—4 + cL — = 

dx2 dx 

(5) 

(6) 

where CL is the spring constant of the spring at the lower support (Fig. 
1). 

Defining next the dimensionless parameters 

£ = x/L, v = y/L, T = \EI/(m + pA)\1'2t/L2, 

P = pAI(pA + m), u= (pA/ED^UL, 

a = \I/[E(pA + m)\}l'2E*/L2, 

y = (m - pA)gL3/EI, e = L/D, h = D/Dh, c, = (4/w)Cf 

cb = (Ah)Cb, K = cLLIEI, (7) 

the equations of motion and boundary conditions may be written in 
dimensionless form, as follows: 

arf" + r," + |X"2 - lhcfu
2(l + h) + y + /31/2u][l - £] - \cbu

2\r\" 

+ 2x/31/2uv' + [lecfU2(l + h) + y + (1 + x)P1/2uW 

+ hecfP
1/2ui) + [1 + (x - l)fi]v = 0, (8) 

and 
i?(0, T) = TJ'(0, T) = ij(l, r) = v"(h r) + KV'(1, T) = 0, (9) 
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where dots and primes denote differentiation with respect to T and 
£, respectively. These equations, together with the form of u consid
ered, 

; iio(l +M cos COT), (10) 

fully define the problem. Here co is the dimensionless frequency, re
lated to Q by 

co = \(pA + m)/EI\1'2QL2. ( ID 

After substituting (10) into (8), the equation of motion may be 
written in symbolic form 

atf" + T]" + (A0 + A^v" + Mv' + A3v' + A4y + ABri = 0, (12) 

where Ao to A5 are obvious groupings of terms; e.g., Ai = —(S1/2UoiJ.a 
X sin COT + 7 + 2«i/(l + h)ul(l + /J, cos COT)2. 

M e t h o d s of A n a l y s i s 

The continuous system is first rendered discrete by the use of the 
Ritz-Galerkin method, where i](^, T) is expressed as a series involving 
the eigenfunctions cM£) of a beam with the same boundary conditions 
as the cylinder under consideration, i.e., 

I ? ( £ , T ) - EM&qAr). (13) 

[Re(«|,)] ' 

Fig. 2 Argand diagrams of the loci of the first and second-mode eigenfre-
quencies of a slender cylinder with different boundary conditions (different 
K), for system parameters /S = 0.467, 7 = 3.98, a = 0.0028, x = 1-26 or % 
= 2.00, h = 0.519, ec, = 0.5, c„ = 0.2 

The c6r(£) and the corresponding eigenvalues, Xr, both of which are 
functions of K, are fairly easy to determine. Substituting into the 
equation of motion, applying the Ritz-Galerkin method, and trun
cating the series at a suitable r = N, one obtains the matrix equa
tion 

A6lq + [ak + A4I + A2B]q + [A + A0C + AiD + A3B]q = 0, (14) 

where I is the unit matrix, A is the diagonal matrix with elements \f, 
q = K<7i><?2, • • •QN\T, and B, C, Dare square matrices whose elements 
are given, respectively, by 

bsr = j <t>s<t>'rd^, c s r = j c4 sc6rdj , dsr = J <j>s£(j>"rd%. ( 1 5 ) 

If the flow is steady, i.e., if JX = 0, then the coefficients Ao to A5 are 
scalar constants, and equation (14) may easily be transformed to a 
standard eigenvalue problem, from which the dimensionless eigen-
frequencies of the system, con, may be determined. These will gener
ally be complex, so that 

Re (co„) + Im (co„)i. (16) 

If the flow is harmonically perturbed, fi 9^ 0, then the parametric 
resonance regions may be determined by several different methods 
[8-10]. Here the method described by Bolotin [8] will be utilized. One 
may categorize the resonances as primary and secondary, the former 
occurring in the vicinity of co/co„ = 2, § , § , . . . , while the latter in the 
vicinity of co/co„ = 1, \ , J , . . . , for an undamped system; for a damped 
system, involving complex co„'s, the aforementioned ratios are asso
ciated with co/Re (co„). As mentioned in the Introduction, the most 
important parametric resonance region lies in the neighbourhood of 
co/Re (co„) = 2 and is called the principal primary region. In addition 
to the foregoing, there is another class of parametric instabilities, the 
so-called combination resonances, which occur at co equal to fractional 
combinations of two or more co„'s; these cannot be determined by 
Bolotin's method and will not be considered here. 

To determine the regions of parametric resonance, Bolotin's 
method proceeds as follows: 

(i) q is expressed as 

: £ 
*- l ,3 ,6 . 

jafc sin (J&COT) + \>k cos (JACOT)); (17) 

(ii) Equation (17), truncated at a suitable k = K, is substituted 
into (14) and terms in sin [l(k + 1)OOT] and cos [|(fe + OCOT] are col

lected, yielding 

K 

E £ 
( * = 1,3,. 

\[H}kak + H2fcbfe] sin [&k + 1)WT] 

+ [j\kak + Abk] cos g(k + 1)UT]\ = 0, (18) 

where, in this case, I = - 4 , - 2 , 0 , 2,4; n}k, H2
k, Jjfo J2k are square ma

trices which are functions of Ao to A5 and l,A,B,C, and D; 
(Hi) Expanding equation (18) for k, and collecting terms in sin 

(IPCOT) and cos (^PCOT), p =. 1, 3 , . . . , K + 4, one obtains the matrix 

equation 

[G] •• 0 ; (19) 

(iv) Setting det [G] = 0, the boundaries of the regions of para
metric resonance are defined by the co's satisfying this equation. 

The secondary resonance regions may be determined in a similar 
manner, except that equation [17] then involves an even trigonometric 
series. 

T h e B e h a v i o r of t h e S y s t e m i n S t e a d y F l o w 

It is essential to consider the behavior of the system in steady flow, 
in order to be able to interpret its behavior in pulsatile flow. 

Pig. 2 shows the loci of the first and second-mode eigenfrequencies, 
as functions of the dimensionless flow velocity «o, for a typical cylinder 
in axial flow; the calculations were done for three values of K, K = 0, 
1.91 and «>, the first and last cases corresponding to a classical pinned 
and clamped support, respectively. The loci are plotted as Argand 
diagrams. The choice of the square roots of Re (co„) and Im (co„) as 
coordinates is simply for clarity of graphical presentation of the re
sults; the conversion may readily be made, e.g., for K = 1.9 and «o = 

4, one has coi = 8.96 + 0.562i and co2 = 42.1 + 3.43i. These results were 
obtained with eight terms (N = 8) in the Galerkin expansion of 
equation (13). 

Let us first consider the three sets of curves with x - 1-26. For uo 
= 0, the Re (co„) associated with K = 0 and K = <» are close to those of 
a classical beam (a = 7 = 0, x = 1) with the same boundary conditions; 
e.g., here we have Re (coi) = 15.05 and 21.60 for K = 0 and ">, respec
tively, as compared to Re (coi) = coi = 15.42 for a classical clamped-

1 The value K = 1.9, as well as the other system parameters may appear odd 
values to choose; however, they correspond to values of direct interest in the 
experiments of Part 2[1I]. 
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pinned beam and 22.37 for a clamped-clamped one. The differences 
are due to the effect of gravity on the cylinder (y ^ 0), on the one 
hand, which tends to raise the frequency, and the effect of dissipation 
(a ^ 0) and confinement (x > 1), on the other, tending to lower the 
frequency. The fact that Im (o)n) > 0 at uo = 0 reflects the existence 
of dissipation (a ^ 0), which according to the Kelvin-Voigt model is 
proportional to frequency, so that Im (0)2) > Im (a>i). 

With increasing wo> following effects are noted: 

(£) The oscillation frequencies, Re (co„), are reduced. 
(ii) The damping ratio, which is proportional to Im (a>„)/Re (co„), 

is increased. 

At flow velocities larger than shown, the loci bifurcate on the Im 
(a))-axis, and one branch eventually becomes associated with Im (oon) 
< 0, which indicates the onset of buckling (divergence), first in the 
first mode and then in the second; at yet higher u0, coupled mode 
flutter is also possible [12]. It is of interest that the behavior of the 
system with an intermediate K is qualitatively similar to that of an 
ideally clamped or pinned downstream end. 

Also shown in Fig. 2 is the second mode of a clamped-pinned system 
with an appreciably higher value of x, X = 2. It is seen that an in
creased virtual mass results in lowering both Re (012), and hence, Im 
(0)2)- Moreover, the system loses stability in this case at considerably 
lower flow velocity, an effect not shown in this figure, but one readily 
perceived upon noting that for a given uo the locus is much closer to 
the origin for x = 2 than for x = 1-26. 

The eigenfrequencies obtained here will be used in the next section 
in two ways: first, in identifying the regions of parametric resonance 
to be found, by comparing the Re (wn) at a given uo to the pulsation 
frequency co; second, in assessing the effective damping at a given uo 
on the extent of these resonance regions, where a measure of this 
damping is the logarithmic decrement 5„, defined by 5„ = 2-7T Im 
(a>„)/Re (w„). 

The Behavior of the System in Pulsatile Flow 
The principal primary and secondary regions of parametric reso

nance, associated with the first and second modes of a typical system, 
are shown in Fig. 3, for two values of the dimensionless mean flow 
velocity, uo = 2.30 and uo = 3.61; indeed these results are for one of 
the systems, the behavior of which in steady flow is shown in Fig. 2 
(/c = 0, x = 1.26). These calculations were conducted with N = 5 and 
K = 3OTK = 2. 

Considering the resonance regions in the case of uo = 2.30, it is 
noted that the upper one is centered about to = 92; this, compared to 
Re (coi) = 12.49 and Re (0)2) = 44.34, indicates that this region is in
deed the principal primary region associated with the second mode, 
as a; ^ 2 Re (0)2); (the discrepnacy, of about 4 percent, is due to the 
fact that these calculations were done with JV = 5, while those of Fig. 
2 with N = 8). Similarly, the larger lower region, centered about u> = 
25 m 2 Re (dii), may be identified as the principal primary region 
associated with the first mode. 

Finally, the small lowermost region is centered about a) c*. 12 and 
is clearly the principal secondary region associated with the first 
mode. No such region corresponding to the second mode exists for the 
range of n considered. The main reason for this is that the effective 
damping associated with the second mode is higher than for the first 
one; i.e., the logarithmic decrement of the first mode is <5i = 0.23, while 
that of the second is twice as large, or ^2 = 0.46. This, in turn, is a 
function of the dissipative model adopted in this theory, whereby 
dissipation is proportional to frequency. 

Considering next, the resonance regions of Fig. 3 associated with 
the higher flow velocity, UQ = 3.61, the various regions may be iden
tified in the same way as before. Comparing the two sets of regions, 
it is noted that for the higher «o the regions are larger. (Yet, there is 
still no second-mode secondary region for ji < 0.7.) The reason for this 
is that the amplitude of the pulsatile force is not n, but ixuo; hence, 
everything else being equal, one would expect larger regions, the larger 
the value of «o- Of course, everything else is not quite equal: the ef
fective damping for uo = 3.61 is higher than for w0 = 2.30 (i.e., <5i = 0.37 
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Fig. 3 The effect of the dimensionless mean flow velocity, u0, on the principal 
primary and secondary parametric resonance regions, associated with the 
first and second modes of a clamped-pinned cylinder (K = 0, x = 1-26; other 
parameters as in Fig. 2) 
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Fig. 4 The effect of viscoelastic damping on the principal primary resonance 
regions associated with the second mode of a system with K = 1.9, % = 1.26, 
u0 = 3.61, a as shown, and the other parameters as in Fig. 2 
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Fig. 5 The principal resonance regions associated with the first and second 
modes of a cylinder with different boundary conditions (different K), for a 
system with p = 0.467, y = 3.98, a = 0.0028, x = 1-26, h = 0.519, ec, = 
0.5, c6 = 0.2, and u0 = 3.61 
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Fig. 6 The effect of confinement and frictional forces, characterized by the 
parameters %, h, and ec,; (a) second-mode principal primary resonance 
regions for a system with K = 1.9, x> h- a n d fct as shown, and the other pa
rameters as in Fig 5, (b) first-mode principal primary resonance regions for 
the same system, except u0 = 1.00; the values of h corresponding to each 
X ate the same as in the upper figure 

versus 0.23), which moderates the effect of higher UQ. Nevertheless, 
this effect of UQ on the size of resonance regions apparently holds true 
in general, and is not confined to the results shown here; thus, for uo 
= 4.5, the second-mode principal primary region is quite enormous, 
extending from w = 48 to 108, approximately, for /i = 0.7; in contrast, 
for uo = 0.5 this second-mode region disappears altogether, and the 
first-mode principal primary region becomes very small, extending 
from oi = 29 to 30, approximately, at p = 0.7. 

In all the foregoing it is seen that a minimum value of n, ^ m i n , is 
required for parametric resonance oscillations to be generated. Indeed, 
the results of Fig. 3 show that ^min may be quite considerable; e.g., for 
uo = 2.30, one has jim;n > 0.1, i.e., the harmonically pulsating com
ponent must be greater than 10 percent of the mean flow velocity. As 
is shown in Pig. 3, /umin decreases with increasing u0, which is another 
manifestation of the effect of uo in increasing the overall size of the 
instability regions. 

The values of jtmin depend critically on dissipation, as may be seen 
in Fig. 4. Here it is seen that not only is fimin increased with increasing 
a, but the overall extent of the resonance region in the (^i,co)-plane 
is substantially reduced. To this extent these results are quite similar 
to the well-known behavior of clamped column beams subjected to 
a pulsatile end load. (In this connection it should be remarked that 
this analogy cannot be carried too far, because the system here under 
consideration is not conventionally conservative, but gyroscopic 
conservative, and such systems have been shown in the past to possess 
some unusual characteristics [13,14].) 

It should further be noted here that the values of a in Figs. 3 and 

4 are atypically high, at least for metallic cylinders with not excessively 
dissipative supports (e.g., welded supports). In such cases the dissi-
pative forces, normally expressed in terms of a hysteretic damping 
coefficient, would typically be one order of magnitude less, resulting 
in larger instability regions and smaller /umjn—i.e., much more like 
the region for a = 0.001 in Fig. 4 than the others. The value of a = 
0.0028 used in Fig. 3 and elsewhere is typical for rubber-like materials, 
such as those used in the experiments of Part 2 [11]. 

The effect of boundary conditions is shown in Fig. 5. Apart from 
the downward shift of the regions as a is decreased, reflecting the 
corresponding reductions in Re {a>n) (ci. Fig. 2), it is seen that the 
parametric resonance regions are qualitatively quite similar. The 
progressively smaller values of /xmi„ as K is reduced simply reflect the 

.corresponding diminution of 8. 
Finally, Fig. 6 shows the effect of the parameters x< h, and ec/. It 

is recalled that a higher x implies a larger virtual mass through in
creased confinement of the flow about the cylinder. Physically, one 
way of doing this is by decreasing the size of the annular flow passage 
(Fig. 1), which results also in an increased h, since the hydraulic di
ameter becomes smaller. Denoting the channel diameter by Dci„ one 
may easily find that 

1 + (D/Dch)* 
h-

D/Dc, 

1-(D/Dch)* 1-D/Dch 

where the expression for x was obtained from reference [15]. 
The effect of increased confinement is to reduce the extent of the 

parametric resonance regions. In the case of the principal primary 
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regions associated with the second mode and high flow velocity 
(«o = 3.61) shown in Fig. 6(a), this effect is not very strong. However, 
in other cases it is, as is shown for instance in Fig. 6(6) for the corre
sponding regions associated with the first mode of the system at low 
flow velocity (un = 1.00). 

The effect of ecy, as well as that of changing h while keeping x 
constant (not shown here), is not very large. As expected, however, 
increasing ecy decreases the size of the resonance regions; the reason 
why this effect is not as pronounced as might have been expected is 
that tCf on the one hand damps motions, and on the other increases 
the flow-induced tension of the cylinder, making it effectively 
stiffer. 

Discussion 
It has been established theoretically that a cylinder subjected to 

harmonically perturbed axial flow may develop parametric resonances 
(instabilities), over certain ranges of perturbation frequencies and 
amplitudes. Furthermore, the effect of some of the system parameters 
was investigated, to discover how importantly they affect the extent 
and location of the parametric resonance regions in the (ft,u)-plane, 
and to obtain their effect on the minimum value of ix necessary for 
resonance oscillations, «min- The most important of these were found 
to be the mean flow velocity uo and the dissipative constant a {vide 
Figs. 3 and 4). 

Concerning flow velocity, it was found that the higher u0. the larger 
are the resonance regions. This simply reflects the fact that the am
plitude of the pulsating flow, i.e., the excitation amplitude, is actually 
fiuo, and not fi. It is of interest to consider the form of the resonance 
regions of Fig. 3 when plotted as a (/uuo, w)-diagram. In such a diagram 
the minimum pulsation amplitude, iiminuo necessary for resonance 
oscillations would be similar in the two cases of uo = 3.61 and uo = 2.30 
(e.g., for the second-mode regions ftmin" — 0.6 in both cases), the re
maining difference being associated with the different 82 involved. 
However, the width of the regions in the direction of the ordinate 
continues being larger for the larger uo-

Concerning the width of the resonance regions referred to previ
ously it is of interest that the second-mode regions are much larger 
than the first-mode ones (vide Figs. 3 and 5). This again is partly due 
to the form of presentation of the results. If the ordinate is changed 
from w to WRe (o>n)—Re (a>„) being the real part of the eigenfre-
quency of the mode concerned at the pertinent uo—clearly the width 
of the second-mode regions would diminish vis-d-vis that of the 
first-mode regions, since Re (102) > Re (a>i); indeed, generally but not 
always, the second-mode regions would then be slimmer than the 
first-mode ones.2 From the physical point of view, presentation of the 

2 This is exaggerated by the effect of dissipation, as already discussed. 
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results in such "normalized" form, in the \p, oi/Re (co„)]-plane, has 
some advantages, as it shows how much co may fractionally differ from 
2 Re (co„) and still give rise to parametric resonance oscillations; 
however, the simpler presentation in the (/x, u)-plane has been pre
ferred in this paper. 

The second parameter which greatly affects the extent of the 
parametric resonance regions in the value of the dissipation constant 
a, an effect illustrated in Fig. 4. Another manifestation of this effect 
is that fimm for the first-mode regions is smaller than for the second-
mode ones (Figs. 3 and 5). This is characteristic of the Kelvin-Voigt 
viscoelastic model utilized here, according to which damping is pro
portional to the frequency of oscillation. If a hysteretic (structural) 
dissipative model had been used, then /*min for first and second-mode 
regions would be similar. 

The conclusions of this study, as well as the Acknowledgments, will 
be presented after the experiments of Part 2 [ l l ] have been consid
ered. 
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Parametric Resonance Oscillations 
of Flexible Slender Cylinders in 
Harmonically Perturbed Axial Flow 
Part 2: Experiments 
This paper examines experimentally the dynamical behavior of a flexible slender cylinder 
in axial flow, perturbed harmonically in time. Parametric resonance oscillations were 
found to exist over certain ranges of frequencies and amplitudes of flow-velocity perturba
tions. The most prominent of the resonances, in these experiments, were associated with 
the second-mode principal primary resonance, and were studied extensively. Agreement 
with theory was found to be quite good. 

Introduction 
This paper describes the experiments conducted in order to study 

the dynamical behavior of flexible slender cylinders in axial flow, the 
velocity of which is perturbed harmonically. It is a companion to the 
theoretical paper, which is Part 1 of this study [1]. It was shown by 
theory that, over specified ranges of frequency and amplitude of the 
pulsating component of flow, parametric resonances may occur. 

The main aim of the experiments was (i) to observe the dynamical 
behaviour of the system, and (ii) to compare the observed behavior 
with that predicted by theory. This is believed to be the first experi
mental study of the subject. 

Description of the Apparatus 
The experiments were conducted with silicone rubber cylinders, 

10 to 14 mm in diameter, 30 to 50 cm long, mounted centrally in a 
transparent cylindrical pipe, either 32 or 40 mm in diameter, in which 
a harmonically perturbed axial flow of water was maintained, as shown 
in Fig. 1. 

To the straight-through steady flow was added a harmonically 
perturbed component provided by a "plunger pump," which was 
driven by a reciprocating mechanism connected to a variable-speed 
drive. Thus, both frequency and amplitude of the harmonic pertur
bation could be varied; the usable frequency range was 1 to 16 Hz. The 
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To <—>-
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Hot-Film Anemometer 
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Fig. 1 Schematic diagram of the apparatus 
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flow velocity was measured just upstream of the test section by a 
hot-film anemometer. Traces of the periodically perturbed flow ve
locity showed that, provided the perturbations were not unduly large, 
the apparatus provided effectively truly sinusoidal perturbations to 
the flow, so that the flow velocity, U, could be represented by 

U = U0(l + n cos Qt), (1) 
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where UQ is the mean flow velocity, and fiUo is the amplitude of the 
perturbation, of circular frequency Q; t is the time. 

In the final form of the apparatus, adequate care was taken to 
straighten the flow coming from upstream, by means of screens, and 
to effect a smooth entry of the flow into the test section. (This, as will 
be discussed later, is very important.) The flexible bellows shown were 
used to isolate, as much as possible, the test section from vibration 
transmitted by the reciprocating mechanism. 

All experiments were conducted with nominally clamped cylinder 
ends. The upper end was positively clamped: the cylinder was glued 
onto a brass "nose cone" (of ahemi-ellipsoidal shape); this, via four 
streamlined spider legs, was connected to a brass ring of the same 
internal diameter as the test-section pipe, which was clamped securely 
to the rest of the test section when the latter was screwed to the piping 
above. The lower support was a sleeve, into which the end of the test 
cylinder was inserted, normally to a depth of 7.5 mm, with a sliding 
fit. Thus the lower end allowed sliding in the axial direction. In 
practice, so as not to impede sliding, small lateral clearances were 
permitted in the sleeve, which, as will be discussed in the next section, 
resulted in a less-than-perfect clamped condition at the lower end. 

M e a s u r e m e n t s , P r e l i m i n a r y Tes t s , and P r o c e d u r e s 
The flexural rigidity, EI, and damping characteristics of the cyl

inder were determined by simple free-vibration experiments, using 
a fiber-optics sensor. Then, the cylinder was mounted in the (empty) 
test section and its first-mode natural frequency measured. It was 
found that it differed appreciably from that of the theoretical value 
for a clamped-clamped beam, computed with the previously found 
EI. Careful study revealed that this was associated with slight clear
ances, and with rotation at the lower support by bending of the cyl
inder inside the sleeve. Although in reality the support condition in
volved is probably complex and nonlinear, it was found adequate to 
model it as a pinned support with a rotational spring attached, which 
would resist rotation at the end—as was done in the theory of Part 
1 [1]. The spring stiffness, cj, could then be determined in a way such 
that the measured first-mode natural frequency be equal to the the
oretical value for such boundary conditions. 

The theoretical circular first-mode natural frequency, fix, was de
termined by Rayleigh's method. It may be obtained from the following 
expression: 

(5«i + 1512 - 187)b2 - (15o>i + 2520 + 487)b 

+ (12wi - 427) = 0. (2) 

where (0i = (mL4/EI)1/2Qi, y = mgLVEI, b = (K + 4)/(K + 6), and K 
= CLL/EI. In the foregoing, m is the mass of the cylinder per unit 
length and L is the free length of the cylinder. Hence, utilizing the 
experimental fli in conjunction with equation (2), one may find b, and 
hence K. 

Equation (2) was obtained through the use of the polynomial 
comparison function y/L = [£2 — (1 + b)£3 + b £4], which satisfies the. 
boundary conditions; £ is the axial distance divided by L. This 
equation was tested for some limiting cases, e.g., when 7 = 0 and ci 
-* 0 (clamped-pinned beam) or CL -* °° (clamped-clamped beam); 
agreement for (0i was found to be better than 1 percent. 

Conducting several experiments with different lengths of one cyl
inder, while taking due care to simulate the in situ experimental 
conditions (e.g., immersing the lower end in water, to simulate the 
conditions when the lower support is lubricated by the water flow), 
an average value of K was obtained through the use of equation (2), 
namely, K = 1.9. This is the value utilized in the theoretical calcula
tions, when comparing theory with experiments. 

In conjunction with the foregoing experiments aimed at deter
mining EI and K, the damping characteristics of the cylinders were 
also studied. It was found that, in the frequency range of interest, the 
damping of the material of the cylinder could adequately be repre
sented by a hysteretic (structural) dissipative model. Since there are 
certain difficulties in utilizing hysteretic damping in the theory of Part 
1, for the purposes of comparing theory with experiment, an equiva
lent viscoelastic damping coefficient was utilized; for a hysteretic 
damping coefficient v, the equivalent viscoelastic coefficient a in the 

vicinity of the rath-mode dimensionless frequency (on, is given by 
a = v/oin (cf. [2,3]). Here a is dimensionless and is defined in [1], and 
con = (mL4/EI)1/2Qn, where Qn is the circular frequency of the rath 
mode. 

The system for measuring the flow velocity was calibrated under 
steady flow conditions. This was done by measuring the time neces
sary to collect a certain weight of water in the collecting tank beneath 
the test section, and simultaneously noting the voltage output from 
the electronics associated with the hot-film anemometer. Thus cali
bration curves of flow velocity in the annular passage versus voltage 
output could be constructed. The flow velocity in the annulus was 
determined from that at the measuring station simply by conti
nuity. 

When the flow had a pulsating component, its amplitude ixU% could 
be determined from the flow-velocity trace on a storage oscilloscope 
or a fibre-optics-type chart recorder; then, from the calibration charts, 
the maximum voltage of the sinusoidal curve corresponds to Uo + 
ftl/o. while the minimum to t/0 — LIUQ; hence, both f/o and 11 may be 
determined. 

Prior to conducting the experiments, some tests were done to in
vestigate the shape of the velocity profile in the flow annulus. In these 
tests the hot-film probe was mounted on the test-section itself, while 
the flexible cylinder was replaced by a rigid one. Traversing the probe 
across the annular gap, while the flow was steady, it was found that 
the flow profile was typical of a fully developed turbulent flow. The 
situation was investigated next with pulsating flow, in order to de
termine if the flow profile was deformed and if there were any phase 
differences introduced at different locations within the annular gap. 
To do this the signal from a wall-mounted pressure transducer was 
also recorded to give a reference for the phase angle. Over the pulsa
tion frequency range of which the apparatus was capable and the 
range of pulsation amplitudes used in the experiments, no phase 
difference could be found; the velocity profile in the presence of 
pulsating flow retained the same shape as in steady flow. 

All the foregoing were necessary to establish correspondence, at 
least for some key features, between the theoretical model and the 
experimental setup. In the case of the flow profile the theoretical 
model was found to be adequate, while in terms of the initially as
sumed boundary conditions—that both ends were ideally 
clamped—the theoretical model had to be adapted to take into ac
count the less-than-perfect clamped lower support. 

We shall next discuss the main experiments of this study, which 
were concerned with the dynamical behavior of the cylinder in the 
harmonically perturbed axial flow. The following procedure was 
used: 

1 The flow-measuring system was calibrated as previously de
scribed. 

2 With the stroke of the plunger pump and the mean flow velocity 
fixed, observations of the dynamical behavior of the cylinder were 
made, as the frequency of pulsation was increased gradually; at any 
point where there was a change of behavior, or an occurrence of special 
interest, traces of flow velocity versus time were obtained (yielding 
UQ, n, and Q). 

3 The stroke was changed and step 2 repeated. 
4 The system was recalibrated at the end of the experiment, to 

insure that the first calibration had remained valid. 

Experiments at different flow velocities were then conducted with 
the same cylinder. This first set of experiments was usually conducted 
in the larger diameter test section; sometimes, experiments were then 
repeated in the narrower test section. Subsequently, in most cases, 
the length of the cylinder was reduced, by cutting a piece off the 
downstream end, and a new set of experiments conducted. 

G e n e r a l O b s e r v a t i o n s 
The behavior of the system in pulsating axial flow will first be de

scribed qualitatively, before considering the results quantitatively. 
At low frequencies, the system was stable. Very small oscillations 

could be observed, which were partly due to the response of the cyl
inder to the turbulent pressure field and partly to transmitted me-
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chanical excitation. Increasing the pulsation frequency beyond a 
threshold value caused large amplitude harmonic oscillations to occur 
spontaneously; their amplitude increased with pulsation frequency, 
reached a maximum of up to IV2 cylinder diameters peak-to-peak, and 
then decreased, until it faded completely. The frequency of pulsation 
was noted to be twice the frequency of oscillation, and the modal form 
was similar to that of the second mode of the beam; so, these were 
likely principal primary resonance oscillations associated with the 
second mode, as will be shown definitively in the next section. 

The ease of pin-pointing the onset of instability decreased as fi was 
diminished; this was because the amplitude of limit-cycle motion 
became smaller, so that there was no longer a step change in amplitude 
of oscillation at the threshold pulsation frequency, but merely a 
change in character of the vibration: from a random one to one having 
an appreciable, but difficult to separate, harmonic component. 

Within the limits of the apparatus and the system parameters 
tested, this second-mode principal resonance was the only one that 
could be pin-pointed with accuracy. Possible reasons for this will be 
discussed later. 

Several differences in the pattern of observations made in the 
foregoing should be noted. At high strokes of the plunger pump (high 
liU0), there were bursts of organized periodic oscillation at pulsation 
frequencies inferior to the threshold frequency where regular para
metric resonance oscillations established themselves. (Similar ob
servations were made in experiments on parametric resonances of. 
pipes conveying fluid [3].) Also, at very high values of n, after the onset 
of parametric resonance, the oscillations persisted to the maximum 
frequency attainable by the apparatus; beyond a certain frequency, 
however, there sometimes was a change in character of the oscillation 
into what appeared to be a combination resonance (cf. [3].) At small 
strokes of the plunger pump, it was found that a certain time was 
necessary for resonance oscillations to develop; unless one allowed 
for this, the true threshold of resonance could be missed. Finally, and 
importantly, if the value of /J. was sufficiently small, no parametric 
resonances could be detected at all. 

Other general observations were the following: 

(j) At high flow velocities, the level of turbulence was higher, and 
the threshold of instability was more difficult to pin-point. 

(it) The general behavior of the system was qualitatively the same 
in the two test-sections of different diameters, as well as for cylinders 
of different lengths and diameters.1 

Let us now turn our attention to first-mode principal resonances, 
which, although predicted to exist by theory [1], were not observed 
in the experiments. Reasons for this may be discussed with the aid 
of Fig. 2, showing theoretical first and second-mode principal reso
nance regions for two different cylinders, involving different lengths 
and different dimensionless flow velocities (but the same dimensional 
flow velocity). Superimposed on these are traces of nondimensional 
pulsation frequency a> versus amplitude n, as generated by the pul
sating apparatus; the three strokes of the reciprocating mechanism 
shown, in the range investigated may be characterized as "small," 
"medium," and "very large." It should be mentioned that strokes 
greater than 2.5 cm were not normally used, one reason for this being 
that when combined with high frequencies they produced unaccep-
tably high Jevels of mechanical vibration and deformed sinusoidal 
perturbations. 

Fig. 2(a) is for a cylinder of length 39.5 cm, which is in the range 
normally tested in these experiments. It may be seen that the first-
mode resonance region lies below the frequencies and amplitudes 
normally investigated, which partly explaines why first-mode reso
nances were not normally observed. Fig. 2(6) corresponds to a cylinder 
shorter than usual (28 cm), which was tested in an attempt to bring 
first-mode resonances within the (fi, w) -range which the apparatus 
was comfortably capable of generating. It is seen that only with very 
high strokes, which were not normally used, would resonance oscil-

I st-Mode 
o| Principal, Resonance Region 

120 

100 

1 

80 

60 

40 

20 

0 

2nd-Mode Principal—, ^ 
Parametric Resononcei^^-

Region^^ 

Stroke i 
„=0.63cpi 

/ / / / 

^ ^ ^ 

•l.90cm7 

/ 
/ / 

/ / ' -3.20cm, 

1st-Mode Principal —' " 
Resonance Region , 

0.0 

(a) 

0.2 0.4 0.6 0.0 0.2 

(b) 

0.4 0.6 

Fig. 2 Experimental pulsation frequencies and amplitude loci in the (fx.w)-
plane for three strokes of the reciprocating mechanism, and the theoretical 
boundaries of parametric resonances for a system with j3 = 0.466, K = 1.90, 
X = 1.25, h = 0.5, tcf = 0.50. (a) for a cylinder with 7 = 4.18, hysteretic 
damping coefficient v = 0.30 (equivalent a for first and second mode: 0.025 
and 0.0036), and u„ = 4.50; (b) toe a cylinder with y = 2.10, v = 0.36, and 
u0 = 3.71 

lations occur. Nevertheless, when such high strokes were used, no 
clearcut first-mode resonance developed on the scale of amplitude 
and regularity of motion that is associated with second-mode reso
nance. Thus, although in the neighborhood of the theoretical region, 
there were definite indications of greater regularity of small quasi-
harmonic motion in the generally stochastic response of the cylinder, 
no clearcut limit-cycle motion could be identified. 

The conclusion that must be reached from the experiments of Fig. 
2(6) is that there may indeed have been a small first-mode resonance 
region there, but either it was impeded from developing by interfer
ence from the relatively high turbulent buffeting (see also final 
paragraph of this section), or that it had an extremely small limit-cycle 
amplitude which could not be detected visually. This matter was not 
pursued at great length, and experiments concentrated on second-
mode parametric resonance oscillations which were relatively easy 
to generate with the existing apparatus.2 

A final comment on Fig. 2 is that the second-mode regions are larger 
vis-a-vis the first-mode ones than is typical in the figures of Part 1 
[1]. The reason is that the calculations here were done for a hystere-
tically damped system, while those of Part 1 considered a Kelvin-
Voigt viscoelastic dissipative model. 

Finally, it is instructive to discuss some early experiments where 
the piping leading to the test section was of much smaller diameter 
than shown in Fig. 1; in fact, it was of smaller diameter than that of 
the test-section itself, so that there was a diffusing section in between. 
Moreover, no special care had been exercised to render uniform the 
flow entering the test-section. As a result, the mean flow about the 
cylinder was very noisy (indicating a high level of turbulence) and 
perhaps nonuniform as well. Following the usual experimental pro
cedure, no parametric resonance oscillations whatsoever were ob
served with this setup, even in regions of the (fi, a))-plane where theory 
predicted their existence [1] (and where they were subsequently found 
to exist after the apparatus was modified, to the form previously de
scribed). Instead, there was small random vibration of the cylinder 
throughout these tests, where the cylinder probably responded mainly 
to the random pressure fluctuations of the highly turbulent near 
field. 

1 This is true, provided these parameters were within the ranges given in the 
section, "Description of Apparatus;" otherwise, the regions of resonance could 
move beyond the frequency and amplitude capabilities of the apparatus. 

2 It must be stressed that these observations are not claimed to be applicable 
to all systems. Perhaps for another system with lower flow turbulence and/or 
lower internal dissipation, first-mode resonance oscillations would have been 
more prominent. 
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Fig. 3 Experimental boundaries of second-mode principal parametric res
onance compared with theory; system parameters: 8 = 0.465, a = 0.0049 
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Fig. 4 Experimental boundaries of second-mode principal parametric re
sonance compared with theory; system parameters: for (a) and (b) 8 = 0.465, 
a = 0.0030, K = 1.9, X = 1-265, ft = 0.519, y = 3.98; for (c) and (d) 8 = 
0.446, a = 0.0036, K = 1.9, X = 1-236, ft = 0.481, y = 11.09 

Compar i son B e t w e e n T h e o r y and E x p e r i m e n t 
By comparing the band of frequencies of the observed limit-cycle 

resonance oscillations of the system to the theoretically predicted 
eigenfrequencies, it was quite clear that they were principal primary 
resonances associated with the second mode. 

The theoretical and experimental boundaries of the resonance re
gions are compared quantitatively in Pigs. 3 and 4. The results shown 
and the degree of accord between theory and experiment are typical 
of many more such sets of results obtained, but not shown here for the 
sake of brevity; a report will be published in the near future containing 
all such results. 

The parameters used in these figures are nondimensional system 
parameters defined in Part 1 [1]. Thus 

u> = [(m + pA)/EI\ll2Q,L2 = dimensionless frequency 
«o = (pA/EI)1/2UoL = dimensionless mean flow velocity 
€ = L/D = slenderness ratio 

for cylinders of length L, diameter D, mass per unit length m, cross-
sectional area A, and flexural rigidity EI, immersed in fluid of density 
p, flowing with mean velocity UQ. The pulsation amplitude p. is defined 
in equation (1), and Q is the pulsation circular frequency. The other 
system parameters given in the captions are as follows: 

a = dimensionless viscoelastic damping of the cylinder 
K = dimensionless spring constant of the effective rotational 

spring at the downstream end (cf. equation (2)) 
7 = dimensionless gravity parameter = (m — pA)gL3/EI 
8 = mass parameter = pA/(pA + m) 
X = virtual (or hydrodynamic) mass coefficient, equal to 1 for 

unconfined flow, and >1 for confined (annular) flow 
h = D/(hydraulic diameter of the annular flow) 

The results shown in Pig. 3 were all obtained with the same cylinder 
(D = 12.6 mm) in the same test section (Dch = 39.8 mm), but with 
different Cylinder lengths: L = 36.1 cm in Figs. 3(c) and (d), while L 
= 41.3 cm in Figs. 3(a) and (b). Each case corresponds to a different 
flow velocity. For the shorter cylinder (figures on the right) the di
mensional flow velocities are 20 to 30 percent higher—relatively larger 
than comparison of the dimensionless UQ would indicate (vide defi
nition of u0 in the foregoing). Clearly, agreement between theory and 
experiment may be said to be reasonably good. 

Similarly, Pig. 4 shows the principal second-mode instability regions 
for two cylinders: Figs. 4(a) and (b) are for a cylinder of diameter D 
= 13.6 mm and length L = 41.6 cm in the wider test section (Dc/, = 40 
mm); Figs. 4(c) and (d) are for a cylinder with D = 10.4 mm, L = 43.9 
cm in the narrower test-section (Dch = 32 mm). The two cases, 
therefore, involve different hydrodynamic mass, slenderness, and flow 
velocities. Once again, the degree of accord between theory and ex
periment is reasonably good. 

In these experiments an attempt was made to vary the parameters 
as much as possible, in order to assess the effect of some of them on 
the degree of agreement between theory and experiment. Prom the 
results obtained it was concluded that there is no significant deteri
oration of this accord as any one of these system parameters was 
changed. Unfortunately, limitations of the apparatus did not permit 
a very wide variation of most parameters. For example, if Dch — D 
were very small, it was found that in the course of parametric reso
nance the cylinder would impact on the test-section, which rendered 
the theoretical assumptions invalid. If Dcft were large, on the other 
hand, the beneficial effect of flow convergence upstream of the test 
section would be eliminated, resulting in unacceptably high turbu
lence levels. Of course, some of these limitations of the apparatus 
could have been designed out of the system. However, the main pur
pose of these experiments was not to test extensively the effect of 
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parameters, but (i) to observe the behavior of the system, and (ii) for 
some arbitrary sets of parameters, to test the validity of the theoretical 
model. These aims may be considered to have been satisfied. 

Conclusions 
From the work presented in the two parts of this study a number 

of general conclusions may be drawn. 
In the presence of harmonic perturbations to the mean flow velocity 

about a cylindrical body, parametric resonance oscillations may de
velop. Of these, the most important are associated with principal 
primary resonances. For the experiments of this study, the principal 
primary resonances associated with the second mode were predomi
nant, although it cannot be concluded that this is a general result. 

It was found that the theoretical model is capable of predicting the 
pulsation amplitudes and frequencies necessary to induce the ob
served parametric resonance oscillations. Accordingly, one may use 
this theoretical model with some confidence. It is especially important 
to note that the model agrees reasonably well with the experiments 
in relatively narrow annular passages, which together with the work 
of [4] indicates that the simple manner utilized by theory for ac
counting for the increased hydrodynamic mass is basically sound. 

One important finding was that if the turubulence level in the 
flowing fluid is sufficiently large, parameteric resonances may be 
suppressed. An additional manifestation of this may be the obser
vation that first-mode resonances did not materialize in these ex
periments. It may also contribute to the paucity of practical obser
vations of occurrence of parametric resonances in the field. 

Another reason for this last statement relates to the fact that one 
of the main diagnostic tools for attributing flow-induced vibration 
is the measurement of the cross-spectral-density between structural 

vibration and pressure in the flowing stream. As was shown here, 
however, the dominant parametric resonances are the principal ones, 
where the frequency of the pressure pulsations is twice that of vi
brations. Hence, in the absence of coincidence between the two 
frequencies, this diagnostic technique would consistently miss 
parametric resonances, even if they are present. Of course, if such 
measurements are complemented by temporal cross-correlations 
between the two quantities, which is not always done, these resonances 
may then be detected. 
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Reexamination of Unsteady Fluid 
Dynamic Forces on a Two-
Dimensional Finite Plate at 
Small l a c h Numbers 
The Fourier transform theory is applied to the analytical determination of the distur
bance velocity potential and pressure acting on a two-dimensional plate, in order to reex
amine those of previous analyses by other investigators. Simplified expressions of the gen
eralized forces are presented for incompressible and nearly incompressible flows. As the 
Mach number tends to zero, the virtual mass induced by an oscillating fluid becomes infi
nitely large for a natural mode symmetric with respect to the midchord point. It is recom
mended to take into account a symmetric mode which changes no fluid volume contained 
in a control surface, when a coupled flutter oscillation at very low Mach numbers is ana
lyzed. Incorrectness in the generalized forces of the previous analyses is pointed out by 
comparing with the present analysis. 

Introduction 
Stability of a finite plate or cylinder, exposed to subsonic flows has 

been examined by many investigators. Prerequisite to such a stability 
analysis is the determination of unsteady fluid pressures acting on 
the plate or cylinder. At an early stage of research on the plate stability 
the pressure approximation for an infinite wavy wall was used by Flax 
[1], and Dugundji, Dowell, and Perkin [2], Making use of the source 
functions, Ishii [3, 4] derived expressions for the generalized forces 
of inviscid subsonic flow past a two-dimensional plate, which is con
nected to semi-infinite rigid walls at the leading and trailing edges. 
The pressure for a nearly incompressible flow past the same plate as 
Ishii treated was examined by Weaver and Unny [5] with the aid of 
the Fourier transform, and the generalized forces were numerically 
calculated in an approximate manner. Applying a Laplace transform 
with respect to time and a double Fourier transform to space variables, 
Dowell [6] evaluated the generalized forces for a rectangular plate 
undergoing a transient motion. Simple expressions of the two and 
three-dimensional generalized pressures in low frequencies are pre
sented by Ellen [7], using the asymptotic expansions. Ellen claims that 
Weaver and Unny's approximation [5] overlooks an important con-
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tribution to the generalized forces, and that Ishii [3] has errors in his 
forces for the flow at finite Mach numbers. 

As for an incompressible flow in a finite cylinder which is connected 
to semi-infinite rigid pipes, Weaver and Unny [8] numerically cal
culated the generalized forces by applying the Fourier transform 
theory like in their previous paper concerning the flat plate. Analytical 
evaluation of the generalized forces for the incompressible flow in the 
cylinder was presented by Matsuzaki and Fung [9] with the aid of the 
Fourier transform theory. Extending their approach, Matsuzaki and 
Fung [10, 11] evaluated analytically the generalized forces for in
compressible and small Mach number flows in a two-dimensional, 
flexible channel which is connected to semi-infinite rigid channels. 

When plates or cylinders are of finite length, difficulties are en
countered in determining the pressure acting on them: 

1 In an incompressible flow problem, the integral for pressure 
may become boundless and no pressure expression can be obtained. 
This happens, for instance, when the plate oscillates with an eigen-
mode symmetric with respect to the midchord point [5]. It is also true 
when the upper and lower panels of the two-dimensional channel 
oscillate symmetrically with respect to the center line of the channel 
as well as the midchord point [10]. We may find the same situation 
in a tube analysis [9] when the tube is assumed to oscillate in an axi-
symmetric mode, that is, the circumferential wave number n = 0. The 
analytic difficulty is considered to occur for a mode of oscillation 
which does not preserve constant fluid volume. In order to avoid the 
difficulty for such a mode, the effect of compressibility is taken into 
account in reference [11], 

2 Tedious numerical calculations are required for evaluating the 
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Fig. 1 The geometry of the panel and the coordinate system 

generalized force at finite Mach numbers which is expressed in an 
integral form, for example, equation (8ft) of reference [3]. 

In spite of the analytical problem mentioned in item 1, Ishii [3, 4] 
derived the generalized forces for the incompressible flow with an 
oscillatory mode symmetric with respect to the midchord point. If his 
analysis is carefully examined, then we see that the perturbation ve
locity potential, the pressure and the generalized forces, given by 
equations (2), (5a), and (8a) of reference [3], respectively, may diverge 
as x tends to infinity, although the counterparts for the compressible 
flow certainly attenuate. In other words, the radiation condition is 
not necessarily satisfied for the incompressible flow. 

The objectives of the present paper are to reexamine the fluid 
pressures for subsonic flow past the same two-dimensional plate as 
used in references [3-5, 7], and, further, to derive simple expressions 
for the generalized forces at small Mach numbers by applying an as
ymptotic expansion. Details of derivation of the disturbance velocity 
potential and disturbance pressure shall be given in order to compare 
with the Ishii's and Weaver and Unny's analyses which are criticized 
by Ellen. No strong limitation on the reduced frequency is imposed 
unlike in reference [7], so that the generalized pressures proposed are 
applicable to analysis of dynamic instability. 

Mathematical Formulation 
An inviscid fluid with the. free-stream velocity U flows past a two-

dimensional panel in the X -direction as shown in Fig. 1. The panel 
is connected to semi-infinitely long, flat rigid walls at the leading and 
trailing edges, i.e., X = 0 and L. Let us assume that the space under 
the elastic panel and rigid walls (Y < 0) is empty. 

The linearized velocity potential <j>(X, Y, t) is described by 

d 2 0/dX 2 + d 20/dY 2 - ( l /a0
2)(d/di + Ud/dX)2<l> = 0 

for Y > 0 (1) 

where ao is the velocity of sound in the fluid. The velocity potential 
is related to the surface deflection w(X, t) by 

(d(ji/dY)y=o = bw/dt + Udw/dX (2) 

The potential must satisfy a radiation condition 

lim<t>(X,Y,t) = 0 as V X 2 + Y 2 ^ - » (3) 

The perturbation pressure, p(X, t), on the panel is given by 

p = -p(d<t>/dt + Ud<l>/dX)Y=o (4) 

where ft is the density of the free stream. We assume the plate de
flection, the potential and the pressure to be in the forms of 

w(X, t) = W(X)eiat, <t>(X, Y, t) = *(X, Y)e 'w , 

p(X, t) = P(X)ei"t (5) 

Then, equations (1), (2), and (4) can be rewritten as 

d2*/dx 2 + d 2$/dy2 - MHblbx + ik ) 2 * = 0 (6) 

where 

( d $ / d y ) y = 0 = U(d/dx + ik)W , (7) 

P{x) = -\(pU/L)(d/dx + ik)$)y=0 (8) 

X/L, y = Y/L, k = (oL/U, M = U/a0 (9) 

Applying the Fourier transformation, with respect to x, to $ and 
W, i.e., 

*(£,y) = - L = f°°*(x,y) 
V27T »/-•» 

e'Z'dx, 

WHO = ~4= C W(x 
V2TT JO 

we obtain from equations (6) and (7) 

d2$*/dy2 - f2$* = o 

(d**/dy) y = 0 = iU(-£ + k)W* 

where 

e't'dx (10) 

(11) 

(12) 

f = 0 [ « - £+)(* - £->]1/2, £+ = Mk/(i + M), 

£_ = -Mk/(1 - M) (13) 

P = (1 - M2)1 '2 (14) 

The solution to equation (11) is given by 

**(£,;y) = Ae!y + Be~$y f o r y > 0 (15) 

When £_ < £ < £+, f is pure imaginary so that we can put f = if, where 
f is real and positive. Since exp ji(cot - fy)\ and exp \i(wt + £>')) rep
resent disturbances moving in the positive and negative y -directions, 
respectively, the first term of equation (15) must be discarded. When 
£ < £- or £ > £+, the first term diverges as y tends to infinity. There
fore, we must put 

A = 0 (16) 

irrespective of the value of £. Equation (15), satisfying equation (12), 
is 

$*Ui,y) = \iU(Z-k)/f)W*exp(-fy) (17) 

The inverse transform of equation (17) is written as 

*(x ,y) = - (U/y/2^) f °° | i ( -£ + k)W*(0/f\e-^e-l(xd^ 

(18) 

Let us assume Mk ^ 0 and introduce a variable X, defined by 

X = (£ - 8)/y (19) 

where 

7 = Mk/(\ - M2) and o = -M2k/(l - M2) (20) 

By virtue of the convolution theorem, equation (18) becomes 

#(x, y) = -(LVV^r") f I(x - v, y)Wdv + ik)W(v)dri (21) 
Jo 

where 

I(v, y) = (e- iSu/- 2TT/3) £ " exp ( - (7/3VX 5"^! ; 

+ iuyXWy/W^l d\ (22) 

Some manipulation on equation (22) yields 

Kv, y) = - J \ / W 2 e"''*"H0
<2>[7v/X2 + (/3y)2] (23) 

In deriving equation (23), we have used [12, 13] 

f " cos (b^a2 - 22)e- 'E z /Va2 - z2dz = 7 r J < W £ 2 + b2), 
*J —a 
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*<• sin (by/a2 — z2) 

s: 
f 

J -a \/a2 — Z2 

exp (—b\/z2 — a2) 

e-'(zdz + |x: 
Vi 

e-^dz = 7 r y 0 ( o V P + &2) 

ff0
<2)(2) = Jo(z) - iY0(z) 

Jo, YQ, and if o<2> are, respectively, the Bessel functions of the first, 
second, and third kinds. Substituting equation (23) into equation (21) 
gives 

*(*, y) = (i U/2/3) P <>-''»<• 
Jo 

x-r}) 

X H 0
( 2 ) h\ / ( .x - r,)2 + (y/3)2] — + ik\ W(V)drj (24a) 

= (iU/2P) C W(j7)e-''*<I-'>[i(fe - S)#o<2>[7V(* - r))2 + (y/3)2] 

- 7 sign (x - V)H^[yV(x - J/)2 + (yl3)2]]dr, (246) 

where W(0) = W(l) = 0 have been used. 
The disturbance velocity potential, equation (24a), is the same as 

equation (3)1 of reference [3], where Ishii derived it by using the source 
function. The disturbance potential at any point (x, y) can be deter
mined by using equations (24).2 It is evident from equation (24b) that 
$ ( i , y) vanishes as \Jx2 + y2 tends to infinity as long as the fluid is 
compressible, i.e., M ^ 0. 

Low Mach Number Approximation. Now, let us assume that 

M « l 

and that the order of k is of unity at most, i.e., 

0(fe) < 1 

(25) 

(26) 

If we confine ourselves to evaluating a distribution of the velocity 
potential on the plate (0 < x < 1), then it follows that 

y\x-rj\«l and b(x — 17) « 1 (27) 

for 0 < r\ < 1. From the definitions of the Bessel functions [13], we 
obtain, for small 2, 

Jo(z) = 1 - (2/2)2 + 0(24) 

Yo(z) = (2/ir)[J0(z)\y* + In (2/2)! + (z/2)2 + 0(z4)] (28) 

where 7* is Euler's constant. Upon taking into account equations 
(25)-(28), equations (24) are reduced, for 0 < x < 1, to 

$(x,0) = (UM P (lu\x-ri\+c)Wdri + ik)W(ri)dri 
Jo 

(29) 

where 

In (Mk/2) + 7* + iTr/2 (30) 

c may have a large negative value in its real part since M « 1 and 0(k) 
$ 1. Integrating by part equation (29) yields 

*(x,0) -Lf 
7T 1^0 

ik In \x — ?/1 + • 
1 

x - r\\ 

X W(n)dr\ + ike f W(y)dr) 
Jo 

(31) 

It is noted that the last integral, which is multiplied by c, is inde
pendent of x. 

Substituting equation (31) into equation (8), we have 

1 i is dropped out from the right-hand side of equation (3). There are also a 
few errors in equation (56) of reference [3]. 

2 Whenever improper integrals appear, their principal values should be 
taken. 

P(x) 
pU2 s1 

Jo 

1 2ik 

Now, letting 

l(x ~ V)2 

W(x) 

(i/j)zln|jc-»7|MV(T;)dri 

• c(ik)' 

• Z aqWQ(x) 
9 - 1 

f Wbi)di) 
Jo 

(32) 

(33) 

(34) 

we will evaluate the generalized fluid forces defined by 

Qmn^L f 1 Pm(x)Wn(x)dx/(pU2/2) 
Jo 

where Pm(x) is the pressure due to the deflection Wm(x). When the 
panel is simply supported at both ends, we put 

Wm(x) = sin rn-Kx (35) 

Substituting equations (32) and (35) into equation (34) gives 

Qmn = -Qmnm + (ik)2QmJ2\ for m + n = even (36a) 

Qmn = ikQ„ (1) for m + n = odd 

where 

(0) 

(36b) 

(37a) 

, < o > = - Amn 

ir(m2 — n2) 

(1) : 

= 27 i [S i ( r a i r ) - | l - ( - l ) n !A i7 r ] 

|Ci (m7r) - Ci (nir) + In (n/m)\, 

f o r m ^ n (376) 

(8/7r2)|n Si.imir) + m Si (nir)}/{n2 - m2) (37c) 

Qmni2) = 4[n2|Ci (mTT) - In mix - y*} 

— m2|Ci (n-Jr) - In nir - y*\\/\mn(m2 — n2)7r3] 

- (e/mra7T2)|l - ( - l ) m | | l - (-1)") (37d) 

Si and Ci are the sine and cosine integral functions, respectively. The 
Mach number disappears in the coefficients of the generalized forces, 
except for Qmn <

2' where m and n are odd. Because of c in the last term 
of equation (37d), the real part of Qmn

 (2) is large for a nearly incom
pressible flow when both m and n are odd numbers. In other words, 
when the plate is oscillating with one of the assumed modes symmetric 
with respect to x = 0.5, a large virtual mass is induced. Consequently, 
no rapid oscillation in such a mode is expected. If M tends to zero, then 
we may predict from equations (37d) and (30) that an infinite amount 
of virtual mass induced will prevent the plate from oscillating in the 
symmetric mode. 

However, it is clear from equations (31) and (32) that a rapid os
cillation in symmetric modes may occur, provided that 

s1 
Jo 

W(x)dx = 0, (38) 

since the last term in equation (37d) disappears. Let us consider an 
arbitrary control surface enclosing the elastic panel. Then, we see that 
equation (38) represents no change in fluid volume contained in the 
control volume. The simplest symmetric mode which satisfies equa
tion (38) is given by 

W(x) = (l/-v/l0)(sin xx - 3 sin 37rx) (39) 

Next, we shall analytically evaluate the pressure for the incom
pressible flow in order to compare with the analyses by Ishii, and 
Weaver, and Unny. 

Incompressible Flow Approximation (M = 0). When M - 0, 
we must return to equation (18). Because of £+ = £_ = 0 and f = | £|, 
$(x, 0) is written as 

*(x,0) = -(t/A/^r") £ J(x - V)(d/dv + ik)W(ri)dri (40) 

where 

J(v) = (l/V2^) j ° e-^/llldf (41) 

722 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



n 

1 

2 

3 

b 

c 

b 

c 

b 

c 

Table 1 Generalized forces " Qm„ for M = 0, associated with natural modes 

m - 1 

- 2 . 4 3 0 4 + » ( i k ) 2 

-2 .4247 +0 .45296 ( i k ) 2 

d 

m = 2 

-1 .3838 i k 

-1 .3824 i k 

-5 .6720 + 0.22230 ( i k ) 2 

-5 .6753 + 0.24173 ( i k ) 2 

m = 3 

0.55461 + » 

0.57312 +0 .06265 

-1 .2327 i k 

-1 .2320 i k 

-8 .7759 + 

-8 .7755 + 0.13904 

( i k ) 2 

( i k ) 2 

( i k ) 2 

( i k ) 2 

a) 

b) 

c) 

d) 

O =-^°5+ikQt
1) + (ik)2Q(2^ 

Tim "" ""-mn 

present analysis 

from reference 4 

xnm -" xmn 

The inverse Fourier integral, equation (41), cannot be evaluated in 
an ordinary manner [14]. However, if we resort to the theory of gen
eralized functions [15], then equation (41) becomes 

J(v)= ( - 2 / V 2 i ) ( l n | i ; | + d ) (42) 

where d is an arbitrary constant. Substitution of equation (42) into 
equation (40) yields 

$(x,0) = (UM f (In l* -7 ,1 + d)(d/dri + ik)W(ri)dri (43) 
Jo 

Comparison of equation (43) with equation (29) shows that the 
disturbance velocity potential for M = 0 has the same form as that 
for M « 1. It should be noted, however, that equation (29) is appli
cable only to the small range of x about the origin, whereas equation 
(43) is valid for any value of x. We will make use of equations (31)-
(39), instead of deriving the corresponding equations, by assuming 
that c is an arbitrary constant in place of d and eliminating the re
striction on x. 

When | JC | » 1, equation (31) is reduced to 

*(* ,0) = (ifcl//ir)(lnl*| + c ) f W(jj)dr) 
Jo 

(44) 

Let us assume k ^ 0. As long as equation (38) holds, the radiation 
condition is satisfied. If this is not the case, that is, if the fluid volume 
in the control surface is not constant, then the radiation condition is 
violated. In other words, if the deflection of the panel does not satisfy 
equation (38), then no oscillation in such a mode can occur because 
of an infinitely large virtual mass induced. This agrees with the remark 
concerning M —• 0 given in the preceding section. 

As a matter of course, it follows that the generalized forces for the 
incompressible flow are presented by equations (36) and (37) with 
M = 0. 

N u m e r i c a l R e s u l t s and D i s c u s s i o n s 
Let us begin with comparing Weaver and Unny's analysis [5] with 

ours. There are two points to be discussed. First, they introduced an 
assumption of a nearly incompressible flow to avoid the boundlessness 
of the pressure integral for M = 0. As is seen in equation (41), we have 
encountered the same problem. However, this has been solved by 
using the theory of generalized functions. Second, by arguing that the 
velocity potential does not attenuate along the z -direction for 0 < u 
< oo/a, Weaver and Unny changed the lower limit of equation (18) of 

reference [5] from 0 to w/a. Let us return to equation (22) of the 
present paper. One may find the same situation there. If one follows 
Weaver and Unny, then the integration over |X| < 1 in equation (22) 
had to be excluded. However, it is obvious from equations (23) and 
(21) that I(v, y) and, therefore, <b(x, y) are diminishing as y tends to 
infinity although the integration is included. As pointed out by Ellen 
[7], Weaver and Unny's velocity potential has a zero-order error. 

In reference [7] Ellen asserts that Ishii has errors in the generalized 
forces for flow at finite Mach numbers, being suspicious of the cal
culations to be based on the result for M = 0. However, we can con
sider that Ishii's numerical calculations for finite Mach numbers are 
independent of the result for M = 0, since the generalized forces were 
calculated by approximating the Hankel functions which appear in 
equation (8b) of reference [3] or equation (14) of reference [4]. 

As for Ishii's analysis for the incompressible flow, it should be noted 
that his velocity potential, i.e., equation (2) of reference [3] with z = 
0 differs from equation (43) of the present paper by the constant d. 
As examined in the previous section, if equation (38) does not hold, 
then d must be set to a negatively infinite number in equation (43). 
Otherwise, the radiation condition is dissatisfied. Hence, the equation 
(2) can not satisfy the condition by any means. 

The generalized forces defined by equations (36) are numerically 
evaluated for the first to third eigenmodes as well as the symmetric 
mode described by equation (39). In Table 1 the results for the in
compressible flow are presented in comparison with those of reference 
[4]. When m and n are odd numbers, that is, equation (38) does not 
hold, Qm„(2> calculated by the present analysis are infinite, whereas 
those of reference [4] are finite. As previously mentioned, the radiation 
condition is violated in the latter. It is seen that the generalized force 
coefficients of the present analysis agree with those of Ishii, except 
f° r Qmn^ (m, n: odd). Table 2 shows Qm„<2) (m, n: odd) at several 

' small Mach numbers with k = 1.0. They are complex numbers. Their 
real parts grow slowly as M decreases, and they become infinite at 
M = 0. 

The generalized forces associated with the symmetric mode de
scribed by equation (39) are given in Table 3. It is noted that Qss

(2) 

is considerably small, compared with the real part of Qn' 2 ' or Q33(2) 

in Table 2. We may expect that the plate will oscillate more rapidly 
in the mode defined by equation (39) than either in the first or third 
eigenmode, since the virtual mass is smaller in the former than in the 
latter. Therefore, it is plausible that, instead of the first or third mode, 
such a symmetric mode producing a small virtual mass is taken into 
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Table 2 Qmn
(2) at small Mach numbers with k = 0 for m and n being odd 

numbers 

Real P a r t Imag. P a r t a 

0.01 0.001 0.00001 

d2) 

^31 

1.6770 2.2711 3.4593 

0.47067 0.66870 1.0648 

0.27442 0.34043 0.47245 

-0.40529 

-0.13510 

-0.04503 

Imaginary parts are independent of M. 

b) J.2) JZ) 
^13 y31 

Table 3 Generalized forces for the symmetric mode defined by equation 
(39) 

Q 

-1.2947 + 0.083795 (ik)' 

1.6070 ik 

-8.4741 + 0.13228 (ik)2 

a) 
Q =(-l) m + 1Q 

accoun t toge the r wi th t h e second e igenmode in analyzing coupled 

f lut ter oscillations. Stabi l i ty analysis of a flat or buckled pla te will be 

p r e s e n t e d elsewhere by using t h e general ized forces ob t a ined here . 

C o n c l u d i n g R e m a r k s 
W e have examined previous analyses concerning a subsonic flow 

p a s t a s imply s u p p o r t e d two-d imens iona l p la te . T h e Four ie r t r a n s 

form theo ry is appl ied in ob ta in ing analyt ical ly t h e d i s tu rbance ve

loci ty po ten t i a l , p ressure , and general ized forces to compare wi th 

those derived by Ishii who used the source functions. T h e generalized 

forces for flow a t smal l M a c h n u m b e r s a re p re sen t ed in simplified 

forms by us ing the a sympto t i c expansion. Compar i son wi th Ishii 's 

analys is shows t h a t he has errors in t h e case of t h e incompress ible 

flow, since t h e rad ia t ion condi t ion is violated when t h e fluid vo lume 

in t h e control surface changes . Consequent ly , we m a y conclude t h a t 

it is necessary to reexamine t h e stabi l i ty analysis of simply suppor ted 

p l a t e s exposed to an incompress ib le flow. W e confirm El len 's claim 

t h a t Weaver and U n n y have zero-order errors in thei r general ized 

forces of a near ly incompress ib le flow. 
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Rationale for a Linear Perturbation 
iethod for the Flow Field Induced 
by Fluid-Structure Interactions1 

A formal justification is developed for a method in which hydrodynamic data for a tran
sient in a rigid-wall system {derived, for example, from a small-scale experimental simu
lation) is used as input in a linear computation for the perturbation flow field due to actu
al wall flexibility. The method is useful in problems where the basic flow transient is so 
complex that it can be quantified only empirically, and where the fluid-structure interac
tion is too complex for the fluid side to be represented by a priori defined equivalent 
mass. 

Introduction 
The analysis of loads resulting from complex flow transients in 

vessels is often further complicated by the effects of elastic bounda
ries. Numerical methods are almost invariably required, and even so, 
only relatively simple problems can be solved practicably [1]. The 
purpose of this paper is to identify a class of such problems where it 
is useful to separate the flow field into a component which would re
sult if the walls were perfectly rigid, and a perturbation which arises 
because of wall flexibility. We will show rigorously that the effects of 
the wall flexibility can be derived separately by means of a pertur
bation analysis which in most cases is considerably simpler than the 
general problem. The pressure of the rigid-wall flow field appears as 

' a forcing function at the boundary of the perturbation flow field. 

This result is useful in two ways. First, it simplifies analysis. The 
calculation for the flow transient with assumed rigid boundaries can 
be done first and the additional effects of wall flexure can be derived 
by a separate perturbation calculation in which the fluid behaves 
linearly. 

The second utility of our result arises in cases where the flow 
transient is so complex that a computation for it, or for its rigid-wall 
component, is difficult or impossible. In such cases, the first calcu
lation can be replaced by experimental data from a small-scale sim
ulation using rigid walls. Our analysis provides a formal justification 
for a method of using such data as input in a relatively simple calcu
lation for the perturbation caused by wall flexibility. Such a combined 

1 Work supported by the U. S. Nuciear Regulatory Commission, Office of 
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empirical/analytical approach is often more practicable than a com
plete empirical simulation which includes both the effects of wall 
flexure and the fluid dynamic transient proper. 

The technique of applying the experimental rigid-system load as 
a forcing function to compute structural oscillations has been used 
widely to solve problems involving flow-induced vibrations of cylin
ders and similar structures [2]. In these applications, the question of 
how one .deals with the inertially induced pressure field in the fluid 
is resolved simply by introducing an equivalent mass, one which can 
be determined semiempirically for a given body geometry. The 
method we propose here is useful in more complex problems where 
an equivalent water mass cannot be specified a priori, and where a 
solution must be derived for the flow field perturbation which results 
from wall flexibility. 

The method suggested here is not novel. Bedrosian [3], for example, 
has applied essentially this method to compute the fluid-structure 
interaction effects in pressure-suppression containment vessels of 
boiling-water reactors. The purpose of the present paper is to give the 
method a formal basis, and to specify the conditions which must be 
satisfied if it is to be valid. 

Analysis 
We consider a class of problems where an essentially inviscid motion 

is induced in a liquid by the transient application of pressure at one 
or several of the places where the liquid is bounded by gas. Elsewhere, 
the liquid is bounded by solid, but flexible, walls. The general case 
is best illustrated with an example (Pig. 1). 

A vertical pipe is partially submerged in a liquid pool which is ini
tially at rest, and bounded above by a region of gas. An event is 
triggered by a sudden discharge of gas or vapor into the pipe from 
above, causing the clearing of the liquid from the pipe, the formation 
of a gas bubble at the pipe end, and the rise or oscillation of the liquid 
in the pool. If the pool boundaries are rigid, the resulting pressure 
history at some point on the pool floor, for example, might be the one 
sketched in Fig. 2. If the boundaries are elastic, they, and together with 
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Fig. 2 Sketch of pressure histories in rigid-wall and in flexible-wall sys-
P + ' p ( t ) + p ( t ) t e m s 

(b) (c) 

Fig. 1 Example of flow transient, (a) Initial condition, (b) time f in system 
with rigid walls; (c) time I in system with flexible walls 

them the pool, would be set into oscillation, and the resulting pool 
acceleration and deceleration would give rise to an additional oscil
latory component of pressure, as indicated on the figure. We aim to 
show how these two contributions to the pressure can be sepa
rated. 

The liquid dynamics is governed by the equation of motion, 

Idv 
p — + v • Vv) = - V p - pgVz, (1) 

dt 

the equation of mass conservation, 

dp 

dt 
+ V • (pv) = 0 (2) 

and the isentropic pressure-density relation, dpi dp = c2. We shall 
assume that the latter applies in the linear approximation, 

p - Po = c0
2(p - po) (3) 

where po, Co, and po are the pressure, speed of sound, and density, 
respectively, in the undisturbed fluid. 

The boundary conditions must be specified for equations (l)-(3) 
at the free surfaces and at the solid walls. We assume that the pressure 
at any free surface is uniform and, for the purposes of the analysis of 
the liquid, given. In Fig. 1, the trapped gaseous space above the liquid 
is one free surface, and the bubble emerging from the pipe is another. 
The free-surface boundary condition can thus be express as 

P - Piit) at the ('th free surface. (4) 

At the solid walls one must apply a boundary condition like 

dx 

dt 
(5) 

where v± is the fluid velocity component directed perpendicularly 
into the wall, and x is the displacement of the wall (away from the 
fluid) from its initial, equilibrium position under hydrostatic condi
tions. The wall displacement x is governed by a structural equation 
of motion which can be expressed symbolically as 

d2x I dx d2x 
m — - = (p - po) - a \x, — , , . 

dt2 \ dt dt2 .., t (6) 

where m is the local mass of the wall per unit area, p is the local in
stantaneous pressure in the fluid, po is the initial hydrostatic pressure, 
and a is a local structural restraining force per unit area, whose 
magnitude depends on the displacement x of the wall from its initial 
equilibrium position, on the time derivatives of x, and possibly also 
on the time t itself. The form of a is governed by structural consid
erations. Note that when the displacements x are small, the boundary 
condition embodied in equations (5) and (6) can to a good approxi
mation be applied at the equilibrium, or undisturbed, location of the 
wall rather than at the actual, instantaneous deflected position. 

We separate the variables into three components by writing 

v = 0 + vi (r, t) + v2 (r, t) 

P = PoW + P i (r, t) + p 2 (r, t) 

p = po + pi (r, t) + P2 (r, t) 

(7) 

(8) 

(9) 

where the subscript 0 refers to the values corresponding to the initial 
static conditions in the fluid, the subscript 1 refers to the hypothetical 
perturbation which would be caused if the imposed blowdown oc
curred in the system with rigid walls, and the subscript 2 refers to the 
remainder of the quantity, and represents the perturbation which can 
be attributed to the flexibility of the walls. The initial pressure dis
tribution po is assumed to hydrostatic, 

Po = constant - pogz. (10) 

By definition, the rigid-wall flow is the solution of equations (l)-(3) 
with V2, P2, and P2 equal to zero. Thus 

(Po + Pi) h p + v i • Vvi) = _ v P i ~ Pi8^z (11) 

dpi 

dt 
+ vi • Vpi + (po + pi) V • vi = 0 

P i = PiCoz 

(12) 

(13) 

where we used equation (10) to eliminate p 0 , and assumed p0 to be 
constant. The boundary conditions for the rigid-wall solution are 
that 

Po + Pi = Piit) at the ith free surface (14) 

•Nomenclature-
c = speed of sound in liquid 

g = gravitational acceleration 

L = characteristic length associated with 
gradients in velocity, density, and pres
sure 

m = wall mass per unit area 
p = pressure 
t = time 
v = velocity 

Vx = component of velocity directed per
pendicularly into wall 

x = displacement, of wall from equilibrium 
position, in perpendicular direction away 
from fluid 

z = direction measured vertically upward, 
against gravity 

p = liquid density 
T2 = characteristic time associated with the 

wall flexure 

Subscripts 

0 = value corresponding to the initial condi
tions in the static fluid 

1 = perturbation which would be caused if 
the event occurred in a rigid-wall system 

2 = remainder of the quantity, i.e., additional 
perturbation caused by wall flexibility 
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and that 

(u j j = 0 at solid walls. (15) 

The equations for the perturbation (2) due to wall flexure is ob
tained by substituting equations (7)-(10) into equations (1) and (2), 
and subtracting equations (11) and (12), respectively. One obtains 
the equation of motion 

(dv2 
— + V2 • Vvi + Vl • Vv2 + V2 • Vv2 

= - V p 2 ~ plgVz - p2 — + Vi • VvJ (16) 

and the mass conservation equation 

dp2 

dt 
' + Vi • Vp2 + V2 • V/)i + V2 • Vp2 + P2V • Vl 

+ (po + Pi + p2)V • v2 = 0, (17) 

and the pressure-density relation, 

P2 = P2C0 • (18) 

Assuming that the wall flexure does not actually affect the gas pres
sure at the free surfaces, we can write the free-surface boundary 
condition as 

P2 = 0 at the j'th free surface. 

The boundary condition at the solid walls is 

dx 

(19) 

(20) 

where x(t) is given by equation six. 
Equations (16) and (17) can be simplified considerably under 

conditions which are often not very restrictive in practice. Let 

Pi = typical amplitude of p i 
P2 = typical amplitude of P2 
L = characteristic length over which gradients in velocity and 

pressure occur during the transient 
T2 = characteristic time of the oscillation caused by wall flexure 
x = typical wall displacement during wall flexure 

We assume that 

Pi 

Poco2 

Pi 

P0C02 

4«> 
C(T 

« 1 

« 1 

11 
L 

« 1 
Po 

« 1. 

(21) 

(22) 

(23) 

(24) 

(25) 

The implication of these assumptions becomes apparent when we 
analyze the orders of magnitude of the various terms in equations (11) 
and (12) and equations (16) and (17). 

We assume that the velocity i»i arises from the acceleration of the 
liquid by a pressure difference p i acting over a distance L. The time 
of the acceleration is of order Lh\. The order of magnitude of V\ can 
then be estimated from the equation of motion as 

V\' 
El 
Po 

(26) 

The remaining order-of-magnitude estimates are self-evident: 

1 
(27) 

v2 
T2 

di>2 

dt " 

dp2 

dt " 

X 

T2: 

^P2 

T2 

(28) 

(29) 

(30) 

In addition, equations (13) and (18) give p\ and P2 in terms of p i 
and P2, respectively. 

Using these estimates, we are in a position to estimate the relative 
orders of magnitude of the various terms in the governing equation. 
We find that equations (21) and (22) imply, first of all, that pi and P2 
are small compared with p0. Equation (21) also implies that the second 
term in equation (12) is small compared with the third. Equation (23) 
is equivalent to the assumption that the gravitational term in equation 
(11) is negligible compared with the pressure gradient term. Hence, 
the equations for the rigid-wall flow reduce in good approximation 
to 

/dvi \ 
po V vi • Vvi = - V p i 

\ dt / 

dp 

dt 
1 + p0V • vi = 0 

Pi = Pico 

(31) 

(32) 

(33) 

The boundary conditions for the rigid-wall flow are given by equations 
(14) and (15). 

On the left-hand side of equation (16), the second and third velocity 
terms are negligible compared with the time-derivative term when 
equation (24) applies, and the fourth term is negligible when equation 
(25) applies. On the right-hand side of the same equation, the pres
sure-gradient term is large compared with the terms involving vi when 
equation (21) applies, and also large compared with the gravitational 
term if equation (23) applies. In equation (17), the second and fifth 
terms on the left are small compared with the first when equation (24) 
applies. The third is small compared with the last one (the sixth) if 
equation (21) applies, and the fourth is small compared with the last 
one if equation (22) applies. Thus the equations for the perturbation 
field caused by wall flexure reduce to 

dv2 
P O — = - V p 2 

dt 

dp2 

dt 
+ PoV • v2 = 0 

(34) 

(35) 

(36) 

The boundary conditions for this perturbation field are equations (19) 
and (20). Consistent with the small-perturbation assumption, the 
free-surface boundary condition, equation (19), is to be applied at the 
free-surface location obtained from the rigid-wall solution (or ex
periment), and the wall boundary condition, equation (20), is to be 
applied at the initial, undisturbed wall location (which is the, wall 
location in the rigid-wall solution). The displacement x(t) which 
appears in the boundary condition at the wall (equation (20)) couples 
the perturbation field to the structural behavior of the wall. In the 
symbolic representation of equation (6), x(t) is governed by the 
equation 

d2x 
m—- = p i + p 2 -

at 
dx d2x 

1 dt dt2 ,t (37) 

Note that the equations (34)-(36) for the perturbation field do not 
themselves explicitly involve the rigid-wall solution. The perturbation 
field due to wall flexure is coupled to the rigid-wall flow field only 
through the pressure p i which appears in the structural dynamic 
equation of the wall (e.g., equation (37)) and through the instanta
neous locations and shapes of the free surfaces (governed by the 
rigid-wall solution), where the boundary condition equation (19) must 
be applied. It is as if the rigid-wall pressure pi( t) appears as an ex
ternally applied transient pressure on the wall, and drives the wall 
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(and fluid) oscillation calculated by the perturbation (2). Thus, if one 
has obtained, analytically or experimentally, the rigid-wall pressure 
distribution history p i at the walls and the time dependent shapes 
of the free surfaces, one can apply the boundary conditions on the 
solution (2) and calculate the perturbations in velocity and pressure, 
throughout the fluid, caused by wall flexibility. 

Equations (34)-(36) are the linearized acoustic equations for the 
liquid, and can be solved, for example, by the usual linear method of 
characteristics with the sound speed Co taken as a constant. The liquid 
is, as it were, regarded somewhat as a "gel" with its free-surface 
boundaries prescribed as a function of time by the rigid-wall flow field. 
In the particular case where the period T<I of the wall oscillations is 
much longer than the acoustic transit time l/co across the system, I 
being the characteristic length of the liquid pool, 

/ 
« 1, (38) 

T2C0 

equations (34)-(36) reduce to the simple, linearized incompressible 
flow form 

dvQ 
Po = - V p 2 (39) 

dt 

V • v2 = 0 (40) 

This constitutes a particularly simple case, since the pressure P2 now 
satisfies Laplace's equation. 

Discussion of Applications 
The analysis outlined here has an important application in the 

design of large vessels, such as the pressure-suppression containment 
systems of boiling-water reactors, where transient liquid flows are 
induced and wall flexibility effects must be accounted for. In many 
such cases the basic transient flow phenomena are very complex and 
can be quantified only by means of small-scale experimental simu
lation [4, 5]. Often it is impracticable to model both the effects of wall 
flexibility and the hydrodynamics on a small scale. The question then 
arises whether one can use the hydrodynamic data derived from 
small-scale tests with rigid walls, and derive from that the strains in 
the walls of a real, full-scale system where wall flexure may occur. 

The present analysis gives a rigorous basis for such a procedure. 
Consider the situation in Fig. 1 as an example. Let us say we have 
available, from an experimental simulation with rigid walls, the 
pressure history pi(t) at every point on the walls and the locations 

of the free surfaces as functions of time. One can then obtain a nu
merical solution of the relatively simple, linear fluid equations, 
equations (34)-(36) (or equations (39)-(40), if equation (38) applies) 
for the perturbations caused by wall flexibility. The rigid-wall pressure 
Pi(t) appears as a driving force in the wall boundary condition for the 
perturbation field (equations (20) and (37)), applied at the initial 
undisturbed wall location, and the specified free-surface locations 
define where the free-surface boundary condition, equation (19), is 
to be applied. 

The method is valid as long as the inequalities expressed in equa
tions (21)-(25) apply. The requirements expressed by equations 
(21)-(23) are satisfied in most practical cases. In water, for example, 
it suffices tha tp i and P2 be small compared with 2 X 104 bar, and that 
the characteristic length L of the flow transient be small compared 
with 2 X 102 km. Equation (25) is also satisfied in many practical cases: 
it merely requires that the wall deflections x be small in amplitude 
compared with L. 

The key requirement is equation (24). The characteristic length 
L is the length over which gradients in velocity and pressure occur in 
the fluid during the transient. Usually, this can be taken as the system 
size. The depth of the pressure suppression pool in a boiling-water 
reactor, for example, is about 5 m. With L = 5 m and p i ~ 1 bar, 
equation (24) would be satisfied if the wall oscillation frequency 
(2TTT2)_1 is large compared with 0.3 Hz. A more conservative inter
pretation of the requirement would set L equal to the smallest char
acteristic flow length in the system. This would be of the order of 1 
m in the example, and thus the conservative requirement in the ex
ample would be that the wall oscillation frequency should be large 
compared with 1.6 Hz. One notes that linearization schemes often 
work well to relatively large amplitudes, and hence the wall oscillation 
frequencies may not have to be very much larger than the limiting 
values computed from equation (24) for the method to be a good ap
proximate. 

References 
1 Belytschko, T., Nuclear Engineering and Design, Vol. 42, 1977, pp. 

41-52. 
2 Blevins, R. D., Flow-Induced Vibration, Van Nostrand Reinhold Co., 

New York, 1977. 
3 Bedrosian, B., private communication, 1978. 
4 Sonin, A. A., and Huber P. W., ASME Journal of Heat Transfer, Vol. 100, 

1978, pp. 601-604. 
5 Anderson, W. G., Huber, P. W., Sonin, A. A., ASME Journal of Heat 

Transfer, Vol. 100,1978, pp. 605-612. 

728 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



T. V. Nguyen 
Student Mem. ASME. 

C. E. Brennen 
Mem. ASME. 

R. H. Sabersky 
Mem. ASME 

Division of Engineering 
and Applied Science 104-44, 

California Institute ol Technology, 
Pasadena, Calif. 91125 

Funnel Flow in Hoppers 
Detailed observations of funnel flows of dry granular materials in wedge-shaped hoppers 
of different geometries are presented. The variations of the flow regime with changes in 
the height of material in the hopper/vertical bin configuration, the width of the vertical 
bin, the hopper angle and the hopper opening width were investigated and a number of 
specific flow regimes identified (mass flow and several forms of funnel flow). In the first 
part of the paper particular attention is paid to the conditions for transition from one 
flow regime to another; in particular it is shown that the existence of a funnel depends not 
only on the hopper angle but is also strongly dependent on the geometry of the hopper/bin 
system. In the second part of the paper the variations in the shape of the funnel near the 
exit opening are explored in detail. 

1 Introduction 
This paper is concerned with the flow of dry, noncohesive, granular 

materials in hoppers. It is well known that for plane (wedge-shaped) 
or conical hoppers of fairly small included angle all of the granular 
material flows in a fairly uniform and regular way. Such devices have 
been referred to as "mass flow hoppers" and have been the subject 
of considerable study and analyses (for example, references [1-6]). 
The convergence of experimental observations and theoretical pre
dictions suggests that there exists some understanding of the me
chanics of granular media flow in these circumstances. However, as 
the included angle is increased and a vertical bin is added to the top 
of the inclined sides of the hopper changes occur in the flow pattern 
which are much less well understood. Most of the motion occurs in 
a central core, funnel or "rat-hole" and stagnant regions of material 
tend to occur near the walls of the bin or hopper. This paper presents 
experimental observations of funnel flows in plane hoppers with 
vertical bins since it is not only of fundamental interest but is also 
important to the hopper designer. In this regard comparison is made 
with some of the existing design criteria such as that proposed by 
Jenike [1]. 

The various types of flow pattern which were observed in the 
present experiments are indicated in Fig. 1 (also shown are the defi
nitions of 6W, D, W, and H, the hopper angle and opening width, the 
bin width, and the total height to the upper free surface, respectively). 
Fig. 2(a) is an example of type A or mass flow. The flows with stagnant 
regions are subdivided into two basic types, B and C. Type B has 
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Fig. 1 Schematic indicating the different flow regimes observed. Type A 
is the mass flow regime. Types B and C are funnel flows, B having stagnant 
material in the corner and C having stagnant material on the sides of the bin. 
The geometric notation is also shown; the dimension, b, is the breadth of the 
flow or distance between the front and back vertical walls. 
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Table 1 Material properties (angles In degrees)

Bulk Mean Inte rnal Wall Friction Angle
(~<) (*)

Material Specific Diameter Friction Lucite Aluminum e e
Gravity mm Angle Wall Wall wI w 2

Sand 1.5 0.5 -1 31 15 18 40 70

Polystyrene 0.56 0.25-0.39 39 12 17 35 60

Glass Beads 1. 46 0.325 25 15.3 17.7 ~O 50

Rice 0.8 - 30 - - 55 70

(,~) Values of e and e are for a smooth walled hopper with a thickness equal to 15.2 em.
wI w 2

less than about 60° mass flow (type A) was observed to occur until the
free surface reaced a critical height, H. Below this value ofH, stagnant
side flow of type C occurred. In Fig. 3, the critical ratio H/W is plotted

Flg.2 Photographic examples of the flow patterns for the sand (\I' = 31°).
The breadth, b, Is 15.2 em In all cases. The followIng are the values 018.., H,
W, 0 (In em): (a) 70°, 36.8, 22.9,1.91 (b) 80°, 58.4,11.8,1.37 (e) 70°, 35.8,
30.5, 2.54 (d) 50°, 35.8, 30.5, 2.54.

dc

versus the ratio W/D for various hopper angles. For Ow less than about
60°, the critical value of H/W is more or less constant for all angles
Ow. This implies that the transition from mass flow to type C is caused
by the presence of the vertical bin on top of the hopper rather than
by the inclination of the hopper walls.

For hopper angles greater than about 60°, flow of type B occurred
for large H. However, the flow underwent a transition of type C when
H/W reached the critical values plotted in Fig. 3. Again, the critical
value is more or less independent of the hopper angle. (Note that even

2 Experimental Apparatus
A plane hopper surmounted by a vertical bin was made of lucite.

The dimensions H, W, D, Ow (see Fig. 1) and the breadth or separation
of the front and back vertical walls (denoted by b) were all adjustable.
The hopper angle, Ow, could be varied continuously; exit openings,
D, ranged from 0.5 cm to 3.8 cm and bin widths, W, from 17.8 cm to
33 cm. Most observations were made with a breadth, b, of 15.2 cm but
tests with sand were also performed with breadths of 7.6 cm and 22.9
cm. In some tests the height, H, was maintained constant during flow
by means of a second supply bin; in other tests H decreased naturally
with discharge. Finally, a series of experiments were conducted in
hoppers with rough inclined walls and smooth vertical walls in order
to observe the effects of inclined wall roughness.

The granular materials used were sand, glass beads, polystyrene
pellets and rice; the grain shapes range from spherical (glass beads)
to elongated (rice). The grain size distributions were fairly uniform
and all the materials are practically cohesionless. Their physical
properties, measured according to the procedures described by Pearce
[20], are shown in Table 1.

sliding along the upper part of the bin wall and stagnant regions near
the bin/hopper wall corner (for example Fig. 2(b)). Type C has no
sliding along the bin walls and larger stagnant regions on either side
of the funnel (for example Fig. 2(c) and (d». Two subtypes were also
noted. In some instances slip occurred along the walls of the hopper
(types B2 and C2) whereas in other cases the stagnant regions ex
tended to the opening (types Bl and Cl). Figs. 2(b) and 2(d) are
representative of types B2 and C2 whereas Fig. 2(c) is of type C1.

Though there have been many observations of funnel flow patterns
in both plane hoppers [1,7-9,11, 12] and conical hoppers [16-19] the
variations with hopper geometry have not been exhaustively explored.
The main objective of the present investigation was to study the flow
fields occurring in plane hoppers over a wide range of geometries of
a hopper/vertical bin system and for a wide range of cohesionless
granular materials. Some effects of rough and smooth walls are also
studied.

3 Observation of the Transition Between Flow
Patterns

The transition criteria for the flow of sand in a hopper of breadth,
b = 15.2 cm "'{ill be discussed first. When the hopper angle, Ow, was

_____Nomenclature _

b = hopper breadth

D = width of exit opening

H = height of material above the exit
opening

S = distance along side wall from edge of exit
opening to merge point

W = hopper width
X = dimensionless horizontal position of

funnel boundary

Y = dimensionless vertical position offunnel
boundary

f3 = inclination of funnel to vertical at the
discharge

Ow =hopper angle

730 / VOL. 47, DECEMBER 1980 Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S 2.5 

S 2.0 

1.0 

0 
V 
A 

0 
D 
S 
A 

8* 
4 0 " . 
5 0 " 
6 0 " 
7 0 " 
8 0 " 
9 0 " 
9 0" 

Transition type 

1 

J 
} 
Lav 

A - C 

B - C 

nion'l expt. 
Gardner's expt. 

„ a o 

A " 0& O 
O O v O y y v 

y y O 

Cv 

J_ _L 
10 20 

HOPPER WIDTH / EXIT OPENING, W/D 

30 

or 

S 

g 
(/) 
z 
Ul 
s 

0.3 

0.2 

0.1 -

o 
V 

a 
A O 

GLASS BEADS 

POLYSTYRENE 

RICE 

SAND 

D 

o 

LA, _L J _ 
40° 50° 60° 70° 

HOPPER ANGLE , 0W 

80° 90° 

Fig. 3 Critical values of HI W plotted against W/D for various hopper angles, Fig. 4 DImenslonless hopper wall slip length, S/ W plotted against the hopper 
0 „ ; the material Is sand (<p = 31° , d = 0.5 — 1 mm) angle, 6W, for type C flow of the four materials used in the experiments 

for hopper angles as large as 70° mass flow can occasionally occur at 
large H/W and small W/D). 

It is important to emphasize that type C flow can be clearly dis
tinguished from type B. The former does not occur simply as a result 
of the upper free surface engulfing the boundary between stagnant 
and flowing material in type B. The extent of the stagnant material 
distinctly increases in a B to C transition as can be seen by comparing 
the boundary geometries in Figs. 8 and 9. 

In type B or C flow the stagnant material may either terminate at 
the discharge opening or it may end at a "merge point," S, which is 
some distance from the edge of the exit opening. In the latter case the 
material slides along the wall below the merge point. Consequently, 
mass flow is present in a localized region near the exit of the hopper. 
For convenience the subtypes S2 and C2 are defined as having a 
merge point on the hopper wall while in the subtypes Bl and CI the 
merge point coincides with the edge of the discharge opening (see Fig. 
1). The length of hopper wall over which slip occurs was measured for 
a variety of flows and will be denoted by S. Flows of type Bl (or C2) 
were observed to occur when the hopper angle was less than about 85°. 
As the angle is decreased below this the distance S increases mono-
tonically as the flow begins a transition to mass flow. The magnitude 
of S also depended upon the width W. However the values of S/W for 
type C flows were primarily functions of 0W as indicated in Fig. 4; the 
data for type B flows were limited and more scattered. 

Fig. 5 is an alternative presentation of the information in Fig. 3. 
Here the minor variations with W/D are not explicitly shown. Rather 
the flow regimes are shown in a parametric map of H/W and 8W. Fig. 
5 is for sand and smooth walls; similar flow regime maps for glass 
beads and for sand with rough walls are presented in Figs. 6 and 7. 
Flow maps for other granular materials such as rice and polystyrene 
are included in reference [24]; they are qualitatively similar to Figs. 
5 and 6. 

These flow maps suggest that the phenomena are best described 
by defining three different ranges of hopper angle. When 0W is be
tween 0° and 6W1 mass flow (type A) occurs in the flow field irre
spective of the ratio H/W. For values of dw between dm and 8W2, a dual 
transition behavior is observed. There is first a transition from type 
A flow into type C flow. This is followed by a second transition from 
type C flow into type A flow at a lower critical value of H/W. Finally, 
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Fig. 5 Map of the flow regimes as a function of hopper geometry for the sand 
flowing in a smooth walled hopper. The solid lines are the approximate posi
tions of the regime boundaries with actual transition points indicating the 
uncertainty in these boundaries. The dashed line locates conditions in a hopper 
without a bin for W/D» 1. 
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for values of the hopper angles dw greater than 6W2, the transition is 
from type B flow into type C flow with stagnant material always 
present in the flow field. It should however be mentioned that some 
nonuniqueness can occur when the wall angles are close to the angles 
6WI and 6W2; different flow regime histories can result for nominally 
identical tests. The values of BW1 and 8W2 which appear to be functions 
of the frictional properties of the granular materials (and the walls) 
are presented in Table 1. 

It follows from the foregoing that the common practice of using only 
values of 8W and D as the relevant dimensions (e.g., [1]) would give 
a very incomplete picture of the flow field. One example is the effect 
of the vertical bin on the flow which can be demonstrated using the 
dashed lines in Figs. 5-7. These dashed lines represent the ratio H/W 
in a hopper without a vertical bin (for large values of W/D). Conse
quently such hoppers would exhibit mass flow up to the point at which 
the dashed line intersects that regime boundary. Note that in some 
cases in which a bin-less hopper exhibited mass flow (type A) the 
addition of a bin would change the flow regime to a funnel flow 
type. 

As expected the material properties also play a role in determining 
the flow pattern. With the exception of glass beads, the higher the 
internal friction angle (see Table 1) of the material the lower the 
values of BWI and 8W2, The apparent inconsistency represented by glass 
beads may be due to their small size (300 /im). Crewdson, Ormond, 
and Nedderman [21] have shown that the effects of the interstitial 
air can influence the discharge rate (and presumably other flow 
properties) when the particle size is less than about 500 ixm. Other 
particle unique features which were noted included the tendency for 
the elongated rice grains to align themselves with the flow. 

As previously stated the aforementioned observations were made 
with a breadth, b, equal to 15.2 cm. Some limited observations with 
breadths of 7.6 and 22.8 cm indicated the same qualitative transitional 
phenomena and only minor quantitative differences. Data on the 
variation of funnel shape with b/W are presented in Section 5 and 
suggests that the results have asymptoted to those of pure flow for 
values of b equal to 15.2 cm or greater. 
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4 Comparison With Previous Studies 
Though no other complete parametric study has appeared in the 

literature it is valuable to compare previously observed flow patterns 
with those expected on the basis of the present study. O'Callaghan 
[7] examined the flow regimes in a flat-bottomed bin and noted the 
transition from type B to type C flow (which he termed "deep bin 
flow" and "shallow bin flow," respectively). He measured critical 
values for H/W of 1.47,1.49, and 1.77 for wheat (<p = 32°), barley (<p 
= 38°), and fertilizer (<p = 42°), respectively. As indicated in Pig. 5 
these are consistent with the present experiments. The points of op
eration (not the critical values) of the hoppers in Gardner's [8] ex
periments and those of Levinson, et al. [12], are shown in Fig. 3. 
Gardner's photographs clearly show that his flows were indeed of the 
type B; the values of H/W used by Levinson, et al., were marginal and 
this is reflected in the fact that the flows with clover seeds tended 
toward type B whereas, the flows with sand (which has a larger in
ternal friction angle) were closer to type C. Though Brown and 
Richards [9] did not give the dimensions of their apparatus, their value 
oiH/W appears to be about 1.5 and flows of type C were observed for 
a larger number of granular materials. In Toyama's [11] experiments 
flows of type B were encountered with large values of H/W of 10 and 
6.5. 

It is worth mentioning that trends similar to those previously re
ported for plane hoppers also appear to occur in conical hoppers. Van 
Zanten, et al. [16], and Giunta [18] observed flows of type C in conical 
systems with values of H/W of 2.57 and 1.33, respectively. On the 
other hand, Novosad and Surapati [19] obtained flows of type B for 
H/W ranging from 4 to 8. McCabe [17] observed a change in the flow 
field for values of H/W of about 2. Thus it would appear that conical 
hoppers exhibit results qualitatively similar to those reported here 
for wedge-shaped hoppers and that the critical value of H/W for 
conical hoppers is between 2 and 3 depending on the properties of the 
material. 

Jenike [1] studied the conditions on the hopper geometry under 
which mass flow (type A) would occur. By balancing the stress at the 
exit against the strength of the material, he concluded that the upper 

limit of 8W for which mass flow would occur was (90° — S) or 60°, 
whichever is the smallest (<5 is the wall friction angle). He also pro
posed a lower limit based on observations for flows in hoppers with 
vertical bins (and a minimum exit opening D required to avoid 
arching). The two limiting values of 8W are indicated in Figs. 5 and 6 
and appear to correspond roughly with the angles 8WI and 6W2 of the 
present study. Despite a number of studies [13-15] which have 
questioned the validity of Jenike's critera they have been extensively 
used during the past 20 years for the design of bins and hoppers. We 
would however suggest attention also be paid to the ratio H/W since 
according to the present studies this appears to be a crucial parameter; 
we note that Johanson and Colijin [22] have introduced the concept 
of a minimum height, H, required to insure mass flow. 

5 Variations in the Shapes of the Funnels 
Having established the conditions for the A -» C and B —<- C tran

sitions we now proceed to examine the changes in the shape of the 
funnel with geometry for both type B and type C flows. In the figures 
which follow these shapes are plotted nondimensionally by dividing 
all lengths by W/2; the origin of the resulting X, Y coordinates in 
which Y is vertical is taken at the end of the hopper wall at the dis
charge opening. Hence type S I or CI profiles end at the origin. In type 
B2 or C2 profiles the merge points are identified by the letter S. The 
objective of this section will be to identify the variations in funnel 
shape with the parameters 8W, H/W, W/D, b/W, and the material 
properties. 

The dimensionless funnel shapes for type B flows were found to be 
almost completely independent of 6W, H/W or H/D for a given gran
ular material (Gardner [8] noted the lack of dependence on 8W in his 
experiments). One example of this is shown in Fig. 8 where several 
profiles at different W and D are included for sand: other data appears 
in reference [24]. The profiles for different granular materials are 
shown in Fig. 8. The profiles for glass beads, polystyrene pellets, and 
rice are quite similar. Only sand appears substantially different. 
However this is primarily caused by a difference in the location of the 
merge point; relative to that point the profiles are quite similar. It is 
not clear why the merge point for sand should be so different from that 
for the other materials in type B flows; it was not the case in type C 
flows. 

The funnels occurring in type C flow are more variable and will first 
be described for sand with the understanding that the results for the 
other materials are similar. Fig. 9 displays the type C funnel shapes 
in sand for various hopper angles, 8W, at fixed values oiH, W, D, and 
b as indicated. As one proceeds to smaller angles the type C2 flow 
slides over longer lengths of the hopper wall; this feature was previ
ously described in Fig. 4. The funnel becomes wider but the shape of 
the funnel remains much the same; indeed the profiles simply appear 
to have been shifted outward in the X-direction. The inclination of 
the funnel to the vertical at the merge point, S, appears to decrease 
somewhat. These trends halt at 8W = 60° and the profiles for 60°, 50°, 
and 40° all correspond. Hence in the type A-C transition the resulting 
funnel seems to be independent of the angle whereas in the type B-C 
transition (6W > 60°) the funnel shape depends on 8W or more spe
cifically on the position of the merge point as given by S/W. 

Further type C funnel shape variations in sand are included in 
references [24, 25]. Briefly little or no variation in the funnel shape 
occurred with variations in either H/W or W/D or with changes in 
overall size. It was however observed that when H/W was somewhat 
greater than unity, the funnels were slightly larger than those for H/W 
< 1. This effect seems to reflect the tail end of the transition from type 
B flows to the type C flows. 

In Fig. 10 comparison is made between the funnels for three dif
ferent breadths, b, of hopper (b/W = 0.25,0.5, and 0.75). The funnels 
for the two larger breadths are quite close. However, the funnel for 
the smallest breadth (b/W = 0.25) seems significantly narrower 
throughout its length. As mentioned previously, we have tentatively 
concluded from this that friction on the vertical front and back faces 
begins to alter the flow regime and funnel shape when b/W is less than 
some value between 0.25 and 0.4. 
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In summary, these studies suggest that the type C funnel shapes 
are primarily dimensioned by the width, W, of the vertical bin. The 
hopper angle, 8W, has a fairly simple effect shifting the profile outward 
as 6ui is decreased. Furthermore, provided the conditions are not close 
to the critical value of H/W for transition to another regime and 
provided b/W is 0.5 or larger, the funnel shape appears to be relatively 
independent of H/W, W/D, and b/W. 

Finally a typical comparison between the type C funnel shapes in 
the four different granular materials is included in Fig. 10. In this 
respect polystyrene appears to be rather different from the other three 
materials. 

6 The Effects of Rough Hopper Walls 
It was envisaged that hopper wall roughness would affect the value 

of the wall friction angle and therefore the flow in the hopper, 
(Gardner [8], Bosley, et al. [23], and Savage and Sayed [26]). In the 
present study the experiments with sand were repeated in a hopper 
whose inclined walls were roughened by depositing sand on double-
stick tape (Savage [26]). Results with vertical bin walls which were 
left smooth will be described here; some experiments were performed 
with these similarly roughened but the results dependent on the initial 
head of material loaded into the bin. 

With rough inclined walls, a thin stagnant layer of material next 
to these walls was always present. Thus, at small angles 6W, the mass 
flow regime will be described as type A' to denote this minor differ
ence. Fig. 7 represents the flow map for sand in a hopper with rough 
inclined walls and is clearly different from that for smooth walls (Fig. 
5). Even at small 8W there appears to be a transition to type C at some 
critical H/W. It appears that the lower transition boundary in Fig. 
7 has been rotated clockwise through about 90°. At.hopper angles 
greater than about 40° the type B to type C transition occurs at values 
of H/W similar to the B-C transition for smooth walls. 

The funnel boundaries in the rough-walled experiments were also 
insensitive to hopper geometry. It can be seen from the one example 
included in Fig. 11 that the primary difference between the rough and 
smooth wall funnels is in the location of the merge point. 

It has been reported by a number of investigators (Bosley, et al. [23], 
and Savage and Sayed [26]), that the mass flow rate out of a hopper 
with rough walls can actually be greater than that from a similar 
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smooth-walled hopper. Such a comparison was made in the present 
study, the results being presented in nondimensional form in Fig. 12 
where U is the mean velocity corresponding to the discharge flow rate. 
It can be observed that though the smooth-walled hopper exhibits 
a higher flow rate at small hopper angles less than about 35°, the 
rough-walled hopper has the greater flow rate for 6W > 35°. Fur
thermore about 8W = 90° the two converge to the same value again. 
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The present study revealed that such unexpected effects of wall 
roughness can be partially understood by reference to the different 
flow regimes which the two kinds of hopper exhibit over the range of 
hopper angles. For 8W less than about 35°, the comparison is between 
types A and A'; then, as expected, the larger wall friction of the rough 
walls decreases the flow rate. As dw is increased above about 35° the 
rough-walled hopper produces a flow of type CI in which the merge 
points are located at the discharge opening. On the other hand the 
smooth-walled hopper produces a flow of type C% with merge points 
some considerable distance up the hopper walls. Consequently in the 
immediate neighborhood of discharge the flow in the rough-walled 
hopper experiences an "effective" hopper angle which is less than the 
actual hopper angle encountered in the smooth-walled hopper. Since 
the flow rate is primarily determined by the conditions in the flow in 
the immediate vicinity of discharge and since the flow rate tends to 
increase as the hopper angle decreases it is then possible to understand 
why the flow rate is greater for the rough-walled hopper. 

As the hopper angle is increased further the flow rate from the 
rough-walled hopper changes little since its "effective" hopper angle 
is changing only slightly. On the other hand the actual hopper angle 
which is pertinent in the smooth-walled case continues to increase 
causing further substantial decrease in the flow rate. This continues 
until 6W » 85° when the merge points in the smooth-walled case reach 
the discharge opening (see Fig. 4). At this point the flows in both types 
of hopper become of the type CI and the flow rates converge to similar 
values. 

Thus it can be seen that the effect of wall roughness on the flow rate 
is related to its effect upon the flow regime. It can also be concluded 
that the flow rate depends mainly upon the conditions near the exit 
and on the location of the merge points. 

7 Concluding Remarks 
In the present study, the various types of flow which exist in a 

hopper with a vertical bin have been identified and classified. The 
experimental observations show that the presence of the vertical bin 
will cause funnel flow to occur at lower values of the hopper wall angle 
6m. The ratio of the height of the material in the bin to its width (H/W) 
is important in determining the type of flow which is present and the 
transition from one type of flow into another. 

The nondimensionalized funnel boundary is found to be indepen
dent of the hopper angle 8W, the width of the exit opening D, and the 
width of the vertical bin W. It is mainly a function of the material 
properties. Some changes in the flow field due to the proximity of the 
front and back walls are observed when the hopper thickness falls 
below a certain limit. Finally, the presence of the wall roughness af
fects the flow field in the hopper by causing stagnant material to ap
pear at lower values of dw. This change in the flow field is responsible 
for the fact that the rate of discharge from a hopper with rough walls 
is actually slightly higher than that from a hopper with smooth walls 
when the hopper wall angle dw is greater than about 35°. 
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Drawing of Tubes 
The process of the tube drawing between two rough conical walls is analyzed within the 
framework of continuum plasticity. Material behavior is modeled as rigid/linear-harden
ing along with the von-Mises flow rule. Assuming a radial flow pattern and steady state 
flow conditions it becomes possible to obtain an exact solution for the stresses and veloci
ty. Useful relations are derived for practical cases where the nonuniformity induced by 
wall friction is small. A few restrictions on the validity of the results are discussed. 

Model Presentation 
We consider an axially symmetric forming process where the di

mensions of a circular cylindrical tube are reduced by drawing it 
through rigid conical dies (Fig. 1). Of primary interest here is the 
working zone where severe plastic deformation is imposed upon the 
material. One would like in particular to find the dependence of the 
drawing stress t on the dies geometry, walls friction, material prop
erties, and amount of back-pull tb-

The present study of that drawing process employs a model which 
is based on three underlying assumptions 

First, we assume that the material is rigid/linear-hardening ac
cording to the von-Mises flow rule 

-ETD = — S ae>Y 
3 <re 

(1) 

where D is the Eulerian strain rate, S the stress deviator, <re the ef
fective stress, ET the constant tangent modulus, and Y the yield 
stress. The superposed dot denotes differentiation with respect to 
time. 

The second assumption is that the drawing process takes place in 
steady-state conditions so that the Eulerian form of (1) is 

2 „ V'Vffe 
-ETD = -S 
3 ae 

> Y (2) 

where V is the velocity vector and V the left gradient operator. 
Finally we assume that the flow field within the walls is radially 

directed toward the origin O. Thus, introducing a spherical-polar 
system of coordinates (r, d, 4>) along with the unit triad (er, eo, e^,), we 
can write the velocity vector as 

n 
,„ 

. ^ 

«, —— 
ZZZ 

,-—q—. 
"r?^ 

r rp*po P*1 
T~~~~**i 

r ^ ^ P _ 

I «si^2tf«P^^^^J ^" 

\\\^n0>00!0' 
¥ 

Fig. 1 Notation for tube drawing 

V = -Vrer (3) 

where Vr is independent of 0 because of axial symmetry. 
The main advantage offered by that model is the possibility of ar

riving at an exact closed-form solution of the governing field equa
tions. This has already been observed in [1] where a similar model was 
used to simulate drawing or extrusion of wires. The equivalent two-
dimensional model was applied in [2] to sheet drawing or extrusion. 
The theoretical predictions of [1, 2] show good agreement with ex
perimental results for the corresponding forming processes. We can 
therefore expect the present analysis for tube drawing to be of prac
tical value as well. 

Observing that the material defined by (1) is incompressible, we 
find from (3), via the incompressibility condition trO = 0, that the 
radial velocity has to be of the form 

V r : 
/(») 

(4) 
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10017, and will be accepted until March 1,1981. Readers who need more time 
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where f(6) is an unknown function of 6. The Eulerian strain rate is 
then given by 

1 

°'7» /(9)(3e re r - I) - - / ' (0 ) (e r e 9 + e0er) (5) 

where I is the second-order unit tensor and the prime denotes differ
entiation with respect to d. 

Turning now to the stress field we have that rr4, = T9^ = 0 as a result 
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of axial symmetry and that <re = 0$ because of the coaxiality of tensors 
D and S. The stress deviator is therefore reduced to the form 

S = - ( a y - <r«)(3erer - I) + Tro(ereo + eoer) 
3 

so that 

a e
2 = - s - (<rr - <JO)2 + 3rro

2 

(6) 

(7) 

Substitution of (3)-(6) into the constitutive equation (2) followed 
by some simple manipulations, described in [1], gives the three basic 
relations 

ay - a-0 = — £ lnp + $ 

? r f = ^ / 9 « l R p - * ) 
O 

~ae = (1 + p - W - ^ In p + * ) 

(8) 

(9) 

(10) 

(ID 

where the superposed tilde indicates nondimensionalization with 
respect to the yield stress Y, £ = 2ET/Y is the nondimensional hard
ening parameter, p is a suitably nondimensionalized radial coordinate, 
$ is an unknown function of 8 and 

6 f(8) 

Thus the basic relations, (8)-(10), obtained from the constitutive 
equation and kinematics, contain two unknown functions of 8. These 
functions will be determined in the next section where the equilibrium 
requirements are discussed. 

E q u i l i b r i u m E q u a t i o n s and So lu t ion 
Neglecting inertial effects and noting the axial symmetry of the 

stress field, we are left with the two quasi-static equilibrium equa
tions 

day 1 bfre 2(oy • 

dp p 68 f. 

») 1 
- + - f r0 cot 8 = 0 (12) 

p 
drrg ldffg 3rr6 

dp p i>8 p 
0 (13) 

Inserting relations (8)-(9) into (12) and integrating over p gives, for 
the radial stress component, 

T./3 

— (p" + l8 cot* 

V3 

In2 p 

^— [(/?$)' + j3* cot 8} - 2$ In p + F(8) (14) 

where F is a new unknown function of 8. By now we have three un
known functions of 8: (3, $ , and F. These functions are determined 
by three-differential equations that result from the second equilib
rium equation (13). It is easily verified, [1], upon substituting f rg from 
(9) and ire from (8) and (14), into (13), that equilibrium in the 0-di-
rection is maintained if 

V3 

(/?' + /? cot B)' = 0 (15) 

[(/?$)' + /3$ cot 8}' - 2 * ' + -v/3£/3 = 0 (16) 

^ ' - $ ' - V3/?$ + — £/3 = 0 (17) 

The solution of equations (15)-(17) provides explicit expressions 
for the stresses and the velocity profile. The method of solution is 
essentially as in [1] only that here we present the complete solution 
of the system (15)-(17), namely, 

2i/3fe I 8 ki 

i, 
k+2 

n Ism* -I (18) 
s ine \ 2 2k) 

+ AlS(8) + A (19) ^ ) - V 3 / ( M , | j 

F = * + -
k + 2 

-h2(8)-3J\8,k,— 
2 \ 2k, 

+ {A--nh(8) + V3A1K\8,k,^A + B (20) 

where k, k\, A, A\, B are integration constants, 

, 0 k1\-(>>+2)lh 
g(8) 

2 2k 

and 

/ 0\2fc/ Q\ki 

h(8) = 3 In cos - t a n -

K(ft*'2fe) = f8{B)mdd 

(21) 

(22) 

(23) 

(24) 

(25) 

The restricted version given in [1] is obtained from this general so
lution with k\ = 0. In that case it is more convenient to express inte
grals (23)-(25) by means of the incomplete Beta function. 

Combining (18) with (11) and solving for f(8) gives the velocity 
profile 

/ 0 \ m / 0\6fei 
f(8) = Ue2hW = U cos - tan - (26) 

where the constant U stands for some reference velocity. 
Explicit expressions for the stresses are now readily obtained. In

serting relations (18)-(19) into (14) yields 

3> = - i,{k + 2) In2 p - [£h(6) + (k + 2)A] In p + F (27) 

Similarly, from (8) and (27), 

as = - £(k + 2) In2 p - [#i(0) + (k + 2)A - £] In p + F - $ 

(28) 

The corresponding expressions for rr9 and ae are given by (9) and 
(10). 

The solution of the governing field equations is now complete. It 
remains, though, to determine the five integration constants k, k\, A, 
A\, B through the introduction of proper stress boundary data. 

It should be mentioned that the general solution presented here 
is, in general, not correct when £ = 0, i.e., for rigid/perfectly plastic 
materials. This curious situation is revealed at once by equation (10). 
With £ = 0 we do not obtain the basic constitutive relation, of a 
rigid/perfectly plastic material, ae = 1 but rather a violation of that 
relation. The correct solution for axially symmetric radial flow of 
rigid/perfectly plastic materials has been given by Shield in [3]. 

It can be shown however, that in the absence of friction our general 
solution does agree, at the limit of zero hardening, with Shield's so
lution. Taking k = ki = Ai = 0 we have the nonvanishing stress 
components 

5> = £ In2 p - 2A In p + A + B 

Jo = £ ln2p - (2A - £) In p + B 

along with the uniform velocity profile, (26), 

f(8) = U 

The corresponding effective stress is then simply 

<je = —£ In p + A 

Equations (29)-(32) agree, at the limit of zero hardening, with Shield's 
solution for uniform flow provided that A -*• 1 as £ - • 0. More details 
on that point can be found in the Appendix of [1]. 

(29) 

(30) 

(31) 

(32) 
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F u r t h e r I n v e s t i g a t i o n of the S o l u t i o n 
It is instructive, at this stage of the inquiry, to suggest a simple in

terpretation of the quantity kj2k. Observing from (9)-(10) that the 
ratio between the shear stress and the effective stress is constant along 
a streamline, we may introduce the shear factors mi, m2 at the walls 
(Pig. 1) so that 

\ / 3 ?r9 = —m\ae at 6 = a\ 

\f3 Tr0 = m2ff£ at 8 = «2 

(33a) 

(33b) 

Substituting Tr0 and <re from (9)-(10) into (33), with 0 given by (18), 
and solving for k, ki gives 

k = 
\ / 3 m2 sin a2 + m.\ sin a t 

(34) 
, « 2 , « i 

,_ m2 sm a2 s i r h mi sin a i sin ' — 

fcl-^ ? 1 (35) 
3 . , «2 . , «1 

s i r sin ' — 
2 2 

where m is the modified shear factor defined by 

m = m / V l - m 2 (36) 

Recalling that in the tube drawing process both shear factors, at the 
walls, are positive we deduce from (34)-(35) that 

k, ki > 0 

Furthermore, the relation 

« i , 

2k 

implies that 

_ . . „ai . a2 

m? sm #2 sm ' 1- mi sm «i sin' — 
2 2 

fn2 sin oi2 + mi sin a i 

sm ' — < — < sm ' — 
2 2k 2 

Thus the angle am defined by 

. „ um ki 
sm ' — = — 

2 2k 
is located within the walls of the dies 

ax<am< a2 

(37) 

(38) 

(39) 

(40) 

(41) 

Just to get a feeling about the location of am, consider the case where 
ah a2 are small and mi = m2 = m. From (38) and (40) we then obtain 
the elegant relation 

«m = V a i « 2 

An immediate consequence of (41) is that the function g(d), defined 
by (21), becomes singular at 8 = am. That singularity is carried fur
ther, via (19)-(20), into the stress field and in order to avoid it we shall 
take the value of 

Ai = 0 (42) 

The angle 8 = am presents itself as a natural lower limit for the 
integrals (23)-(25). The third one, (25), is now of course irrelevant 
because of (42). As for the other two integrals, it is worth mentioning 
that both admit a regular expansion near 0 = am. Indeed, with 

. o8 ki 6 . am 

u = s m ' = sin ' — sm ' — 
2 2k 2 2 

we find from (23)-(24) that near u = 0 

1(8, k, am) = g(6) C ' i ^ d O ^ -
J«m 8(8) 

±s[Zk'< 

2 + 3k \sin a. 
(43a) 

J(8, k, am) 
*J Ctn 

1(8, k, am)0(O)d8 
12fe3 

(436) 
2 + 3k \sin am) 

It is now seen that the shear stress (9) vanishes along the streamline 
that passes through 8 = am. Also, as observed from (26) and (11), the 
velocity profile has its highest value at that particular streamline. We 
may conclude therefore that the nonuniformity of the flow field, in
duced by the friction along the walls, decreases as 8 -*• am and attains 
its smallest value at 6 = am. 

A possible measure of the local nonuniformity is simply the local 
shear factor m(8) defined as 

V 3 | r r 9 | =m(8)oe 

with the obvious values 

m(a!) = mi, m(am) = 0, m(«2) = m2 

The measure m(8) can be interpreted in a different way. Recalling 
Truesdell's measure of vorticity, [4], 

M-

where Q = J (VV - W ) is the spin tensor, we find that for the radial 
flow field 

n = _J_m ( e r e ( )_ e e e r ) 
2rd 

Inserting the last relation along with (5) into the formula for M, and 
observing (9)-( l l ) , gives the remarkable identity 

M = m 

The local shear factor is precisely Truesdell's measure of vorticity. 
A different and perhaps more practical measure of the local 

nonuniformity is the local modified shear factor m(8) defined, in the 
spirit of (36), as 

m(8) = m(0)/[l - mH8)}1/2 = ^Hl^J /(-sr 
Or, in view of (9)-(10), 

mo) = \fim\ (44) 

Thus the absolute value of the function /3(0) is a measure of local 
nonuniformity. That measure has the advantage of appearing directly 
in the expressions for the stresses. 

The difference between the two measures decreases of course as 
the nonuniformity becomes smaller, and for very small deviations 
from uniformity they are practically the same 

m(0) « m(0) « 1 

T u b e D r a w i n g W i t h S m a l l N o n u n i f o r m i t y 
In practice, the process of tube drawing is performed with very 

well-lubricated walls. We can therefore take advantage of this fact 
and proceed with an approximated version, of the general solution, 
suitable for the case of small nonuniformity 

1/3(0)1 « 1 (45) 

In addition, we assume that the half-die angles ah a 2 are sufficiently 
small to admit approximations of the type sin 8^8. This assumption 
is in accordance with practice where a2 is seldom higher than 15°. 

Observing now, from (18) and (40), tha t for small angles 

2 0 

we find that (45) implies the restriction 

fe|02-«m
2|«0 

(46) 

(47) 

With these simplifications in mind, we may replace the exact ex
pressions for the stresses by simple yet consistent and fairly close 
approximations. 
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Consider first integrals (43a-b). Noting that both |/9(0)| and 
| g (0 ) | - 1 increase monotonously with \d - am\ we have the obvious 
bound 

If 0(0) de m 
*(») 

Hence 

|/(0, *. a r a ) | < |0 - a m | 1/3(0)1 

Likewise, combining (48a) with (43b) gives 

\J(8, k,am)\<(6-am)2/32(0) 

(48o) 

(486) 

Next, consider the function /i(0) defined by (22). Here it is worth 
noting, via (11) and (26), the differential relation h'(6) = V I 0(0) 

h(8) = h(am) + V I f /?(0)d0 
»/ am 

where the integral is again bounded by 

IX' /5(0)d0 <\e-an IW)| (49) 

Turning now to functions $ and F, given by (19)-(20), and intro
ducing the two new constants 

A = - -h(am)+A 

B- £ 
k + 2 

h(am) + B 

(50a) 

(506) 
2(k + 2) 

we find that for small nonuniformity the consistent first-order ap
proximations are 

$ ~ A , F^A+B (51) 

and the stresses (9)-(10), (27)-(28) follow immediately as 

fe02-am
2, 

Tre' • ( 3 - f l n p ) (52) 

~«r = H(k + 2) In2 p - (ft + 2)A In p + A +B (53) 

Jo = j £(A + 2) In2 p-[(k+ 2)1 - £] In p + B (54) 

oe = A - £ In p (55) 

The four constants k, am, A, B are determined from four stress 
boundary conditions. These conditions, motivated by the same 
arguments as in [2,1], are the following: 

1 The arc p = po at the entry is the rigid/plastic interface where 
complete yielding of the material takes place 

ffe = 1 at p = po 

2 The loading parameter t) defined as 

t + h 
7 ) = " 

(56) 

(57) 
t - t b 

is specified. Here t and tb are the drawing tension and the amount of 
back-pull, respectively, given by 

(58) t- at p = 1 

h = 5> at p = po (59) 

The loading condition (57) is more conveniently handled in the 
form 

(1 + ri)~or(p = po) + (1 - Jj)3y(/t> = 1) = 0 (60) 

Note that pure drawing is obtained with i\ = 1. 
3 The remaining two conditions incorporate the effective Cou

lomb friction coefficients, along the walls, into the solution. It is 
possible of course to use equations (33) as alternative boundary con
ditions that bring the friction effects into the solution. However, the 

Coulomb friction coefficient is a more sound physical quantity than 
the friction factor and the conditions used here are 

J Tropdp = pi 1 3-oPdP at 0 = ai (61a) 

I Trtpdp = -p.2 I oopdp at 6 = a2 (616) 

where pi, p 2 are the respective average Coulomb friction coeffi
cients. 

Conditions (56), (60)-(61) provide the four relations necessary for 
the determination of k, am, A, B. Inserting the stresses (52)-(55) into 
these conditions gives, by a straightforward solution 

A = 1 + f In po (62a) 

B = (1 + i k)(l + Jj)(l + U In po) In po - (1 + £ In p0) (626) 

(63c) 

(63d) 

where 

Q 

« m 2 = 

k ~ 1 
(«2 

l ( p o 2 -

/pi + P2 
a.\ai 

\ Pav 
^Pav 

- CL\ + p a v ) Q 

-D(i + i f ) -

- l 

Mav 

if In PO 

[1 + J (1 - n)(P02 - l ) ]( l + U 1" Po) In po 

and Pav is an averaged friction coefficient defined as 

_ p-iai + p2<*2 
Mav ~ 

a\ + ai 
with pi = p2 = p we have from (65) that p a 

: p and 

a m = V o i 0 2 

(64) 

(65) 

(66) 

The stresses (52)-(55) are now completely determined. The drawing 
tension, (58), is given by 

< = (l + U ) ( l + »/)(l + ! £ l n p o ) l n p o (67) 

or in a more compact form 

t = (l + ik)tu (68) 

where 

tu = ( l + ??)(l + U l n p o ) l n p o (69) 

is the drawing tension in a uniform (frictionless) flow field. Relation 
(69) is easily derived from (29) and (32) in conjunction with boundary 
conditions (56) and (60). 

D i s c u s s i o n 
The structure of the basic result of this study—the formula for the 

drawing tension (67)—is the same as the equivalent expression ob
tained in [1] for the process of wire drawing. This similarity is quite 
expected as the analysis in [1] is based on a restricted version of the 
general solution employed here. The main difference between the two 
results is in the expression for k. For wire drawing we have (equation 
(57) in [1]) 

2p 

(a + p) Q - p 
(70) 

instead of (63d). Here p is the friction coefficient and a the semiangle 
of the die. The charts presented in [1] for pure drawing of wires (J? = 
1) are therefore applicable to pure drawing of tubes via the transfor
mation 

• Ct2 - Oil, p " (71) 

Similar charts that include the effect of back-pull (?) > 1) on tube 
drawing can be prepared without difficulty. 

Turning now to the limits of validity that should be imposed on the 
results we have in the first place restriction (45) as well as the as-
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sumption of small angles. We have seen already that these two re
quirements, when combined, lead to (47). 

A different restriction results from the fact that our model cannot 
describe the actual conditions at the entry and exit of the die. The 
boundary conditions used here, (56) and (58)-(60), are clearly of an 
averaged nature. We may expect, however, that for sufficiently ta
pered working zones the inaccuracy caused by that approximation 
is small. This geometrical restriction means essentially that (a2 - a{) 
should be much smaller thatn (p0 - l)/po—a situation usually met 
in practice. 

There are two additional limits on the validity of the results. The 
first one is associated with the possibility of necking instability at the 
exit of the die. That limit can be stated as, [1], 

and 

t<\£ for £ > 2 

t < 1 for £ < 2 

(72) 

No necking will occur as long as the drawing tension (67) does not 
violate (72). 

The last limit is set in order to prevent separation between the tube 
and the faces of the dies. That phenomenon is due to begin at the exit 
from die when oe(p = 1) = 0 or, from (54) and (62b), when 

1 . l + £ln po 
1 + -

U + »l) H*in' 
Qs (73) 

Po lnpo 

The drawing tension, (67), at separation is simply (1 + J In po) so that 
the separation limit reads 

t < 1 + £ In po (74) 

Put otherwise, we can combine (73) with (63d), eliminate k, and ob
tain the critical relation for separation 

Qs 
aa~ai'UoT^)Q~T" (75) 

The restriction imposed by (72) is stronger than the one imposed 
by (74) provided that £ < 2. For higher hardening parameters, how
ever, (72) is more restrictive than (74) only as long as 

Po>Vee-^ (76) 
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Elasto/Viscoplastic Analysis of Thin 
Circular Plates Under Large Strains 
and Large Deformations 
In this paper the elastoIviscoplastic analysis of thin circular plates under large strains 
and large deformations is studied by the use of the finite-element method based on the 
membrane shell theory. As the constitutive relation for the materials Perzyna's equation 
which in the plastic range takes into account the viscosity of the material is employed. 
The criterion for yielding used in this analysis is the von Mises yield theory. The geomet
ric nonlinearity is treated with incremental method and the solutions at any stage are ob
tained by summation of the incremental values. The experiments are carried out for the 
thin circular aluminum plates, and the variations of the deformations and the stresses 
with loading rate are analyzed. The elasto iviscoplastic solutions from the prediction 
method agree fairly well with the values experimentally determined for the circular 
plates. The method can be used to generate plasticity solutions in a simple manner when 
stationary conditions are reached. 

Introduction 
The analysis of mechanical behavior of machinery and structures 

in the postyield stress range have been almost based on the elasto-
plastic theory, in which the material viscous effects are disregarded. 
But it is often observed in the experiments that the actual behavior 
of the material is evidently governed by the viscous effects even at 
room temperature after plastic state has been reached. Especially in 
the plastic forming the influence of viscous properties on deformation 
process may be significant. 

The authors have analyzed the dynamic problem [1] and the 
quasi-static problems [2, 3] of axisymmetrical shells, employing the 
elasto/viscoplastic theory proposed by Perzyna [4], which takes vis
cous effect into account in a plastic range. 

The present paper describes a finite-element analysis of quasi-static 
large strain1 and large displacement response of thin elasto/visco
plastic circular plates subjected to hydraulic pressure on the basis of 
the membrane shell theory [5, 6]. This problem, for example, is 
practically concerned with the bulge forming of a thin plate. 

Assuming the material is homogeneous, isotropic, and isotropic 
hardening, the authors employ the constitutive relation of Perzyna 
type [4], in which elastic strains are obtained from Hooke's law and 

1 The maximum Green strain in the surface of the plate in numerical example 
mentioned later is about 50 percent. 
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the viscoplastic strain rates are related to the excess value above the 
static yield stress. The finite-element formulation is derived from the 
exact kinematic, incremental treatment, and denoted by the surface 
convected coordinate. The ring-plate element is used owing to the 
restriction of axisymmetrical deformation. 

Up to date, there are few experimental investigations to observe 
the viscous effect on the deformation in a plastic range [7]. The au
thors have carried out the bulge experiment of the thin circular alu
minum plates under constant increase rates of hydraulic pressure to 
compare with the numerical results. Displacements, strains, and 
stresses of the plate have been measured by Moire-topography [8] and 
a grid method. 

Incremental Finite-Element Formulation 
Neglecting the change of thermal energy and the inertia force, the 

authors formulate the equation of motion for a finite element. Since 
they are concerned only with the thin plate, the plate may be assumed 
to behave approximately as a membrane. 

This assumption imposes,the geometrical restriction on the ap
plicability of the theory. The authors have not examined rigorously 
the geometrical restriction. But it seems from the comparison between 
the experimental results and the calculated ones that the maximum 
ratio of thickness to diameter is about 1/100 [9]. 

A ring-plate element, which is currently in the state C displaced 
by U from the initial undeformed state Co, is displaced into an un
known state C due to an incremental change of external condition, 
as shown in Fig. 1. 

At the state Co a surface convected coordinate system 8a (a = 1,2), 
where 8l is a coordinate axis of meridional direction and 82 of cir
cumferential direction, is embedded in the middle surface [5, 9], and 
the third coordinate axis 83 perpendicular to the 61-02 plane is also 
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Fig. 1 Displacement of ring-plate element 

fixed in the plate. The base vectors of this coordinate system at the 
center of gravity of the ring-plate element, denoted by oa;, a,-, a,- (i = 
1, 2, 3), corresponding to the state C0, C, C, respectively, have the 
following relation to the base vectors e/(/ = 1,2, 3) in the fixed Car
tesian coordinate system: 

QL X a3 = e'3e; (1) 

a" = QJejt a3/A = ff/e; 

where a3 = a3, |a3 | = 1, and X = h/ho, in which h0 and h are the 
thickness of the plate in Co and C, respectively. 9) and Q) are obtained 
from the known nodal incremental displacements at each state. The 
authors follow the convention that Greek indices range over the values 
1, 2 and Latin indices the values 1, 2, 3. 

The natural base vectors defined by the following relations to the 
base vectors aj are introduced: 

G« = a m G3 - Xa3 

G« = a", G3 = a3/X 

(2) 

In the incremental deformation from C to C, a generic point P in 
the plate is displaced by Au, which is expressed by 

AU = Au«(0")aa + A u 3 W \ a 9 (3) 

= Aua(ef>)aa + Au3(0")a3/X 

where a1 is the contravariant base vector, a^-ap = 5j| and a3 = 33. 
The base vector a,- in C is 

a« = G a=((%-r Au"U)a„ +Au 3UXa 3 (4) 

Xa3 = G3 = (1 + Au3 |3)Xa3 + Au<*|3aa 

where the symbol |; denotes the covariant differentiation with respect 
to 0' in C. 

The incremental displacement field in the finite element is con
sidered to be given from the nodal values Au'w by the Lagrangian in
terpolation function \pN(da) as follows: 

Au'(0«) = £ ^ ( 0 « ) A u W 
N 

(JV = 1, 2) 

where 

\PN(6«) = aN + V?6\ aN,Pt: constants 

(5) 

(6) 

and the summation is taken over the nodes belonging to the element 
under consideration. 

The Green strain increments defined at the center of gravity of the 
ring-plate element are expressed by 

A 7 l l = Aui | i = frviAu? = PVGnAuh 

A722 = AU2|2 = NE22iAu'W = ArIT22AMf 

Ayij = 0 {i* j) 

(7) 

in which N£,22i = rNQ\/2, A,IT22 = rNQ[/2, i = 1, 3, where rN and rN 

are the radius of a circle through the nodal point N. 
The strain increment A733 is obtained as follows: 

A7 33 = XAX = £ A^Ayaa + P33Af 
«=1 

(8) 

where At is the incremental time, and A^and P 3 3 are the coefficient 
tensors in the constitutive equation (26) of the materials. 

The covariant differentiation of the incremental displacements is 
represent as 

AujU = N ^ A u f , Au3 |3 = N* ' 3 3 A"f + PssAt (9) 

AuJ\fi = NMliAui
N, Au 3 | 3 = Ni%Aul

N + P33/X2At 

where 

N * l l = f r v i , iv*22 = Nn21! 

N*h = A&PNI + AMNILIZ, N ^ l i = (3N1 

N*322 = Aflllz, W*33 = A§Nn3
i2 

J V *h = /S^ N*?2 = G 2 ^ L 2 2 1 

" * § : 3 = G 3 3AiWE22 3 , N * i ! = fl 
N$h = G*HGnAll$ + AM»j:w) 

W*§2 - G22NE223 

The other coefficients N^)k,N^)k are vanished. 
Let the stress vectors acting on the unit area in the states C and C 

whose unit normals are n and n, be denoted by t and f, respectively. The 
stress vector 0t in U is similar to t, but measured per unit area in C. 
They are 

t = mr^Gj = msVGj (10) 

t = niT''Gj, 0i = niSijGj 

where re; and n,- are the components of the unit normal vectors in C 
and C, respectively. rl> ands'-' are the true stress tensor and Kirchhoff 
stress tensor, respectively, T1' and sy ' are expressed as follows: 

T'J = T1' + AT'-' , PJ = s« + As'-'' (11) 

As1' = AT1' + Ti'Aum\m 

The thin plate is assumed to be an axisymmetric membrane so 
that 

T«3 _ &Ta3 = T33 _ ^ T 3 3 = T12 _ A T 1 2 _ Q 

s « 3 = A s « 3 = s33 = A s 3 3 = g12 = A s 1 2 = 0 
(12) 

On the surface and the boundary, the stress vector and the surface 
force vector T are in equilibrium, namely, 

t = T = T'G; (in C) (13) 

„t = oT = „T' G;, „T' = T«" + AT'' (in C) 

If the surface force is hydraulic pressure, it acts in the normal di
rection to the surface of the plate. In this case AT' is related to the 
increment of pressure Ap by 

AT' = Apn! + pAum\mn' - pAum\iGmkG
link (14) 

Since the components of the unit normal vector n are n" = 0, ns = 1/X, 
equation (14) becomes 

AT 1 = -p/X^X2GnAu%, A ? 2 = 0 (15) 

At3 = Ap/X + p/\\W? + G 2 2 "£ 2 2 1 ) Auh + G 2 2 " £ 2 2 3 A i 4 l 

Now the velocity vectors in C and C are denoted as 

v = u1' G„ v = vl G, (16) 

If the change of thermal energy, inertia forces, and body forces are 
neglected, the energy conservative equations in C and C are expressed 
as, respectively, 

^ Tihj\idV= C^VidA, (17) 

742 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



f (s'> + TimAu'\m)vj\idV = f (T' + At')vidA (17) 
J v JA (Cont.) 

where V is the volume and A is the surface area. 
The foregoing energy conservative equations give the equation of 

motion of the finite element in the following incremental form: 

(JfjB + UN + UN) A"JM = AP'N + f s )$ M , + (Yjv - fsjjv) At 
(18) 

In equation (18) K'/$ is the incremental stiffness matrix, £>$ is the 
initial-stress matrix, fo'jiSi is the initial-rotation matrix, fs)jN is the 
initial-load matrix [10], and AP'N is the incremental generalized nodal 
forces and (Y'N — Jsw)At is the incremental generalized apparent 
forces due to viscosity. They are calculated by the following equa
tions: 

At is given by Perzyna as follows [4]: 

.dF . 
A7<"P> = y{<f>(F/F0))—At 

S T 
(21) 

where $ ( ) is a positive monotonically increasing function and F is 
a viscoplastic potential, for which F = V3J2 ~~ Po> %JI = T'^T'IJ are 
chosen, and FQ = <rs = /(e) is the elastoplastic stress-strain relation 
in the uniaxial tension test. 1/y means the coefficient of the viscosity 
and notation () means 

($(F/FQ)) = 0 F£0 

= F/F0 F>0 
(22) 

The complete equation giving the strain increment can be written 

a = 1/3=1 

h% = £ r^ifmN^aaVe 
a=l 

APi
N = ApnmGmiAN 

WN = p ( M * > ' ' - M<t>%\2Gsin3)AN 

(Yl
N - (

Y
s)W)At = ( £ £p%Tt>»il9

i
aaV. 

- £ T««/X2P33N*'„„ye)At 
a=l / 

Ve = VGSv0dV, G = det (G;y), AN = SA^NCIA 

where i = 1, 3, Vo is the volume of the finite element in Co, Ve and Ae 

are volume and area of the element in C, respectively, and Eaa^ 
represents the material constants as shown in equation (25). The term 
(S))jv introduces nonsymmetry in the coefficient matrix associated with 
the incremental loading(time) approach. To solve the nonsymmetric 
set of equations the Cholesky method using full-band matrix is em
ployed. 

Applying equation (18) to all the elements and assembling them 
according to the compatibility and the balance conditions at each 
nodal point, the simultaneous equations of the nodal incremental 
displacements can be obtained, which represent approximately the 
mechanical behavior of the circular plate. 

Constitutive Equation 
The constitutive equation of the homogeneous and isotropic ma

terial in the axisymmetrical plane stress condition are discussed. 
When the elastic part of deformation is not so large, the increment 

of the total strain A7 can be considered consistently as sum of the 
increments of elastic strain A7*e ' and viscoplastic strain Ay^P^, 

Ay = A7 ( e ) + Ay(vP) (19) 

The elastic strain increment is related to the stress increment by 
Hooke's law, 

/ A T = BA7<e> (20) 
where 

jAT > 
J A T " 

J A T 2 2 
A 7 •• 

A711 

A722J 

and j AT represents the Jaumann stress increment [6], The elastic 
constant matrix B is given by 

B = 
%ix 

(1-v) 

GnGu vG22Gn] 

vG22GnG22G22 

where n is the shear modulus and v is Poisson's ratio. 
Combining Von Mises yield condition and the isotropic hardening 

hypothesis, the viscoplastic strain increment during a time interval 

A7 = B _ 1 J A T + V-rAt (23) 

where 

V = 7($(P/F 0)> 
V3 2/3GllGn ~l/3GllG22 

— I/3G11G22 2/3022^22 2VT2 

The Oldroyd stress increment AT1"3 is related to J A T " " by 

AT = JAT - L A7 (24) 

where 

A T ; 
AT 1 1 ' 

AT 2 2 . 
, L = 

2 r n G u 0 

0 2r2 2G2 2 

Now in order to substitute the constitutive equation into the energy 
conservative equations, it is convenient to rewrite equation (19) by 
the use of equations (23) and (24) as follows: 

A T = (B - L) A7 - B • V • T At 

= E A7 - P • T At 

(25) 

where 

B-V = P : 

B - L = E • 
•£1111 £1122] 

£2211 £2222 

2M 7 ( W o l ) ^ 
1-v 2V</2 

1/3(2 -v) l / 3 (2y- l )G 1 1 G 2 2 

l/3(2i/ - DG11G22 1/3(2 - v) 

The strain component A733 is calculated by 

A733 = £ Aa£Ayaa + P33 At (26) 

where 

^33 = £ -v/EWGeeBM"" (a: not summed) 
3=1 

P33= £ £ W B X 2 G w P ^ T - - 7 ( * W i ? o ) ) - ^ = - G a „ T « " j 

Comparison Between Numerical Results and 
Experimental Ones 

The aforementioned finite-element method is applied to the 
quasi-static bulge deformation of thin circular plate made of alumi
num (Al 1100P-0), which shows strain rate sensitivity in a plastic 
range. The numerical results are compared with the experimental 
results; 

Experimental Method. The authors have performed uniaxial 
tension.test for the aluminum specimens by Instron-type testing 
machine to obtain the material constants needed for the calculations. 
The true stress-strain relations of the aluminum under constant strain 
rate are illustrated in Fig. 2, where <rs is the static stress and e"p is the 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 743 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



= O.Ol{sec

Frame II

Frame I

0.40.2 0.3
Strain

a. =153.0(0.00126+ £1IJ)"" MPa

0.1

'"~
150

100

'"'"~ 50

'"(I)

0

Fig. 2 Stress-strain relation
Fig. 3 Supporting frame

plastic strain. The stress-strain relation obtained under constant
nominal strain rate 0.00005 (l/sec) has been regarded as the statical
relation.

The dimensions of the circular plate test specimen for comparison
between numerical results and experimental ones are 200 mm in di
ameter and ho = 0.31 mm in thickness as shown in Fig. 3.

The measurement of deformation, strain, and stress of the circular
plate has been performed by a Moire-topography [8] and a grid
method without contact.

In Figs. 4 and 5, photograph of the experimental apparatus and its
schematic view are shown, respectively. The Moire-topography uti
lizes optical measurements to determine the deformed shape of the
plate using contour lines.

As shown in Fig. 5, the parallel beams are attained by the use of a
collimating lens and a field lens. If the shadow of an equispaced ref
erence plane grating is projected onto the deformed surface of the
plate and observed through the grating, contour lines showing equi
difference of height /},.Z are obtained. /},.z is Fig. 4 Photograph 01 apparatus

/},.z = So tan 8 (27)

Fig. 5 Schematic view of experiment

also can be taken.
The meridional and circumferential stresses, (Jr and (Jo, are calcu

lated by

Fr.ame I
Frame II

CameraCollimating
lens

Light
source

16====~~gr.;;:'t;;~piece

X-Y recorder

Pressure pump

where So is an interval between the gratings and 8 is an incident angle
of the beam. In this experiment 0.5 and 1.0 mm have been used for
So·

The comparison between the results of an almost spherical surface
measured by Moire-topography and the comparator2 is shown in Fig.
6. At the steep slope the maximum difference is about 2 percent, but
it may be concluded that the good agreement between them is ob
tained and the accuracy of Moire-topography is recognized.

The relation between pressure p and deflection Zmax at the center
of the circular plate under a constant increase rate of hydraulic
pressure 19.6 kPa/s (1/5 kg/(cm2 s» is shown in Fig. 7. The values of
deflection measured by a displacement gage3 are slightly smaller than
ones by the Moire-topography, because of the contact pressure of the
displacement gage.

The variance of hydraulic pressure with time has been recorded
automatically in the X-Y recorder through electric pressure trans
ducer. Thus the constant increase rate of the pressure can be obtained,
if the pressure-time lines prescribed on the X-Y recorder are followed
by manual operation of a pressure pump.

The membrane displacements of the deformed plate can be mea
sured by a reading microscope from the photographs of the grid
points, which have been drawn on the surface of the undeformed plate.
Thus the principal plane strain and curvature distributions can be
obtained. From the condition of constant volume the thickness strain

(Jr = pr/(2h sin 1)

(Jo = 11 - r/(2Pr sin 1)1 PPo/h

(28)

2 Microscopic type whose accuracy is 1/100 mm (Shimazu Seisakusho,
Ltd.).

3 Electric transducer type measurable up to 30 mm (Kyowa Electronic In'
struments Co., Ltd.).

where 1/Pr and 1/Po are the meridional and circumferential curvatures,
and h, p, and 1 are the thickness, hydraulic pressure and the slope of
the tangent at the point of horizontal distance r.
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Fig. 7 Comparison between measured values of deflection at the center 

Calculating Method. The circular plate has been divided into 
10 ring-plate elements with equal width. This has been determined 
in consideration of the fact that the calculating results from 10 ele
ments and 50 elements coincided well with each other except for the 
strain and the stress near the boundary in the previous elastoplastic 
analysis [9]. Because of the membrane approximation, the proper 
initial deformation at the start of calculation is needed. In this study 
the infinitesimal displacements u' = w'oai + u'oas are assumed to be 
approximated as, 

u'1 = Cir( l - r2/R2) 

u'3 = C2(l - r2/R2) 

(29) 

where C\ and Ci are unknown constants, R is the radius of the circular 
plate, and r is the coordinate of radius. 

Using the elastic stress (/'-'-strain e'ij relation the principle of 
stational energy of elastic membrane under pressure load po has been 
expressed by Washizu [11] as follows: 

m = o, dn/aCt = o, dn/dc2 = o (30) 

n = C o'Ve'ijdV - Cp0u'sdS 

Substituting (29) into (30), the values C\ and Ci are obtained by 

Ci = C2
2fl2(3 - v)/4 (31) 

C2 = (3(1 - p)RpQ(3 - v)/G/h0/2/(vs - 9v2 + Hi; + l l) |1 / 3 / iJ3 

In this analysis the authors choose the appropriate value (about ho/50) 
for Ci, then initial pressure loadpo is derived from equation (31)2. The 
initial displacement, strain and stress are also obtained. 

Without introduction of this initial deflection, the stiffness in the 
direction as (=es) becomes zero, and the deflection reaches infinity 
in calculation. 

In the calculation the prescribed pressure-time curve is traced in 
a stepwise fashion, as shown in Pig. 8. That is, after an elastic analysis 
of the deformation to incremental pressure Ap, the response to total 
incremental time AT under the constant pressure is analyzed. The 

n 

<u 

es
su

r 

a. 

1 

&P 
\ < 

} 
tn 

T̂ 
AH 

- • I t ; / 
trw 

/ 

Time t 

Fig. 8 Increments of pressure and time 

Thickness =0.31 
(circular plate) m 

P (kg/em2) 7 8 

3 5 ' ' 

Fig, 9 Round corner of supporting frame I 

time increment AT is obtained from summation of the subdivided 
time increment At*, 

AT = £ Atk 
k 

where the initial time increment Ati has been determined to produce 
the viscoplastic strain increment of 1/120 elastic strain increment, 
and next time increments are increased by 50 percent, Atk - 1.5 
Atk-i, in consideration of the convergency of the solutions and 
computing time. 

Comparison and Discussion. The calculation has been carried 
out for 104 mm in diameter in consideration of the round corner of 
the supporting frame I shown in Fig. 3, which is necessary to prevent 
the shear rupture at the boundary in small deformation range. It is 
seen from the locations of the intersections of z = 0 and the tangents 
of the deflection curves near the boundary obtained from Moire-
topography (Fig. 9) that the diameter 104 mm for calculation is rea
sonable through whole deformation process. 

In Fig. 10, the relations between pressure and deflection at the 
center of the circular plate under constant increase rates of pressure, 
19.6 and 1.6 kPa/s (1/5 and 1/60 kg/(cm2 s)), are shown. From the 
comparison between the numerical results and the experimental ones, 
the values of the deflection in the experiment are slightly smaller than 
the values of the calculation. The results from the classical elasto
plastic analysis [9] for the material constants in Table 1 and the nu
merical results under pressure rate 98.1 kPa/s (1/1 kg/(cm2 s)) are also 
shown. Increasing of the pressure rate produces smaller deflections 
because of the corresponding increase in the material stiffness. 

The deformed shapes measured by Moire-topography in compar
ison with the calculated ones are shown in Fig. 11. The marks O and 
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Table 1 Material properties 

Young's modulus 
E = 68650. MPa 

Yield stress 
cry = 22.073 MPa 

Poisson's ratio 
v = 0.314 

Viscosity constant 
of material 

7 = 0.0811/sec 
Static true stress-strain relation 

a, = 153.04(0.00126+6 "P)°-29 MPa 

3 

7 

6 

5 

4 

o9 3 

2 

Z 1 

< 0 

Theory ^9" . 
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Fig. 12 Strain distribution P = 490 kPa (5 kg/cm2) 
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® indicate the material points of the deformed plate under pressure 
rates 19.6 and 1.6 kPa/s (1/5 and 1/60 kg/(cm2 s)), respectively. From 
the both results of the calculation and the experiment, it is recognized 
that the deflection become smaller under the greater pressure rate. 

The distributions of the strains and the stresses at pressure 490 kPa 
(5 kg/cm2) under pressure rates 98.1,19.6, and 1.6 kPa/s (1/1,1/5 and 
1/60 kg/(cm2 s)) and by elastoplastic theory are shown in Figs. 12 and 

13, respectively. With increase of pressure rates the strains become 
small and the stresses become great. 

It is seen from the calculation that as the pressure rate become 
lower, the results of the elasto/viscoplastic analysis become closer to 
ones of the elastoplastic analysis. It may be concluded from Figs. 
10-13 that both results of experiment and calculation coincide fairly 
well in general. 
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Conclusion 
The quasi-static large strains and large deformations of thin circular 

plate under hydraulic pressure have been analyzed by the incremental 
finite-element method, employing the membrane approximation and 
introducing the viscous effect of material in the plastic range. 

Employing the constitutive relation of Perzyna type, the authors 
have formulated the incremental method with reference to the surface 
convected coordinate system, which is successful for such problem 
as including geometrical nonlinearity. 

The results of calculation of the thin circular aluminum plate 
bulging under two constant rates of hydraulic pressure have agreed 
fairly well with the experimental ones in general. We have shown 
theoretically and experimentally the difference in deformation and 
stress distribution due to the difference between pressure rates. 

The following matters have been recognized through the calcula
tions and the experiments: increasing of the pressure rate produces 
smaller strains and deformations and larger stresses, and as the 
pressure rates become lower, the numerical results approach to the 
results from the classical elastoplastic analysis. 
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On the Uniqueness and Stability of 
Endochronic Theory 
Several numerical and analytical analyses are described which evaluate the uniqueness 
and stability of solutions of mechanical models whose material behaviors are governed 
by the endochronic theory of plasticity. It has been found that the simplest form of this 
theory does show some "material instability" in the sense it does not satisfy Drucker's 
postulate when subjected to certain conditions. In other words, an endochronic material 
creeps under the action of applied force for dynamic problems. However, this "instability" 
or "lack of a hysteresis loop" can be circumvented by using more general forms of the en
dochronic theory when necessary. It is also shown that the endochronic solution is at least 
as unique.as that of the elastoplastic theory. No numerical difficulties particular to this 
theory are observed even when the simplest form is used. 

Introduction 
The endochronic theory of material behaviors has been proposed 

by Valanis [1], and uses the principle that the history of deformation 
is defined in terms of a "time scale" which is not the real time, but is 
in itself a property of the material. No use of the classical yield surface 
concept is required in this theory. It is used by Valanis [2] to predict 
the mechanical response of aluminum and copper under conditions 
of complex strain histories. One constitutive equation described many 
phenomena, such as cross-hardening, loading and unloading loops, 
cyclic hardening as well as the effect of preshearing on tension be
havior. Bazant and his coworkers further develop the theory to de
scribe the liquefaction of sand [3] and the inelastic behavior and 
failure of concrete [4]. The use of a two-dimensional endochronic 
constitutive relation in dynamic transient analysis of shells is first 
considered by Lin [5]. 

Basically, the endochronic theory uses an "intrinsic time" in place 
of the real time in the viscoelastic constitutive equations. In other 
words, the time convolution integrals present in the viscoelasticity 
theory are replaced by the "intrinsic t ime" convolution integrals. 
Obviously, the accuracy of an endochronic model in describing the 
behavior of a real material is dependent on the form of the "relaxa
tion" function, G, and on the definition of the intrinsic time. Impor
tant material phenomena may be lost when either is not defined 
properly. In such a case, the applicability of an endochronic model 
must be limited to a restricted class of problems. 
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ruary, 1980; final revision, April, 1980. Paper No. 80-WA/APM-24. 

Sandler [6] recently points out that the use of a simple endochronic 
model implies the material to be unstable and, hence, nonuniqueness 
of problem solutions can result. In this study, we show that the sta
bility of a material is a matter of definition, and the stability of an 
endochronic model can be improved by using a more realistic "re
laxation function." No nonuniqueness of solution exists. Furthermore, 
in a practical sense, unique and stable numerical solutions can be 
obtained for a structure whose material may violate Drucker's crite
rion of stability. 

Stability of Materials 
Drucker's stability criterion for materials as used in Sandler's paper 

is simply that no material is allowed to have negative material 
damping. The simple endochronic models used by both Sandler and 
Valanis, however, show negative damping when subjected to certain 
strain or stress histories. In order for a material to have positive 
damping, the constitutive law should be able to form a hysteresis loop 
upon a complete loading-unloading-reloading cycle. To show the in
ability of some endochronic models to form hysteresis loops, consider 
the simplest endochronic model used by Valanis [2] which is given 
by 

E0dc = da + aadz; adz = a^x\de\/(l + 0£); pd£ = 0x\de\ 

(1) 

where <r and c are the stress and the strain, £ u is the initial slope of the 
one-dimensional stress-strain curve, u\ and fix are material properties 
that are determined from a one-dimensional tension test, and z and 
£ are measures of intrinsic time. If we define loading and unloading 
as when de > 0 and when dt < 0, respectively, then we have 

da/dt = E0 T a t / V / U + 0$); (2) 
( - ) loading 

(+) unloading 

For a hysteresis loop to be formed as shown in Fig. 1, the unloading 
and loading paths must intersect each other. Let the two points of 
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Fig. 1 Condition for forming a hysteresis loop 

extreme stress value on the loop be denoted by A and B. The mean 
value theorem of calculus then implies that there exists points, x and 
y, whose coordinates are (<r{x), e(x)) and (a(y), e(y)) on each side of 
the line AB, and their slopes are the same. By assuming the position 
for x and y and using equation (2) with appropriate signs, we find the 
following condition: 

-a(x)/[l + /?£(*)] = <j(y)/[l + /Sf (y)] (3) 

for the formation of a hysteresis loop for the model depicted by 
equation (1). Since £ is a monotonically increasing positive number, 
equation (3) indicates that a(x) and <r(y) must be opposite in sign for 
a hysteresis loop formation. When the stress or strain history is such 
that a material always stays in either tension or compression, the 
endochronic constitutive law given by equation (1) may behave in an 
unstable manner in the sense described by Sandler. 

Dynamic stress-strain curves for an endochronic model subjected 
to different strain histories are shown in Figs. 2 and 3 by using equa
tion (1). These results are obtained by connecting a mass to a massless 
endochronic spring. The values for E0, «i, ft are 6.895 X 1010 Pa (1 
X 107 psi) 49, and 8.75; the mass used is 4.378 X lCr2 Kg (3 X l ( r 3 

slug). The unstable behavior shown in Fig. 2 is obtained by subjecting 
this spring-mass system to a suddenly applied constant force of 
magnitude 4.448 X 104 N (1 X 104 % ) ; while the stable hysteresis loops 
are obtained by subjecting the system to an initial displacement that 
is equivalent to 1 percent of strain in the spring. These results confirm 
the condition derived in equation (3) for the formation of hysteresis 
loops. 

It should be noted that even though the "unstable" constitutive 
relation shown in Fig. 2 may not be a realistic representation of a real 
material behavior as we know it, it does not mean that such a material 
may never exist. However, we'll show that such unstable behavior of 
an endochronic model can be improved. 

The endochronic model represented by equation (1) is obtained 
by assuming the intrinsic relaxation function G to be a single expo
nential function, i.e., 

G(z) = E0e~° (4) 

It is, therefore, reasonable to improve the accuracy of this constitutive 
model by including more terms in the relaxation function, say 

G(z) = Eo + Ele~ (5) 

The differential constitutive equation corresponding to the foregoing 
equation is simply 

(Eo + EJde + E0e(adz) = da + (adz)a. (6) 

where En, E\ are material parameters and adz is defined in equation 
(1). The equation for the slope of this stress-strain curve is, therefore, 
given by 
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Fig. 2 "Unstable" endochronic stress-strain curve 
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Fig. 3 Stable endochronic stress-strain curve with hysteresis loops 

doldi = (En + Ed ± (E0e - <r)aM(l + /?£); 
(+) loading 

(—) unloading 

(7) 

The necessary condition for a hysteresis loop can now be derived as 
in the previous case to be 

[Eet(x) - <r(x)]/[l + /?£(*)] = -[E0e(y) - <r(y)]/[l + 0$(y)]. (8) 

From this, we see that there are possibilities for a hysteresis loop to 
be formed even for the cases where tr(x) and <r(y) have the same sign. 
A hysteresis loop for a copper specimen subjected to unloading and 
reloading in tension is excellently reproduced by using equation (6) 
in [2]. Fig. 4 shows the effect on the formation of hysteresis loops by 
the use of various ratio ofEi/En for the same problem [7]. It is rea
sonable to assume that other types of loading-unloading-reloading 
may be described by using more general forms of the relaxation 
function. 

It should be emphasized that no single constitutive law as yet can 
describe all the material behaviors observed in laboratories. Most 
constitutive laws are accurate in describing certain materials under 
certain conditions only. It is important to use appropriate constitutive 
laws for practical problems. However, the inability to represent a 
material in some situation by a constitutive law should not exclude 
its usefulness in representing the material in other situations. It is 
shown in [7,8] that the simple one-term relaxation function used in 
equation (1) can predict reasonably good results for many practical 
problems. 

We reiterate that a constitutive law is simply a model used to ap
proximate the behavior of a material. Certain models may represent 
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One-dimensional endochronic and its associated bilinear stress-strain 

some materials better than others in some situations and vice versa. 
The unstable behavior of the one-term endochronic model, hence, 
should be treated carefully when it occurs. The cause of this unstable 
behavior will be discussed later. 

Uniqueness of Solution 

The uniqueness of solution to a system of equations implies that 
one, and only one, set of results is obtained when the system is 
subjected to a set of initial/boundary conditions and external loadings. 
Nonuniqueness of solution exists if more than one set of results are 
possible when the system is subjected to the same situation. The 
question of uniqueness of an endochronic model has been discussed 
by Sandler [6] for both a spring-mass system and a continuum system. 
The spring-mass system in [6] is formed by slowly adding weights to 
a one-term endochronic spring and then subjecting this system to a 
small excitation; the continuum system is a prestressed rod initially 
at rest. 

The spring-mass system is studied using various weights and initial 
disturbance, and the detailed results are available in [8]. The response 
of such a spring-mass system obvipusly depends on the magnitude 
of weight, direction of excitation, etc. The unstable response predicted 
in [6] is clearly observed in all results. In other words, the stresses 
oscillate about certain values while the strains drift as predicted in 
[6]. However, this drifting of displacements (strains) may not go un
bounded within a finite time, since the response histories clearly in
dicate the vanishing of velocities of the mass as time increases. It is 
worth mentioning that the stress-strain curves for these results all 
have forms similar to that of Fig. 2. 

These results are obtained by assuming that the system is in a 
gravitational field. That is the mass is obtained by dividing its weight 
by the gravitational constant and the mass is always subjected to a 
force caused by its own weight. To study the cause of the unstable 
behavior of the endochronic model more clearly, a constant mass is 
used for further investigation. Also, it is assumed that the only force 
available is through the external loading. This new system is subjected 
to various initial conditions or external loadings from its initially 
undisturbed state. The responses obtained are compared to those 
obtained by the bilinearly elastoplastic model that is related to the 
endochronic one, equation (1), by the following equation: 

fi = E0/Ep; /?! = Ep/<To; c*i; 1; <ry = o-o/U - 1/n) (9) 

where EQ, EP are the elastic and plastic moduli and ay is the initial 
yield stress of the bilinearly elastoplastic model. The relations between 
these constitutive models are shown in Fig. 5. 

Practically identical results are obtained for the two models when 

the strains are extremely small. That is the endochronic model can 
indeed predict the linearly elastic response for practical purposes. 
Very reasonably good agreements are observed when the strains are 
large. The most severe discrepancies occur when the strain is inter
mediate particularly when it lies around the knee of the bilinearly 
elastoplastic stress-strain curve. The endochronic displacements are 
always greater than those of the elastoplastic one. The velocity of the 
mass has constant and decaying amplitude for the elastoplastic and 
endochronic one, respectively. From this, we see that the endochronic 
model is softer than the elastoplastic one when they are related by 
equation (9). This can be easily confirmed from the graphical repre
sentation of Fig. 5. It is also seen that the endochronic model has 
damping effect on the oscillation of the system. 

The interesting phenomenon of the unstable behavior can be 
studied by examining the dynamic stress-strain curve of the simple 
spring-mass system. It is found that characteristically different be
haviors are observed depending on whether the system is subjected 
to initial conditions or external loadings. Hysteresis loops similar to 
that shown in Fig. 3 are present in the stress-strain curves of those 
obtained by imposing an initial displacement or velocity to the 
spring-mass system. The orientation and aspect ratio of this loop 
depend on the magnitude of the strain at the center of the loop. No 
hysteresis loop is observed while the system is being subjected to the 
action of the external force. The resulting stress-strain curve shows 
a zigzag pattern as that shown in Fig. 2. Again the orientation and 
shape of this zigzag pattern depend on the magnitude of the strain. 
It seems reasonable to conclude that the unstable behavior is caused 
by the lack of hysteresis loop, and this only happens while the system 
is under the influence of an external force. This is very similar to the 
creep phenomenon of a viscoelastic material under the action of ex
ternal force. 

The next natural question is: Will the endochronic model restore 
to stable behavior when the action of external force is ceased? Figs. 
6-8 show the displacement histories, the velocity histories and the 
dynamic stress-strain curves of the spring-mass system subjected to 
a rectangular pulse whose duration is six times the period of the cor
responding linearly elastic system and whose magnitude is such that 
plastic deformation is obtained for the bilinearly elastoplastic system. 
The results for other pulse loadings are available in [8]. The arrows 
on the time axes of these figures indicate the instant the pulse ceases. 
These results clearly show the characteristic difference between the 
endochronic and elastoplastic models. They indicate that the endo
chronic model "creeps" under the action of external force, and it 
"stabilizes" immediately upon the removal of the external force. The 
dynamic stress-strain curve shows the zigzag pattern while the force 
is present and it forms hysteresis loops immediately upon the removal 
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Fig. 6 Dynamic responses of a spring-mass system that is subjected to a 
rectangular pulse whose magnitude is 8.896 X 104 N and whose duration is 
6 T. Solid line—endochronic solution; chain-dashed line—elastoplastic so
lution. 
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Fig. 8 Dynamic responses of a spring-mass system that Is subjected to a 
rectangular pulse whose magnitude is 8.896 X 104 N and whose duration is 
6 T. Solid line—endochronic solution; chain-dashed line—elastoplastic so
lution. 
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Fig. 7 Dynamic responses of a spring-mass system that is subjected to a 
rectangular pulse whose magnitude is 8.896 X 104 N and whose duration is 
6 T. Solid line—endochronic solution; chain-dashed line—elastoplastic so
lution. 

of force. The damping effect on the oscillation of the endochronic 
model is clearly observed in the displacement and velocity histories 
in Figs. 6 and 7. 

In all the study of the spring-mass system, unique solutions are 
obtained without the slightest numerical difficulty. Compared to the 
elastoplastic solutions, the only conclusion is that the endochronic 
solutions are different. This is not surprising, since the two consti
tutive models are different as shown in Fig. 5. It is important to note 
that the unstable behaviors shown in earlier examples exist only when 
external forces are present through either the use of a weight in a 
gravitational field or the application of an external load. 

This unstable behavior is actually the creep phenomenon of the 
endochronic model with respect to its intrinsic time instead of real 
time, as can be seen by the similarity between endochronic and vis-
coelastic theories. Whether a creeping material should be termed as 
unstable is a question of definition; it does not present any difficulty 
in problem solving. It is interesting to mention that the same con
clusion is observed by Bazant [9] from a different approach. 

The possibility of nonuniqueness of solution to the spring-mass 
system proposed by Sandler [6] does not exist. He presents an inter
esting and useful model to uncover some undesired behavior of a 

Fig. 9 Wave solution proposed in [6] for an endochronic rod 

simple endochronic theory. However, the small disturbance used in 
his example and previous studies should not be interpreted as an error 
which expresses the difference between the numerical and analytical 
exact solutions. A computer does not know the real problem, it sees 
only a specific model and solves it with certain accuracy. Therefore, 
the exact solution is meaningless to a computer. A numerical solution 
is obtained in a computer by applying prescribed methods to the 
equilibrium equation or equation of motion. Hence, the numerical 
solution always satisfies the equilibrium equation exactly within the 
accuracy of the said computer. We reiterate that though the erroneous 
numerical solution may be different than the exact solution to a real 
problem it is the exact solution that satisfies equilibrium within the 
accuracy of a computer. This solution will be unique and the differ
ence between this solution and the exact solution will not cause any 
unstable behavior even with the presence of external force, as con
firmed by all the previous results. 

As shown in Fig. 2, it is possible to have a situation where the 
stiffness of the unloading is greater than that of reloading for an en
dochronic model. In [6], Sandler considers a rod initially at rest and 
under a compressive stress (TQ. He proposes that alternative solutions 
can be constructed for the endochronic rod at least for short periods 
around a generic point 0. His solution is reproduced in Fig. 9. The 
stress and velocity in different regions are 

IT = (To! v = 0 for Region 0, 

a = ffi; v = Vi = — (ai — <TO)/(PVUN) for.Region I, 

a = o£, v = 0 

Here the following relation also holds: 

for Region II. 
(10) 
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Fig. 10 Wave solution for a semi-infinitely long endochronic rod subjected 
to certain boundary condition 

<72 = O-O + P(VUN ~ VLD)VI (11) 

where p is the density of the rod, VUN = \[EUNTP, VLD = 
^/ELD/P\ EUN and ELD are the slopes of the stress-strain curve on the 
unloading and reloading segments. It should be noted that EUN and 
ELD are assumed constants in deriving the aforementioned solutions. 
Sandler claims that equations (10) and (11), i.e., Pig. 9, is also solution 
of the rod subjected to the same conditions and loading as that of the 
trivial solution of a = UQ and u = 0, and concludes that the endo
chronic rod may admit more than one solution. 

As mentioned earlier, the nonuniqueness of solution can exist only 
when more thkn one solution may be obtained under identical initial 
and boundary conditions for the same governing equations. The so
lution presented in equations (10) and (11) is valid only before any 
wave arrives at the boundary ends. In other words, it is valid only for 
an infinitely long rod. Hence, we only have initial conditions and the 
governing equation to study. Equations (10) and (11) will confirm the 
existence of nonunique solution for the endochronic rod if they all 
reduce to the same initial condition and governing equation. However, 
we see that the initial conditions for these solutions are the same ex
cept at the point 0, from Fig. 9. Therefore, the question of uniqueness 
of solution can be resolved if we know whether the point 0, i.e., (0,0) 
on the x — t plane is part of the solution, part of the initial condition 
or part of the external loading. In other words, this is a cause and effect 
problem. 

To answer this question, let's first consider a semi-infinitely long 
endochronic rod that is initially at rest and subjected to a compressive 
stress co. At the left boundary point 0, the stress is linearly reduced 
from <JO at time zero to o\ at time t\ and then linearly increases to a-i 
at time t2; and the stress stays at ai after t2. The boundary conditions 
and the solution are presented in Pig. 10. The stress and velocity in 
the various regions of Pig. 10 are as follows: 

a = Co! v = 0 for Region 0, 

a = <TO + (ffi - a0)t/ti; v = -(<7i - oo)t/(pVuNti) for Region 0', 

(7 = (Ti; v = -((7i - OQIKPVUN) for Region I, 

a = [(<i2 - (7i)t + {tia\ - £i(72)](t2 - t i ) ; 

V = -![((72 - <Tl)t + (t2<7l - tl<72)]/(t2 - t l ) - <n\/(pVLD) 

- ((7i - (?O)/(PVUN) for Region IF, 

(7 = (72; V = - ( ( 7 2 - O-iJApVtfl) - (<7l - <To)/(pVUN) 

for Region II (12) 

where the same symbols and assumption as in [6] are used. The so
lution for an elastoplastic rod subjected to the same boundary con
ditions can be obtained as a special case by letting VUN ~* VLD in 
equation (12). 

Interesting phenomenon is observed for the endochronic one when 
we let the time tlt and ti both go to zero. In this case, regions 0' and 
II' collapse into shock fronts, and the solution is composed of regions 

0,1, and II only. The solution in these regions are still given by equa
tion (12). Furthermore, if we assume that the stress (72 has the same 
value as cro, then equation (12) implies that the velocity at the 
boundary will have the following value: 

v = ((71 - ffo)(Viw - VLD)I(PVUNVLD). (13) 

In other words, if the stress at the end of an endochronic rod is 
subjected to a disturbance which is not trivial, i.e., oo —• ffi -» ffo where 
(7i 9^ ffo, in zero time the end will attain a velocity after the event. 
However, an elastoplastic one will not obtain a velocity when VUN = 
VLD- That is to say, the elastoplastic rod may have identical solution 
as the initial one if it is subjected to a process of unloading and re
loading at its boundary point in zero time, while the endochronic one 
does not. The latter knows the disturbance, and a new solution cor
responding to this disturbance will be generated. From this we con
clude that when the boundary stress is a constant all the time and 
when the boundary stress is constant except at one instant in time are 
two different boundary conditions, at least for the endochronic rod. 
Alternatively speaking, we can say that a singular source point with 
a strength oi — oo exists at the point 0 at time 0. 

Also, by choosing an appropriate value for 02, we can make the 
velocity in Region II vanish for an endochronic rod. This stress value 
can be obtained from equation (12) by substituting v = 0. It is given 
by 

(72= (70+ ((71 ~ (7o)(l - VLD/VUN)- (14) 

That is, we can uniquely find a nontrivial stress 02 for each strength 
(7i — or0 of the singular source. Physically, if the end of the endochronic 
rod is brought to 01 and then to (72 that is given by equation (14) in 
zero time, this end will not have a velocity after this sequence of 
events. The work or energy input to the rod through the end stress 
variation is zero, because the end does not have a velocity. However, 
from equation (12), we see that Region I clearly has a velocity. The 
kinematic energy of this region is obtained from the strain energy of 
the rod. It is easy to show that the energy for the rod after this event 
is the same as that of the undisturbed rod. Since the end of the rod 
where the event occurs does not have a velocity, we can combine two 
identical rods where their connecting ends are subjected to the 
aforementioned sequence of events in zero time. A solution identical 
to the one proposed by Sandler in [6], i.e., Fig. 9, can thus be ob
tained. 

From this, we would expect that Sandler's solution is a unique so
lution of the endochronic rod subjected to some disturbance. Since 
his solution is for an infinitelylong rod, the disturbance can be applied 
to the rod only through the initial condition (i.e., inhomogeneous 
initial condition) or the external loading (i.e., inhomogeneous gov
erning equation). If the solution by Sandler corresponds to both ho
mogeneous initial condition and governing equation, then the endo
chronic rod indeed can not yield unique solution. Otherwise, the said 
solution is unique. 

The governing equation for a rod vibrating axially is given by 

C2de/dx - du/dt = p (15) 

where t = du/dx and v = du/dt, u is the axial displacement, p is the 
external loading, x and t are the spatial and time coordinates, and 
C = V (da/de)/p . The initial condition is 

a{xfi)=f{x), 

v(x,0) =g(x) 

where a(x, t) and v (x, t) are the stress and velocity at a point x for time 
t. 

It is easily shown by substituting that a(x, t) = cro and v(x, t) = 0 
satisfy equation (15) with p = 0 and f(x) = cro and g(x) = 0. Hence, 
they represent a rod under static equilibrium subjected to the stress 
of Co. To show that the solution proposed by Sandler as shown in Fig. 
9 is not a solution subjected to the same condition of p - 0, f(x) = cro 
and g(x) = 0, we use the method of characteristics. 

The characteristic lines and the associated characteristic conditions 
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for equation (15) can be derived following the usual method. They are 
as follows: 

±do/dt \H-pC(dv/dt)\ \\= Ct2 pC(dp/bt)dt 

along dx/dt = ±C, 

± d(r/i>x tfl- pC(dv/dx)\ if = C'2pC(dp/dx)dt 
•JH 

along dx/dt = ±C (17) 

where t\ and ti are the projections on the time axis of two arbitrary 
points along the respective characteristic line. These characteristic 
conditions are derived by first taking partial spatial and time deriv
atives of equation (15). The loading p on any characteristic line can 
be obtained by 

C 2dp= f 2 (dp/dt)dt ± f 2 C(dp/dx)dt along dx/dt = ±C. 
»/ti Jti Jt\ 

(18) 

Substituting equation (17) into equation (18), we have 

p(tz) ~ p(ti) = |[±o- t(t2) =F <rt(tx)]lpC - [vt(t2) - vdti)]} 

±C\[± ax(H) =F <rx(ti)]/pC - [ 0 ^ 2 ) - vx{ti)]\ 

along dx/dt = ±C (19) 

where subscripts x and £ denote partial derivatives with respective 
to x and t, respectively. 

Equation (19) relates the external loading p to the solution at, <jx, 
vt, and vx along any characteristic line. The solution presented in Fig. 
9 has zero values for these solutions except along four distinct char
acteristic lines, namely dx/dt = ± VLD and dx/dt = ± VUN- Fur
thermore, these solutions are constants along these lines. Therefore 
equation (19) is satisfied for p(t2) = p(£i) = 0 for any £2 and £1 pro
vided they are greater than time zero, say £2 > £1 > 0+ where 0+ is 
positive and infinitesimally close to zero. Hence, we see that whatever 
happened happens around time zero. 

If we assume that the initial condition is homogeneous, i.e., a(x, t) 
= Co, and v (x, t) = 0 for t < 0, then it follows that there exists a point 
x = 0 and t = 0~ where 0~ is negative and infinitesimally close to zero 
such that at (0, (T) = ax (0,0") = vt (0,0") = vx (0,0~) = 0. If we further 
assume that no load is applied before the time 0~ or p(0,0~) = 0; then 
by taking £2 = 0+ and £1 = 0~, equation (19) yields 

p(VuNt, t) = 2(<X! - aQ)8{t)/pVuN along dx/dt = VUN, 

P(-VUN, t) = -2(<7i - <Jo)&(t)/pVUN along dx/dt = -VUN, 

p(VLDt,t) = 2((j2-ai)8(t)/pVLD along dx/dt = VLD, 

p(-VLD,t) = -2(ff2-oi)5(t)/aVLD along dx/dt =-VLD 

(20) 

where S(£) is the delta function which has the property 

5(£) = 0, if t ^ 0, 

and 

r ° melt 1 

Equation (20) clearly indicates that the solution proposed by 
Sandler or Fig. 9 is a solution of a rod subjected to an external loading 
if we assume that the initial condition is homogeneous. Had we as
sumed that there is no external loading, we can also prove by using 
equation (19) that the initial condition cannot be also homogeneous 
as a(x, 0) = Co and v(x, 0) = 0. In this case, the point* = 0 and t = 0 
is a singular point and multiple initial values must be allowed for this 
point in order to admit the original solution. 

It should be noted that the delta functions in equation (20) are 
assumed to be pulses at time zero. This in term requires that the point 
x = 0 and t = 0 to permit multiple values. In this case, equation (20) 

can be interpreted as an explosion and an implosion occurring at x 
= 0, t = 0. Hence, Fig. 9 represents the solution of an endochronic rod 
initially at rest and under stress <7o, and then is subjected to an ex
plosion and an implosion at time zero at a generic point. However, it 
is not necessary to require that all the delta functions occur at one 
instant. The explosion and the implosion can occur in sequence in a 
very short time, and the order of this sequence depends on the sign 
of the initial stress 00. 

This analysis is based on the characteristic conditions for the de
rivatives of the stress. This is important for problems that involve 
material which has different properties depending on the sign of do-
= atdt + axdx. Since an endochronic material does have this property 
it is concluded that an endochronic rod under initial static stress 00 
will not go into motion unless it is disturbed either through boundary 
condition or external loading. 

From the foregoing analysis, we have shown that an endochronic 
rod is stable under static stress. The solution presented by Sandler 
is indeed the response of the rod when subjected to some specific ex
ternal loadings (or initial/boundary conditions). The magnitudes of 
these loadings are infinite as indicated by the delta functions of 
equation (20). This behavior of an endochronic material is not so 
surprising if we keep in mind that any deformation is treated as ir
reversible in this theory. As a matter of fact, similar situations could 
happen for a classical elastoplastic material if all other conditions are 
right. For instance, nontrivial solution can be obtained for a bilinearly 
elastoplastic rod which is subjected to a delta function of impulsive 
loading at one of its ends. The solution in this case, however, is not 
simple waves [10]. This is because the irreversible effect of the loading 
process, e.g., plastic strain, cannot be eliminated by the unloading 
process. Therefore, situations similar to Fig. 9 are not unique to the 
endochronic material. 

The error analysis by Sandler which results in the conclusion that 
a numerical method applied to an endochronic material can not be 
accurate for dynamic problems is doubtful, since his analysis is based 
on the incorrect interpretation of Fig. 9. In other words, he misin
terpreted Fig. 9 as the alternative solution of the rod subjected to 
homogeneous initial condition and no external loading. Therefore, 
he claims the numerical error corresponding to Fig. 9 will be ever-
present in a model which uses endochronic material since the ini
tialization of responses such as Fig. 9 does not need the presence of 
other numerical error (or external loading) at point 0. However, we 
believe this type of error will not occur in any numerical method even 
if Sandler's interpretation were correct. This is because the existence 
of solution such as Fig. 9 is caused by the cause/effect occurring in zero 
time, but any numerical method must use a finite time increment for 
integration. Hundreds of time steps are used to study the plate impact 
and solid penetration problems by using both endochronic and elas
toplastic theories [8]. Reasonable agreements are obtained in all the 
problems for both theories. In the high velocity penetration of solids, 
it is also noted that the endochronic formulation requires less com
putation effort. Furthermore, the solution is much less sensitive to 
the time integration increment compared to the elastoplastic solution. 
It is observed that the use of endochronic material does not generate 
any additional numerical error. 

We have shown in this analysis that Fig. 9 is a unique solution of 
an endochronic rod subjected to an external loading. This should not 
be interpreted as saying that the uniqueness theorem for a nonlinear 
equation for an endochronic rod is proven in this analysis. 

C o n c l u s i o n 
The endochronic theory of describing material behavior is still in 

its infancy. One and multidimensional applications of this theory are 
examined by comparing the results to those of the classical theories. 
It is found that this theory may be characteristically different than 
the bilinearly elastoplastic theory in some situations when only one 
term is used in the endochronic relaxation function. In this case, it 
is suggested that the theory be used only to represent materials that 
do not possess pronounced yield points such as copper, aluminum, 
etc. For materials that do have pronounced yield points such as 
structural mild steel, it is more appropriate to use the classical elas-
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toplastic theory or the more complicated rather than the simple en-
dochronic model. 

Material behaviors can be better described in the simple endo-
chronic theory by taking more terms in its relaxation function. 
However, more endochronic material parameters will be generated 
when this is done. More research efforts are needed in relating these 
parameters to the experimental results such as tension tests. 

The endochronic theory can be used with no less confidence than 
the classical elastoplastic theory in numerical applications. No special 
numerical difficulties are associated with this theory. In some cases, 
this theory is more efficient and time-integration-increment-inde
pendent than the corresponding elastoplastic theory in numerical 
applications for dynamic problems. The decision to use this theory 
or not should be determined by the nature of the problem and ma
terial. 
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Creep and Creep Recovery of 304 
Stainless Steel Under Combined 
Stress With a Representation by a 
Viscous-Viscoelastic Model 
Creep and creep-recovery data of 304 stainless steel are reported for experiments under 
constant combined tension and torsion at 593°C (1100"F). The data were represented by 
a viscous-viscoelastic model in which the strain was resolved into five components—elas
tic, plastic (time-independent), viscoelastic (time-dependent recoverable), and viscous 
(time-dependent nonrecoverable) which has separate positive and negative components. 
The data are well represented by a power function of time for each time-dependent strain. 
By applying superposition to the creep-recovery data, the recoverable creep strain was 
separated from the nonrecoverable. The form of stress-dependence associated with a 
third-order multiple integral representation was employed for each strain component. 
The time-dependent recoverable and nonrecoverable strains had different nonlinear 
stress dependence; but, the time-independent plastic strain and time-dependent nonre
coverable strain had similar stress-dependence. A limiting stress below which creep was 
very small or negligible was found for both recoverable and nonrecoverable components 
as well as a yield limit. The limit for recoverable creep was substantially less than the lim
its for nonrecoverable creep and yielding. The results showed that the model and equa
tions used in the analysis described quite well the creep and creep-recovery under the 
stress states tested. 

Introduction 
Type 304 stainless steel is one of the principal materials being 

considered for design of critical parts of modern power plants 
subjected to complex stress states. Previous experimental work in this 
area was reviewed in [1]. Preliminary experiments on 304 stainless 
steel under combined tension and torsion at about 593°C (1100°F) 
in the present program were reported in [2] and analyzed to define 
a creep surface in [3]. In the present paper creep and recovery1 data 
are reported for pure tension, pure torsion, and combined tension and 
torsion of 304 stainless steel at 593°C (1100°F). The present analysis 
of these data employs an approach for separation of creep strain into 

1 Recovery as used in this paper refers to creep recovery. 
Contributed by the Applied Mechanics Division and presented at the Winter 

Annual Meeting, Chicago, 111., November 16-21,1980, of THE AMERICAN SO
CIETY OP MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, No
vember, 1979; final revision, March, 1980. Paper No. 80-WA/APM-10. 

several components by using recovery data measured at zero stress 
after complete unloading following creep under constant states of 
stress. The main point of view in this analysis is to define the recov
erable component of the time-dependent creep strain and to deter
mine the relative significance of the recoverable strain compared to 
the nonrecoverable strain. The constitutive equation developed for 
constant stress will be extended to variable stress states in work to 
be reported later. 

Material and Specimens 
Type 304 stainless steel, heat No. 9T2796, was supplied by Oak 

Ridge National Laboratory. The chemical composition in percent was 
0.059 C, 1.26 Mn, 0.44 Si, 18.6 Cr, 9.5 Ni, 0.033 P, 0.015 S, 0.35 Mo, and 
0.25 Cu. Three 12-foot bars numbered 16,17, 20, 4.88 cm (1.92 in.) in 
diameter have been used to date for test specimens. The specimens 
were machined into thin-walled tubes of which the nominal outside 
diameter, wall thickness, and gage length were 2.540,0.1524, and 10.16 
cm (1.000, 0.060, and 4.00 in.), respectively. The rough machined 
specimens were heat treated in an argon-filled vertical tube at 1107°C 
(2025CF). They were heated for 30 min, then cooled exponentially by 
lowering them in the tube from the heated zone down over a cold plug. 
The resulting minimum cooling rate at 538°C (1000°F) was 4°C per 
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sec (467°F per min). For a description of the method see [2] (1972). 
The heat-treated specimens were finish-machined by removing about 
0.1524 cm (0.060 in.) from the inside and outside of the test section. 
After heat treating the hardness was Rockwell A 37 to 40 and the 
average grain size was ASTM-3. The tensile yield stress of 304 
stainless steel was reported [4] to be about 48 MPa (7 ksi) at 649°C 
(1200°F), 55 MPa (8 ksi) at 538°C (1000°F), and 97 MPa (14 ksi) at 
room temperature. The average yield stress in tension obtained from 
the present creep tests at 593°C (1100°F) was 57.2 MPa (8.3 ksi). 

Experimental Apparatus and Procedure 
The combined tension and torsion machine used for these experi

ments was described in detail previously [5]. The required load for 
one-step loading was applied by manual control of a jack to lower the 
weights at the end of the lever. Strain was measured by a mechanical 
extensometer [5] whose sensitivity was 2 X 10 - 6 for axial strain and 
3 X 10~6 for engineering shear strain. 

Some modifications for high temperature use were made to the 
extensometer. Ferro-Tec conical points were used to establish the gage 
length. These were mounted on leaf springs of Elgiloy which were 
fastened to stainless steel rings at each end of the gage length. Invar 
rods were used to transfer the motion of the two gage point rings to 
a location below the specimen where a differential transformer indi
cated the axial strain and a pointer, drum, and microscope were used 
to measure the angle of twist (and thus the shearing strain). 

The specimen was heated from the inside by a quartz-tube infrared 
lamp about 2 in. longer than the specimen and mounted on the 
specimen axis. In addition, heaters, which consisted of about six turns 
of Nichrome wire insulated with ceramic beads and wrapped around 
the specimen, were used at each end to account for heat loss to the 
enlarged ends of the specimen. The lamp and heaters were controlled 
separately by two thermae controllers. The proportion of heat sup
plied to each end heater was adjusted by Variacs. 

A reflecting shield 10.2 cm (4 in.) in diameter was placed around 
the specimen area and supported from the top specimen grip. Ini
tially the invar rods were located inside the shield. After Test 38, the 
location of the extensometer rods was changed from the inside to the 
outside of the reflecting tube. This was accomplished by using ex
tension arms connected to the inner ring at each gage point and ex
tending through holes in the reflecting tube. The outer ring was not 
used. Small shields and insulation were used to minimize the distur
bance of the holes. These modifications were made so that the tem
perature of the invar extensometer rods would be within the range 
for which their thermal expansion was negligible. Even though the 
temperature of the specimen was constant the fluctuation of thermal 
expansion of the rods was too great when located within the reflecting 
tube. 

The thermocouples first used for control were chromel-alumel. This 
was later changed to Platinel II and more recently changed to plati
num-platinum 10 percent rhodium. The beaded end of the control 
thermocouple was first attached to the inner surface of the specimen. 
But this usually caused +5.6°C (+10°F) temperature drift during 100 
h of creep and recovery. Many different positions of the control 
thermocouple were tried. One control thermocouple attached to the 
outside surface of the specimen near the center for control of the lamp 
and another attached just below the top endheater for control of both 
endheaters resulted in the least temperature drift [within ±0.6°C 
(±1°F) through the whole test]. 

The temperature was measured by eight thermocouples of 0.0254 
cm (0.01 in.) in diameter spot welded onto both sides of the specimen 
along the gage length, using a Doric digital temperature indicator with 
a sensitivity of 0.06°C (0.1°F). Early tests employed chromel-alumel 
thermocouples for measurement. This was later changed to chro-
mel-constantan. The temperature drift of the chromel-constantan 
thermocouple itself was found to be less than ±0.6°C (±1°F) for 500 
hr at 593°C (1100°F). The apparent temperature gradient along the 
gage length was less than ±2.8°C (±5CF). 

The specimen was allowed to soak at the test temperature of 593°C 
(1100°F) for about 20 hr prior to testing. 

A final strain reading just before loading was taken as the zero point. 
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The required load was applied by means of dead weights. One-step 
loading and unloading was performed by manual control of a jack in 
less than 20 sec. The time at which the weight was fully applied or 
released was taken as zero time. For torsion the stress and strain were 
computed at the middle of the wall thickness. 

Creep and Recovery Data 
Each of the constant stress states employed was chosen to lie on a 

Mises ellipse having one of the following effective stresses: 47.8, 68.9, 
86.2, 103.4 MPa (6.928, 10, 12.5, 15 ksi). Proportional loading (and 
unloading) was employed. 

For a given Mises stress level the relation between a and T is as 
follows: 

<72 + 3T2 = (<7eff)2, (1) 

where a and r are the applied tension and shear stress, respectively, 
and (Teff is the effective Mises stress. 

In the present paper, 13 creep and recovery tests, performed at a 
temperature of 593°C (1100°F), were included in the analysis of the 
data. Tests 9,12, 20, and 22 were taken from [2], for which the creep 
periods were more than 500 hr. All tests employed are listed in Table 
1. For the tests whose creep periods were more than 120 h, the data 
considered were limited to the first 120 h for creep in order to mini
mize the effect of apparent temperature drift on the creep data and 
also the effect of aging. 

For all tests of recovery, only the first 250 h of data after unloading 
were considered. 

The recovery data for creep tests lasting as long as 1000 h were 
considered as well as those lasting 100 h since the duration of the creep 
period did not affect the time exponent for recovery, as discussed 
later. 

Analysis of Data—A Viscous-Viscoelastic Model 
With the experimental observation that only part of the instanta

neous response and part of the time-dependent creep strain were 
recovered on complete unloading, the creep strain was separated into 
the five components 

e = eE + ep + eVE + ev(pos) + ev(neg), (2) 

where eE is an elastic strain, tp is a plastic strain (time-independent), 
eVE is a viscoelastic strain (time-dependent recoverable), and ev is 
a viscous strain (time-dependent nonrecoverable). Separate positive 
and negative parts of tv allow for creep in either sense and reversal 
of stress. This kind of viscous-viscoelastic model was employed sat
isfactorily in the analysis of creep of an aluminum alloy by Findley 
and Lai [6-8]. 

The creep data on the 304 stainless steel considered was represented 
quite well by 

«0- = «y°+««,•+*", (3) 

where ey0, etj+ are functions of stress and AT is a constant at constant 
temperature. 

In order to determine the recoverable part of the time-dependent 
creep strain, eVE, it was assumed that tVE may have the same form 
as (3) and that a modified superposition equation [9] was applicable 
for the recoverable creep strain and for the recovery strain. Thus 

tij = Ay + eij
+VE[t^ - (t - tx)"!), (4) 

where t\ is the creep period and Ay is the nonrecoverable strain ac
cumulated up to t\. By assuming a similar form of (3) for the nonre
coverable time dependent creep strain 6 v the creep data may be 
separated by means of (2) as follows: 

Hj = UjE + eijP + t;;+ VEt™ + £;;+ V tn2. ( 5 ) 

The analysis of the data which follows shows that the foregoing as
sumptions were reasonable. 

The elastic strain was determined from (5) by setting t = t\ and 
considering that there was no new plastic strain on unloading as fol
lows: 
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Fig. 1 Creep curves for axial strains under pure tension and combined tension 
and torsion. Numbers on curves indicate test numbers. Symbol A indicates 
tensile stress and C indicates combined tension and torsion. See Table 1 for 
stresses; solid lines are equation (5). 
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Fig. 2 Creep curves for shear strains under pure torsion and combined 
tension and torsion. Numbers on curves indicate test numbers. Symbol T in
dicates shearing stress and C indicates combined tension and torsion. See 
Table 1 for stresses; solid lines are equation (5). 
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Fig. 3 Recovery curves for axial strains following pure tension and combined 
tension and torsion creep in Fig. 1. Dual strain values indicate that curves have 
been shifted. Numbers on curves indicate test numbers. Symbol A indicates 
tensile stress and C indicates combined tension and torsion. See Table 1 for 
stresses and duration of creep; solid lines are equation (4). 
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Fig. 4 Recovery curves for shear strains following pure torsion and combined 
tension and torsion creep in Fig. 2. Dual strain values indicate that curves have 
been shifted. Symbol T indicates shearing stress and C indicates combined 
tension and torsion. See Table 1 for stresses and duration of creep; solid lines 
indicate equation (4). 

E t i n i , (6) 

where Ay- = e y
p + eij+vt\n2 were obtained from (4). Then tp,t+v, and 

rii were determined by use of the following rearrangement of (5) as 
applied to the creep data, 

eij - (tijE + tij+VEt>") • e;/+ey
 + ^ . (7) 

eij+VE and eu+v ^ 

The values of N, n\, and ni were obtained from (3), (4), and (7), 
respectively, by applying least squares to the creep and recovery data. 
The results are shown in Table 1. The values of N, m, and n.2 for en 
and 612 were very close to each other, except that the value of n\ for 
en was larger than the other values of N, n\, and rc2- This difference 
appears to be real material behavior, but no explanation has been 
found. Thus it seemed reasonable to consider N = ni = n<i. 

The average (n = 0.315) of the JV of en and the N, n\ of ei2 was used 
in the following analysis (with JV = n\ = 0.315 it follows that n-i = 
0.315). Using n = 0.315 the values of ev-

E,« 
recomputed from (4), (6), and (7) as shown in Table 1. 

The creep and recovery curves calculated by using the values of the 
strain components given in Table 1 for n = 0.315 are shown in Pigs. 
1-4 by solid lines. The good agreement with the test data of Figs. 1, 
2, and 4 indicates that the aforementioned assumptions were rea
sonable. For several recovery tests in tension the rate of recovery 
shown in Fig. 3 was more rapid than described by the theory because 
n\ for tension was greater than 0.315. 

The ratio (+v/e+VE appeared to be independent of stress for an 
aluminum alloy [6]. As shown in Table 1 this ratio for 304 stainless 
steel was not independent of stress. It was nearly constant for the 
lower stress levels but depended strongly on the Mises stress level at 
the higher values. 

Elas t i c S t r a i n 
The elastic strain was obtained from the recovery data by (6) and 

0.084 

« 0.042 

0.02 1 

0 
(0) 

27.6 
(4) 

55.2 82.7 
(8) (12) 

cr or T , MPa (ksi) 

110. 
(16) 

138. 
(20) 

Fig. 5 Axial stress a versus strain f n E and shear stress r versus strain 

shown in Fig. 5 and Table 1. A modulus test was also performed by 
small incremental loadings and unloadings in the elastic range at 
593°C (1100°F) just after completion of each recovery test. The elastic 
modulus was obtained from the incremental loading tests as the slope 
of a plot of stress versus strain. 

The moduli obtained by both methods are shown in Table 1 for 
tension E and shear G. It was observed that the results were quite 
consistent, but indicated a slightly smaller value for the moduli tests 
compared to those for the recovery tests in most instances. The fact 
that the modulus determined from both tests were so close together 
indicates that no plastic strain occurred on unloading. Poisson's ratio 
v was calculated from the average value of all determinations of the 
elastic modulus E and the shear modulus G as 
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Fig. 7 Shear stress T versus € « + VE, e-i2+ ", and ei2p- Numbers indicate 
test numbers in Table 1. Lines indicate equation (9) for G, VE, Gt

 v, and 
a, p. 

E_ 

' 2G' 
1 = 0.333, 

where E = 14.81 X 104 MPa (21.48 X 106 psi) and G = 5.56 X 104 MPa 
(8.06 X 106 psi) at 593°C (1100°F). These values of E and G were used 
to construct the slopes of the straight lines in Pig. 5. 

Effect of Stress—Multiple Integral Equation 
In previous work of one of the authors, it was found that the non

linear creep of viscoelastic materials under combined stress was well 
described by the first three terms of a multiple integral representation 
[10] with simplications to single integrals by means of the modified 
superposition principle [9] for varying stress states. 

For constant stress the third-order representation yields the fol
lowing expression for axial strain eu and shear strain €12 under com
bined tension a and torsion T stresses, 

£U = Fi<r + F2<r2 + Fsa
3 + F4<jT

2 + F6r2 , (8) 

«12 = GlT + G2T
3 + G3(TT + G4<T2T, (9) 

Fi = Fi° + Fi(t), (10) 

d = G;° + Gi(t), (11) 

where 

and Fj° and G,° are time-independent terms while Fi(t) and G,(£) are 
time-dependent terms. Fi(t) and G;(£) become F{+tn and G;+£" in 
accordance with (3) for the present material. As shown in the fore
going, n had no definite trend with stress (so was taken to be a con
stant) and Fi+ and G,+ were functions of stress. 

Creep Limit. As shown in Pigs. 6 and 7, it appeared that there may 
exist limiting stresses (creep limits), below which the creep strain 
components, e,j ' and eij + v are zero or negligible. Incorporating 
the concept of a creep limit, (8) and (9) may be rewritten as 

e 11 = Fi(c - a') + F2(ff - a')2 + F3(a - a')3 

+ F4(a - <J'){T - r ' ) 2 + F 6 ( T - T ' ) 2 , (12) 

ei2 = G I ( T - T') + G 2 ( T - T ' ) 3 + G3(a - O')(T - r') 

+ G4((7 - <r')2(r - T ' ) , (13) 

where a', T' are components of a creep limit under combined tension 
and torsion. 

A Mises' relation for the creep limit results in, 

(o-')2 + 3 ( T ' ) 2 = (<r*)2, 

<y* = V 3 T * , 

ah = <T'/T', 

(14) 

(15) 

(16) 

where a*, T* are creep limits for pure tension and pure torsion re
spectively. A Tresca creep limit is given by (14)-(16) by replacing 3 
by 4 in (14) and (15). 

Determination of Constants. The values of .F;, G,, a*, and T* 
may be determined from the results of a minimum of four pure ten
sion, three pure torsion, and two combined tension and torsion creep 
tests. Simultaneous equations are required except where special cir
cumstances permit simplifications. 

Viscoelastic Strain Component 
The data of e;y + VE for pure tension a and pure torsion r seemed 

to be best fitted to a straight line but synergistic in combined a and 
T as shown in Figs. 6 and 7. Following this observation, G2VE, F2VE, 
and FS

VE were taken to be zero in equations equivalent to (12) and 
(13). The VE superscripts were used to identify the constants for the 
strain components, eij+VE. 

The values ofFiVE, a* VE and GX
VE, T* VE were obtained by best 

fit from all pure tension e n + VE and pure torsion £i2+ VE test data in 
Pigs. 6 and 7, respectively. The limit stresses a* VE and T* VE were the 
viscoelastic creep limits below which the viscoelastic strain appeared 
negligible. The ratio a* VE/T* VE = 5.917/3.532 = 1.675 was close to 
y/S of the Mises relation. Thus the Mises relation was used in the 
following analysis. Since the torsion data was less influenced by 
temperature drift than tension, a new value of a* VE = 6.113 ksi was 
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Table 2 Constants of equations (13) and (14) for e+ VE, e+ v, and e p 

Constants 

Fi 
F2 

F-i 
Fi 
Fb 
Gi 
G2 
Gs 
G4 

a* 
T* 

€+VB 

Percent/h" 

6.574 X l ( r 5 / M P a 
0 
0 

2.815 X 10-8 /MPa3 

0 
8.548 X 10~5/MPa 

0 
0 

2.545 X 10-9 /MPa3 

42.18 MPa 
24.35 MPa 

10~4%/h" 

(4.533 /ksi ) 
(0) 
(0) 

(0.09227 /ksi3) 
(0) 

(5.894 /ksi ) 
(0) 
(0) 

(0.008343/ksi3) 

(6.118 ksi) 
(3.532 ksi) 

e+v 

Percent/fi" 

1.201 X 10"5/MPa 
-5.406 X 10-5/MPa2 

2.040 X 10-6 /MPa3 

5.922 X 10-6 /MPa3 

0 
2.461 X 10-3 /MPa 
3.801 X 10-7 /MPa3 

0 
2.131 X 10-6 /MPa3 

64.73 MPa 
37.37 MPa 

10"4%/h" 

( 82.80 /ksi ) 
(-25.70 /ksi2) 
( 6.685/ksi3) 
( 19.41 /ksi3) 

(0) 
(169.7 /ksi ) 
( 1.246/ksi3) 

(0) 
( 6.986/ksi3) 

(9.388 ksi) 
(5.420 ksi) 

ep 

Percent 

6.398 X 10"3/MPa 
-2.621 X 10-4/MPa2 

7.545 X 10-6 /MPa3 

1.845 X 10-5 /MPa3 

0 
5.800 X 10-3 /MPa 
1.088 X 10"6/MPa3 

o-6.880 X 10-6 /MPa3 

57.21 MPa 
33.03 MPa 

10 4 percent 

( 441.1/ksi ) 
(-124.6/ksi2) 
( 24.73/ksi3) 
( 60.46/ksi3) 

(0) 
( 399.9/ksi ) 
( 35.65/ksi3) 

(0) 
( 22.55/ksi3) 

(8.297 ksi) 
(4.790 ksi) 

calculated using (15) and r* VE = 3.532 ksi. Also FiVE was recalcu
lated from the new a* VE. Since there occurred negligible axial creep 
strain during pure torsion creep tests, the constant F$VE of (12) was 
taken to be zero. Calculation otG3

VE and G 4
V £ for eij+VE and fij+vX 

from two combined tests, C22 and C41, which had the same ratio of 
a and T, yielded a negative value of G4

VE, which seemed physically 
unlikely. Then assumptions of GS

VE = 0 or GiVE = 0 were tried. The 
results showed no significant difference between the two. So GsVE = 
0 was used in subsequent analysis because negative axial loading 
(compression) was expected not to differ much from positive in its 
influence on shear creep strain within the small creep strain range. 
GzVE T± 0 indicates an effect from the sign of the axial stress, where 
as G4

VE ?± 0 has no effect of sign of axial stress. Test C20 was not used 
in calculating the constants because only two combined stress tests 
were required. 

The components of the viscoelastic creep limits <r'VE and T'VE for 
the combined stress tests were calculated by (14)-(16). All constants 
for e VE are shown in column 2 of Table 2. The calculated curves for 
tn+VE and £ i 2 + r a are shown in Figs. 6 and 7 as solid lines for pure 
tension or torsion, dotted lines for stress states having the same ratio 
ah as tests C22 and C41 and dashed lines for stress states having the 
same ratio ah as test C20. 

From these results the values of eu+VE and £i2+ VE were calculated 
for combined stress test C20. The results compared very satisfactorily 
with the test data in Fig. 7; but less so in Fig. 6. 

Effect of Creep Period on Recovery of Exponent m. The 
viscoelastic strain component €y + VE was obtained from the recovery 
data using (4), which is a function of the creep period t\. Since the 
viscoelastic strain eVE during creep might be affected by aging, by 
strain hardening, by saturation of recoverable strain and by tem
perature drift the recovery following quite different creep periods 
might be different. A plot (not shown) of n\ {obtained from (4) and 
shown in Table 1] versus the prior creep period t\ showed no signifi
cant variation of n\ over the range of t i from 100 to 1000 h. Thus n\ 
was taken as independent of t i in the foregoing analysis. 

Viscous Strain Component 
The viscous strain component fy + v was calculated by (7) and 

shown in Table 1 and Figs. 6 and 7. The component cu+v was non
linear in stress as shown in Fig. 6. The plot of t\2+v versus T for pure 
torsion was nearly a straight line as shown in Fig. 7. Equations (12) 
and (13) were employed to describe the data using V as a superscript 
to identify the viscous component. Data for tests A43 and T35 were 
omitted in calculating the constants because their strains were neg
ligible and their stresses were below the viscous creep limits. Then 
the pure tension tests at three different stress levels were insufficient 
to determine the four constants F\v, F-2V, Fsv and a* v. So the values 
of G i v , G2V, and r*v were first computed from pure torsion data. 
Then a* v was calculated from (15) and Fiv, F2

V, F3
V were calculated 

from pure tension creep data using the value of a* v obtained from 
(15). 

Taking F5
V = G3

V = 0 the values of F4
V and G^ were determined 

from tests C22 and C41 in the same way as for e+VE . Also a'v and r' V 

were calculated by (14)-(16). All the resulting constants are shown 
in column 3 of Table 2. The corresponding theory curves computed 
from (12) and (13) are shown in Figs. 6 and 7 as solid lines for pure 
tension or torsion, as dotted lines for stress states having the same 
ratio ah as tests C22 and C41, and as dashed lines for stress states 
having the same ratio ah as test C20. 

The test C20 was not used in determining the constants. As shown 
in Fig. 6 the C20 data lies significantly above the theory curve for en+ . 
However, in Fig. 7 the agreement between the data for C20 and the 
theory is very satisfactory. 

In the present paper only positive viscous strain components e;y v 

(pos) were considered because all stresses were positive. 

Plastic Strain Component , 
The plastic strain was obtained from (7) as shown in Table 1. The 

plots f n p versus a and ei2P versus r were very similar to those of €y + v 

as shown in Figs. 6 and 7, respectively. This observation suggested 
that the stress-dependence of plastic strain on initial loading might 
be described by the same form as (12) and (13). These equations do 
not describe changes in shape of the yield surface due to yielding or 
creep straining or strain aging anymore than (12) and (13) describe 
creep following changes in stress state. Thus (12) and (13) with su
perscripts P to identify the plastic strain component were also used 
to describe the plastic strain data. The computations followed the 
same process as employed for the viscous strain component e+v to 
determine the constants FiP, G,p, a*p, T*P, a'p, and T ' P . The values 
determined are shown in column 4 of Table 2. The curves for e n p and 
ei2P calculated from the constants in Table 2 are shown in Figs. 6 and 
7 as solid lines for pure tension or torsion, as dotted lines for stress 
states having the same ratio ah as Tests C22 and C41 and as dashed 
lines for stress states having the same ratio ah as test C20. Again test 
C20 was not employed in the analysis. The agreement between the 
theory and test C20 was very good in Fig. 7, but poor in Fig. 6. 

Discussion 
As shown in the analysis the creep strain was separated into several 

components, assuming no interaction among them and independent 
controlling mechanisms for each component. But several questions 
remain. The plastic strain on loading might affect the creep strain by 
strain hardening and by anisotropy induced by straining [11]. At low 
temperature, creep and time-independent plastic deformation are 
usually considered as physically equivalent processes [12] which may 
be partly right even at high temperature. The similar stress depen
dence of 6 n p and 6n v in Fig. 6 suggests this view. It was also noted 
that time-dependent strain may be affected by plastic strain such that 
the larger the plastic strain the smaller the time-dependent strain at 
the same stress level, though the available data are inconclusive. 

The difference between the yield limit and the viscous creep limit 
is perhaps not significant. For instance if 6i2P and fi2+ v in Fig. 7 were 
represented by straight lines the limit stress would be about the same 
for each. On the other hand there is no doubt that the creep limit for 
the viscoelastic strain component e+VE is less than the limits for ep 

andt+v. 
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As shown in Figs. 6 and 7 the viscoelastic creep components £n + VE 

and £i2+ VE are linear in a — a* VE and T -T*VE, respectively, for pure 
tension or pure torsion. However, they are also synergistic as shown 
by the fact that the values are larger when the other stress component 
was added to the pure stress component. Thus a linear theory such 
as linear viscoelasticity can not be used. Figs. 6 and 7 also show that 
ep and t+v are also strongly synergistic whether nearly linear as in 
e\2+v versus T — T*V or nonlinear as in cu+v versus a — a*v. 

The available data indicate that there may be some nonrecoverable 
creep and some plastic strain even at stresses below the apparent creep 
limit or yield limit, respectively, see tests 43 and 35 in Figs. 6 and 7, 
respectively. 

The values of the ratio 6+vh+VE in Table 1 suggest that the ratio 
may be constant at low stresses {Mises stresses of 68.9 MPa (10 ksi) 
or less]. Above this stress level the ratio increases substantially with 
increase in stress level. 

Work in Progress 
Subsequent papers will include the following investigations of creep 

of 304 stainless steel at 593°C (1100°F): the basic information given 
in Table 1 will be used together with suitable constitutive equations 
to predict the creep behavior under combinations of tension and 
torsion with step changes in stress including stepup, stepdown, side 
steps (in which one stress component remains constant while the other 
increases or decreases); and stress reversal. These predictions will be 
compared with results of actual experiments. The effect of aging will 
also be reported. 

Time permitting, compression creep, relaxation, and stresses below 
the apparent creep limits will also be investigated. 

Conclusions 
It was shown that creep strain could be separated explicitly into 

five components by a viscous-viscoelastic model employing a power 
function of time. The time-dependence of the recoverable and non-
recoverable components was found to be the same, except for recov
erable tensile strain. 

Limit stresses were found below which plastic and creep strains 
were negligible. While the limit stresses for plastic and nonrecoverable 
creep were nearly the same the limit stress for recoverable creep was 
significantly lower. The stress-dependence of the time-independent 
nonrecoverable (plastic) strain and time-dependent nonrecoverable 
(viscous) strain was similar, nonlinear, and synergistic. The time-
dependent recoverable strain was nearly linear in the stress increment 
above the creep limit but was synergistic. 

Using the same value of time exponent for all components of creep 
the model described the creep and recovery under tension, torsion and 

combined tension and torsion very well, except for recovery of tensile 
components, where the actual recovery was more rapid than de
scribed. A larger value of time exponent was indicated for this situa
tion. 
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A Nonlinear Theory of 
Viscoelasticity for 
Application to Elastomers 
A simple nonlinear theory of viscoelasticity has been developed for application to elasto
mers. The theory is the viscoelastic generalization of the kinetic theory of rubber elastici
ty, and it is used to model time and rate-dependent effects. The method of derivation re
veals that the theory is applicable to stress-imposed rather than strain-imposed condi
tions. Thus the creep test provides the logical means for deducing the material properties 
of the theory, while the relaxation-test technique is not applicable. When the long time 
asymptotic state is at the same level of deformation for both tests, the sources and degree 
of nonlinearity in relaxation tests are shown to be more severe than those involved in 
creep tests. A simple means is deduced for obtaining the creep function from the nonlin
ear creep response of the elastomer. 

Introduction 
In the behavior of materials many sources for nonlinearities exist. 

In the case of polymers, nonlinear behavior is commonplace, even at 
small strains. However, a severe complication for polymers is the in
teraction of the inherent time-dependence and the sources of non-
linearity. A simple nonlinear theory for the viscoelastic behavior of 
elastomers is developed here, one which has a mathematically con
sistent treatment of the time-dependent effects and of the charac
terization of the nonlinearity. 

Before considering the subject of nonlinear viscoelasticity, we must 
appraise the status of nonlinear elasticity. Any theory of nonlinear 
viscoelasticity must admit the limiting case of elastic behavior and, 
therefore, must include elasticity theory results. The general con
tinuum theory of nonlinear elasticity, as developed by Cauchy, has 
been used by Rivlin [1] to obtain general solutions to boundary-value 
problems without specifying the strain-energy function. Within the 
continuum context there are no specific derived forms for the 
stress-strain relations. Often the stress-strain relations are taken as 
those resulting from a polynomial expansion of a strain-energy 
function in terms of the invariants of the deformation measure. 
However, Rivlin and Sawyers [2] show that expressing the strain-
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energy function as an algebraic function is not useful; it is more 
meaningful to simply utilize the experimentally derived dependence 
of the strain energy upon the invariants. The main observation to be 
made at this point is that from a continuum mechanics point of view 
there is no simple universal form for the stress-strain relations of 
nonlinear elasticity. 

From a molecular point of view, in contrast to the situation just 
described for continuum mechanics, there is a very specific result. In 
particular, the kinetic theory of rubber elasticity predicts a specific 
form for the strain-energy function, namely, that the strain-energy 
depends linearly on the first invariant of the deformation measure. 
To be sure, this simple result does not model all experimental data. 
However, over a limited strain range for many elastomers, it does a 
reasonable job. The overwhelming significance of the kinetic theory 
of rubber elasticity is that the stress-strain relation is derived from 
a very simple set of reasonable physical assumptions (see Treloar [3] 
for the specifics of the derivation). In general terms, the use of 
Gaussian statistics leads to the "entropy-spring" formulation for the 
single molecule, which provides the general result when summed over 
all molecules. The kinetic theory of rubber elasticity is taken here as 
the guide for the development of a viscoelastic theory at the same level 
of applicability. 

Our purpose is to derive the viscoelastic counterpart of the kinetic 
theory of rubber elasticity. This problem is not approached here by 
means of molecular theory but rather by seeking the answer in the 
continuum context. Obtaining the viscoelastic generalization of the 
kinetic theory of rubber elasticity is not simply a matter of reinter
preting functions as functionals. As we shall see, the problem is far 
more subtle than that. In fact, we must be very careful in imple
menting the statement that the viscoelastic theory should reduce to 
the kinetic elasticity theory. Under what conditions would we expect 
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the viscoelastic theory to model the given elastic behavior? Precise 
statements of these requirements are given in the next section. 

To be sure, there already exist many theories of nonlinear visco-
elasticity, and we make no attempt to review them all. None of them 
correspond exactly to what is found here nor have any of them been 
posed in the context discussed in the foregoing. The existing nonlinear 
theories that have some relationship to the present work will be 
mentioned in the appropriate section. None of the existing theories 
provides a universal model of material behavior, when compared with 
actual data. There has been a tendency to add one more parameter 
or function with each succeeding theory to enable it to model yet one 
more effect. The approach here is just the opposite. In essence, the 
simplest, physically meaningful, nonlinear theory of viscoelasticity 
is sought and its range of applicability will be delineated through 
careful analysis of the underlying assumptions of the theory. 

In addition, the applicability of the theory to specific material be
havior will be examined. That is, we will specialize the general theory 
to model various specific problems and will consider the determina
tion of the relevant material properties. Finally, some of the physical 
implications of the results with regard to sources of nonlinear behavior 
will be discussed. 

One more restriction on the work should be discussed before pro
ceeding to the general theory. Attention will be restricted to what are 
called stress-imposed problems rather than strain-imposed problems. 
In a strain-imposed problem, boundary displacements are the primary 
input or excitation variables, whereas in stress-imposed problems, 
boundary stresses are the primary variables. Consider, first, strain-
imposed problems. In a practical context, if an elastomer is required 
to function in a strain-imposed context, generally speaking, the ma
terial is only required to "fill the gap" with no concern for its stiffness 
or response. Such materials are often referred to as fillers and potting 
compounds. For stress-imposed problems, the polymer is typically 
required to bear the load, and it deforms by whatever amount is 
necessary to sustain the load without failure. Examples of stress-
imposed problems are the response of rubber tires and the behavior 
of bond lines in adhesive joints. Clearly the stress-imposed problems 
pose a greater challenge than do strain-imposed problems. In this 
paper, discussion of theoretical developments will be restricted to 
those for application to stress-imposed problems and also will be re
stricted to incompressible and isotropic materials, under quasi-static 
conditions. 

A Special Nonlinear Theory 
Several restrictions, in addition to incompressibility and isotropy, 

on the general theory must now be delineated. The material will be 
taken as behaving under isothermal conditions, at a temperature far 
above that of the glass transition. This requirement means that in the 
absence of history (time)-dependence, the material would respond 
in the rubbery range. 

When time and rate-dependence are included, it is not sufficient 
to say the material is in the rubbery range of behavior. In fact, if the 
excitation is rapid enough, the material will respond in a manner 
dictated by a glassy-type elasticity effect, even though the tempera
ture is far above the glass transition temperature. When including 
time and rate-dependence, to be precise, we must say that for a suf
ficiently slow process the material will respond in a rubbery manner. 
The complete requirements are stated in (i) and (ii). 

(i) Under a sufficiently slow process, the viscoelastic theory must 
reduce to the kinetic theory of rubber elasticity, which is given by 

dW 

where W = cl, with / being the first invariant of the strain measure 
given by 

2EKL = CKL — &KL, 

where CKL is the right Cauchy-Green tensor. 
The foregoing well-known terminology is defined later in the vis

coelastic context. Although it is intuitively obvious what is meant by 

a "slow process," this term will be given a mathematical character
ization in the developments to follow. The second requirement is 
stated as 

(ii) The viscoelastic theory will be applicable to stress-imposed 
rather than strain-imposed problems. 

As discussed in the Introduction, a stress-imposed problem is one 
in which the primary variable of excitation is that of stress (or load) 
rather than strain (or displacement). We also must assume certain 
smoothness conditions. Specifically, in comparing stress-imposed with 
strain-imposed histories, it is necessary to assume the same degree 
of smoothness in each. Thus we compare step functions in strain, for 
relaxation tests, with step functions in stress, for creep tests. In the 
present context, it would not be proper to compare, say, a step func
tion in stress with a much smoother history in strain. For the most 
part, in the following, when speaking of stress and strain-imposed 
problems, our specific interest will be in the respective creep and re
laxation tests. 

The starting point for the development of the stress-strain relation 
is the general form of the constitutive relation given by 

-pSij + XiiKXj,L (l>KL(EKL(t - S), EKL(t)), (1) 

where atj is the Cauchy stress, p is the pressure, x,-,x denotes the dis
placement gradients, <PKL( ) is a tensor-valued functional with a 

dependence not only on the strain history but also on the current 
strain, which is defined by 

2EKL = XiiKXi,L ~ &KL- (2) 

Cartesian tensor notation is used, with xi being the coordinates of the 
deformed configuration with X% being the coordinates of the 
stress-free preferred configuration, which is assumed to exist, and the 
comma notation designates partial differentiation. 

The next step is to provide a special representation for the func
tional shown in (1). To this end, the Green-Rivlin expansion method 
[4] will be followed and <J>KL will be taken as a polynomoial ex-

s=0 

pansion in the linear function of the type 

X 
1 ,, ,dEKL(r) , 
g(t - T) dr. 

o dr 
Performing the expansion, beginning with the zero-order term, 
gives 

dEKL(r) 
-pbij + XiiK*j,L goOKL + I gi(t - T) dr 

«/o dr 

+ h I giit-r) — dr + . 
Jo dr 

(3) 

For an incompressible material, Pipkin [5] has shown that the re
quirement of incompressibility gives 

tr E = tr (E2) - [tr (E)]2 + . (4) 

where only second and higher-order terms are involved on the right-
hand side of (4). By the use of (4), the EJJ term in (3) can be absorbed 
into the quadratic integral, and (3) can be written as 

dij = —pSij + Xi,KXj,L gO&KL 

J> ( t ' 
, dEKLJr) , , 

T) dr + . 
dr 

(5) 

The next term not explicitly shown in (5) is that of the quadratic 
functional. Note that the term involving g0 in (5) corresponds to the 
kinetic theory of rubber elasticity. 

To implement requirement (i), we must analytically specify what 
is meant by a slow process. To do this, we consider accelerated and 
retarded processes, as discussed by Gurtin and Herrera [6]. For a given 
deformation history, xyc(i) and EKLU), accelerated and retarded 
strain histories, respectively, are specified hyEKL(ott), where a > 1 
for the accelerated and a < 1 for the retarded strain history. 
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The effect of accelerating the history is the same as compressing 
the time scale; thus we seek to determine the stress at reduced values 
of its argument as specified by 

on \— -phij + Xi,K(t) XjiL(t) tOKL 

J« tic It 
8i[--

o \a 

\ dEKL(ctT) 
T dr + . 

j dr 
(6) 

With a change of variable, (6) can be written as 

It] 

't - r]\ dEKh(v) 

d?; 

Cij I—I = -p&ij + Xi,K(t) XjiL(t) 

&KL + 
Jo 

dt] + . (7) 

For infinitely accelerated and retarded histories, it is clear from (7) 
that 

Oil accelerated 
= -pSij + Xi}K(t)xjiL(t) 

• [gO^KL + gl(0)EKL(t) + . . .]„_„, (8) 

and 

\ Oil retarded 
= -pbij + xiiK(t)xj,L(t) 

•lgo5KL+gl(^)EKL(t) + ...]a (9) 

Relations (8) and (9) express the well-known result that for very rapid 
processes only the initial, glassy value of the relaxation function is 
involved, as with gi(0) in (8) whereas for very slow processes only the 
long-time asymptote of the relaxation function is involved, as with 
gi(<=°) in (9). 

Now consider requirement (i). For a very slow process, the visco
elastic theory is required to give'the kinetic-theory of elasticity result. 
Since the kinetic theory is in fact embodied in relations (7)-(9) by 
presence of the termgo, it follows from (9) thatgi(°°) = 0, and also the 
long-time asymptotes of the relaxation functions in all the higher-
order terms in (7) must vanish. Thus requirement (i) gives 

gn(<») = 0, ra = l ,2 , (10) 

wheregn(t) denotes the relaxation functions involved in (7). Relation 
(10) is one of the basic results sought. Even though the material is a 
solid, the relaxation functions decay to zero, as in a fluid. The pre
ferred configuration of the solid is remembered by the rubber elas
ticity term go in (7). 

Before explicitly considering (ii), we must obtain some background 
results. We wish to examine the behavior of (7) for accelerated pro
cesses. To this end, we take the derivative of (7) to obtain 

da 
: Xi,K(t)xjiL(t) 

dgi 
't - rj 

a I t>EKL(n) 

da by) 
dr) + . 

dgi 

For a positive, monotone-decreasing relaxation function gi(t) we 
have 

dgi 
lt-
\ a 
d a 

• > 0 . 

Rewriting (11), we obtain 

d<r, 
J = xwMxjMt) | X ' H(t - u,«) ^ ^ <*„ + . . 

dr) 

(12) 

(13) 

where 

H(t -%a)> 

t-ri 

da 

From (12) and (13) we see that as the deformation history is acceler
ated the stress amplitudes increase. That is, the magnitude of the 
stress response is increased as the deformation history is accelerated. 
In arriving at this general conclusion we assume that all the relaxation 
functions exhibit the type of behavior shown in (12). 

Up to this point we have been working with a specified deformation 
history. Our interest in applying requirement (ii) concerns imposed 
stresses, not strain or deformation. It is not possible to explicitly invert 
(7) to express strain as functionals of stress, the functionals being 
determined in terms of those in (7). However, for present purposes, 
it is sufficient to consider a particular component of stress at a par
ticular instant of time. Thus, for any one component of cr;j in (7), we 
write 

<7 = f(a,E), (14) 

where E is any convenient scaler measure of the amplitude of the given 
strain history, as specified by 

EKL{t)=EEKL(t). (15) 

With E taken as a positive, real number, it will later be used as a 
strain-amplitude scaling factor; we restrict the derivatives of a in (14) 
as 

dE 
- > 0 

and 

a|£| 
da 

>0. 

(16) 

(17) 

Requirement (16) simply expresses the observation that increasing 
strain amplitude increases stress magnitude while (17) follows from 
equations (12) and (13). 

Under the conditions specified by requirement (ii), stress is taken 
to be the control variable, and we write 

da 
— = 0 
da 

(18) 

This result simply states that as the deformation history, specified 
by (15), is accelerated, the stress is required to remain unchanged. 
Using (14), we find (18) takes the form 

d | / (q ,£ ) | | d\f(a,E)\dE^ 

i>a dE da 

dE 

da 

d \f(a,E) | 

da 

a|/(«,£)| 
dE 

d a 

dE 

(19) 

(20) 

(11) Relations (16) and (17) then allow (20) to be written as 

dE 
— < 0 . 
da 

(21) 

Relation (21) is a basic result we have been seeking; namely, that 
if stress amplitudes are controlled to remain unchanged, then accel
erating a deformation history EKL (t) in (15) must diminish the am
plitude of the deformation history. This result is useful in truncating 
the expansion (5), which is considered next. 

To collect our observations, for slow processes the integral terms 
in (5) are negligible compared with the go term because of the re
quirement (10). The go term is just the contribution of the kinetic 
theory of rubber elasticity. Therefore the viscoelastic theory must be 
subject to the same restrictions as the elasticity theory. In this latter 
case, for example, extension ratios greater than about 1.5 cannot be 
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accommodated in natural rubber. Indeed, in any material the strain 
range of applicability of the kinetic theory is limited because of the 
assumption of Gaussian statistics, as well as other possible compli
cations. Thus the strain levels will be restricted to small strains in the 
sense of the possible ultimate strains in elastomers. This does not, 
however, mean that the strain level is infinitesimal; we retain a fully 
nonlinear treatment of the kinematics of deformation. 

We next consider the effect of rapid processes. For a very rapid 
process (in stress-control problems), with the result (21) we can show 
that the strain amplitude must be small. With small strains the qua
dratic and higher functionals in (5) are of higher order than the linear 
functional in (5). Thus there is a physical justification for truncation 
of (5) under very fast process conditions. With such a justification for 
truncation under both very fast and very slow processes, we in fact 
truncate (5) explicitly to give 

-pSij + Xi,K(t)X},L(t) 

go^KL + i gi(t - T) 
Jo 

dEKL(T) 
dr (22) 

This result, subject to conditions in (10), is the form sought as the 
simplest, physically meaningful generalization of the kinetic theory 
of rubber elasticity to model viscoelastic effects. Note that the ob
taining of this viscoelastic form was not simply a case of reinterpreting 
the elastic constant g0, as a relaxation function and inserting a he
reditary effect. 

We do not expect relation (22) to be of great generality in modeling 
material behavior; nevertheless, it may be of use under conditions 
consistent with its derivation. This possibility will be investigated 
later. 

It is of interest to examine the implications of the restriction of (22) 
to infinitesimal deformation conditions. Under this circumstance, we 
write 

Xi,K = SiK + Ui:K, EKL 3 iKL, (23) 

where u; is the displacement and CKL is the infintesimal strain tensor. 
Using (23) in (22) gives 

on = ( - P + So) kj + 2goeu + f ' gl(t - T) dEii dr. (24) 
Jo dr 

Absorb go into the pressure p and write (24) as 

(Tij 3 -pdij + 2 1 fl(t - T) 
Jo 

a«y(r) 
( (25) 

where 

2M(t) = 2g0 + gi(t). 

Relation (25) is the standard infinitesimal theory form. Comparing 
(25) and (26) with (22), we see that the nonlinear theory contains the 
same material properties as are involved in the infinitesimal theory. 
This result lends special utility to the nonlinear form (22). That is, 
the properties in the nonlinear theory are accessible through infini
tesimal testing. 

As a last general remark here, we consider the types of applications 
for which (22) might be expected to apply. Requirement Hi) was a 
central influence in the derivation. This requirement concerned the 
applicability to stress rather than strain-imposed problems. The 
standard creep test is certainly a stress-imposed problem, however 
the relaxation test is strain-imposed. Thus we expect, at the simplest 
level, that the result (22) of this derivation is more likely to success
fully model creep conditions rather than relaxation conditions. This 
observation can be generalized to include any type of history, with 
the present results being more applicable to stress than to strain-
imposed histories. We shall consider both types of histories in the 
following developments. Of course this distinction between strain and 
stress-imposed histories disappears as infinitesimal deformation 
conditions are approached. 

C r e e p I n v e r s i o n 
With respect to stress-imposed problems, it is logical to invert the 

stress-strain relation (22) such that strain is the variable specified in 
terms of stress history. Contract (22) with XMJXNJ to obtain 

< 
dr 

(27) SKL + pXK,iXL:i - go&KL = J gi(t - r) 

where SKL is the symmetric Piola stress, 

SKL = OijXK.iXLj. 

The form (27) may be inverted to give 

EKL(t) = -Ji(t)go8KL 

+ ('tJi(t-T)^-lsKL(T)+p(T)XK,i(r)XL,i(r)]dT, (28) 
Jo dr 

where the creep function J\(t) is defined through the relation 

X J lit - T) dr = t. 
o dr 

(29) 

While the integral equation (28) does involve stress history in the 
integrand, unfortunately the deformation gradient is also involved 
in the integrand. Thus it is not possible to specify stress, perform the 
integration, and thereby determine strain response. Rather, the in
tegral equation must be evaluated indirectly, which, in general, is a 
very difficult matter. Thus, although the stress-strain relation (22) 
can be formally inverted to give relation (28), there is no practical 
utility in doing so. For application to creep-test conditions, some other 
means must be found to invert (22). This will be presented in later 
developments. 

S i m p l e S h e a r D e f o r m a t i o n 
The first evaluation of (22) will be given for the case of simple shear 

deformation. Simple shear deformation is specified by 

X! = Xi + K(t)X% 

X2 - X2, 

X3 = X 3 , 

The deformation gradient is given by 

(30) 

XlK : 

1 Kit) 0 

0 1 0 

0 0 1 

(31) 

(26) while the strain tensor is 

0 

Kit 

0 

Kit) 

) KHt) 
0 

0 

0 
0 

[2EKL] = 

The stresses, evaluated from (22) are 

ffu = - P + «o[l + KHt)] + Kit) £ g l i t - T) 

, KHt) 

(32) 

dKir) 

X ' n ^dK2M , 
glit-T) ; dl 

dr 

C22 ; 

C33 : 

C12 

-P + go + 

-p+i 

S' 
Jo 

glit - T) 
dKHr) 

{ 
dr 

2 Jo dr 

Kit) s: glit - T) 
dKHr) 

dr 
dr. (33) 
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Stress-relaxation conditions can be readily evaluated from (33). We 
do not do so, however, but instead evaluate (33) under conditions of 
harmonic oscillation, which corresponds to the common testing 
technique involving oscillatory shear. The question arises as to the 
relationship of this type of deformation to an imposed stress test. 
Under steady-state conditions, the distinction between imposed stress 
and strain is not of relevance, and either form will reveal the inherent 
nonlinearities. 

Let 

Relation (41) will be evaluated first for stress-relaxation conditions 
specified by 

X = ( X 0 - l ) h ( t ) + l , (42) 

K{t) = Re (if0ei<ot), (34) 

where K0 is a real number corresponding to the amplitude of defor
mation, and co is the frequency of excitation. Substituting (34) into 
the shear-stress term of (33) then gives 

Cl2 : goK0 + I gi(s) sin cos ds 
2 Jo 

cos cot 

\o>K0 (•" 
— 1 gi(s) cos cos ds 

[ 2 Jo 
sin cot 

+ co.Ko3 1 gi(s) sin 2 cos ds 

- wKo3 j g i (s )cos2 COS ds 

cos 3cot 

sin 3co£. (35) 

The effect of the nonlinearity is to produce a higher harmonic 
term. 

It is of practical use to evaluate the work done over a cycle. Since 
only the shear-stress term does work, the calculation can be written 
as 

• 2W<o 
W= C <Tl2(t)X!,2(t) dt. 

Using (31) and (35), (36) becomes 

W = — Ko2oi> I gi(s) cos cos ds. 
2 Jo 

Using conventional terminology, (37) can be written as 

W = -K»VW, 

(36) 

(37) 

(38) 

where £i"(co) is just the imaginary part of the corresponding complex 
shear modulus. It is noteworthy that the work done/energy dissipated 
only depends quadratically on deformation amplitude, the same as 
in the corresponding linear theory result. 

Simple E x t e n s i o n 
Next, we consider simple extension conditions. The deformation 

is specified by 

xi = XX i 

X2 = (l/X)l/2*2. 

XS = (1/\)V2XS 

The strain tensor is given by 

(39) 

[2EK 

X 2 - l 0 0 

0 (1/X) - 1 0 

0 0 (1/X) • 

(40) 

where h(t) is the unit step function. Before we substitute (42) into 
(41), it is useful to integrate (41) by parts. Hence it is found that 

^-|V-$o4(v-V + £-£) gi(t). (43) 

This result will be compared with experimental results, but first the 
corresponding creep test case will be considered. 

The difficulties in dealing with stress-imposed problems was dis
cussed earlier. Here we will determine a general method to deal with 
creep-imposed conditions, but only in the context of simple extension, 
which is by far the most important test state. In pursuing this objec
tive of inverting (22) for creep conditions, we shall restrict the results 
to second-order deformation conditions. That is, we write 

X = l + e, (44) 

where e is the strain, and we retain only first and second-order effects 
in e. This is not a serious restriction in the strain range of intended 
application. Using (44) in (41) and neglecting third and higher-order 
terms gives 

<rii = 3g0e(t) + - [1 + f{t)] Cgilt-r) - ^ dr. 
2 J o dr 

(45) 

It is interesting to note there is no second-order contribution to the 
go term of rubber elasticity. 

Common creep tests use imposed load rather than imposed stress. 
To deal with this case we introduce the engineering stress p u defined 
by 

(Til 

P n - y . 
(46) 

which is the stress per unit initial area. Substituting (46) into (45) by 
using (44) and retaining up to second-order terms gives 

P u = 3 g o « ( t ) [ l - « ( « ] + - f g i ( t - r ) - ^ d r . 
2 Jo dr 

Let 

3go + -gi(t)=E(t). 

Then with (48), equation (47) becomes 

J" deir) 

Eit-^-^-t-dr. 
o dr 

The form (49) can be inverted directly to give 

t(t) = f ' J(t - T) - f [pn(r) + 380€HT)] dr. 
Jo dr 

(47) 

(48) 

(49) 

(50) 

We are finally to the point of being able to specify the conditions 
of a creep test involving a step change in load given by 

P n = Th(t). 

Inserting (51) into (50) gives 

o dr 

(51) 

(52) 

Using the condition 0-22 = (733 = 0 to evaluate p , it is found from (22) 
that 

This form is still an integral equation and must be solved for the creep 
function J(t). To obtain the solution, let 

drW, 
T T 

(53) 

X2 r l d\2 

• - I 8i(t-T) — dr. (41) 
2 Jo dr 

where J(t) = t(t)IT is the linear theory result and the term involving 
f(t) represents the correction to the linear result so that nonlinear 
effects can be modeled. Substituting (53) into (52) gives 
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f(t)+— I f(t-T)— dr 
T Jo dr 

-3g0 f '«(t-T) 
Jo 

de2(r) 
dr. (54) 

Note that if the second term on the left-hand side of (54) is ne
glected, then f(t) is of order 0(ea) in e(t). If/(£) is taken to be 0(e3), 
then the term that was neglected is of 0(e5) order and thus is of higher 
order than the remaining terms. Therefore, it is legitimate to neglect 
the integral term involving/(t) in (54) provided the coefficient Sg0/T 
is less than 0(e_ 1). It will be assumed that the coefficient Zgo/T is such 
that this term can be neglected, and it will be necessary to check this 
assumption in particular applications. With this order, assessment 
(54) reduces to 

3go 
/ (0 a - - T *(t- • T ) — dr. 

dr 

Now (53) can be written as 

t(t) 3g0 

f y2 J(t) | e ( t - r ) — • — d 
Jo dr 

(55) 

(56) 

Equation (56) is the final form to be used to deduce the creep 
function from the nonlinear creep test. The last term in (56) repre
sents the nonlinear correction to the linear theory result e(t)/T. It is 
fortunate that the present theory adapts so easily to the specification 
of constant load rather than constant Cauchy stress, since the constant 
load case is the expedient test method. 

Next, the result (56) will be evaluated from the creep data of Zapas 
and Craft [7] on polyisobutylene. The level of the test is given by the 
stress per unit initial area of 

T = 0.46 X 10e dyn/cm2. 

The data of reference [7] are used to estimate go as 

3£0 = 0.37 X 106 dyn/cm2. 

From these two results, the coefficient 3go/T in (54) is given by 

ZgolT = 0.81. 

Thus the term neglected in obtaining (55) from (54) is established to 
be of higher order than the terms retained. The creep-response curve 
from Zapas and Craft [7] is shown in Fig. 1. Simple integration has 
been performed to estimate the last term in (56). The scaled creep 
function deduced in this manner is also shown in Fig. 1. At t = 10 min, 
the creep function curve deviates from the response curve by about 
4 percent while at t = 100 min, the deviation involves about a 20 
percent correction. 

Some uncertainty is necessarily associated with the calculation of 
J(t) from (56) (as shown in Fig. 1). This is because reference [7] does 

not contain an explicit evaluation of the constant go, and it was nec
essary to estimate it indirectly from relaxation data in reference 

[7]._ 
Finally, it should be mentioned that the general theory derived 

herein was applied to model the relaxation data on polyisobutylene 
[7]. It is not necessary to display the data but is sufficient to note that 
results were not well modeled by (22). This appears to be consistent 
with the observations found herein; namely, that nonlinearities in
duced in relaxation tests are generally more severe and more difficult 
to model than those induced in creep tests. This point will be dis
cussed further in the next section. 

D i s c u s s i o n 
The relationship of the present work to some other theories should 

be mentioned. For example, the BKZ theory [8] and finite linear 
viscoelasticity theory [9] have terms that are similar to those in (22). 
In fact, the BKZ theory for solids has some terms that are identical 
to those in (22), and similar comments apply to the finite linear vis
coelasticity application of McGuirt and Lianis [9], However, different 
expansion techniques were used in these two theories than were em
ployed here. Furthermore, the emphasis in these latter works was on 
taking enough parameters and functions to fit a wide variety of data. 
The emphasis herein is to find the viscoelastic generalization of the 
kinetic theory of elasticity and to deduce the physical limitations on 
its range of applicability. Indeed, we have done this and have found 
that creep testing is the perferred mode as we shall elaborate below. 
Furthermore, the theory is put into a form that allows convenient data 
reduction in the case of creep in simple extension. Our initial inquiry 
led to the viscoelastic generalization of the kinetic theory of rubber 
elasticity. While this result, relation (22), could not be expected to 
have great generality, it nevertheless appears to be the simplest, 
completely nonlinear theory of viscoelastic solids. The assumptions 
under which the theory is derived lead to a new differentiation on 
sources of nonlinearity in polymer behavior. Specifically, important 
differences have been found to exist in stress-imposed problems and 
strain-imposed problems. This difference is most clearly illustrated 
in the comparison of relaxation and creep tests. 

The derivation of the general relation (22) was based on conditions 
inherent in stress-imposed problems. In the previous section, the 
attempted application of (22) to relaxation conditions, did not meet 
with success. The degree of nonlinearity involved in the relaxation 
test appears to be far different from that accommodated by (22). The 
critical observation uncovered by this work is that the type and degree 
of nonlinearity is very different under relaxation conditions from the 
type and degree involved during creep conditions. This result is 
consistent with the general characteristics of relaxation and creep 
tests. For illustrative purposes, consider for a moment that the rubber 
elasticity term g0 in (22) models perfectly the long-time, slow-process 
behavior of a particular material. Now under relaxation conditions, 
the stress has an initially high value but decays monotonically to the 
long-time asymptote. On the other hand, the creep test has an initially 
low value but increases monotonically to the long-time asymptote. 
Clearly, at short times, the relaxation test is imposing a far more 
stringent condition on the material than is the creep test. The mag
nitude of this effect can be established very easily, as follows: 

Let stress and strain amplitudes be related by the long-time rubbery 
asymptote of the relaxation function, as 

<To = E(<») eo-

Take the strain amplitude in a relaxation test as eo and the stress 
amplitude in a creep test to be given by OQ. Using linear theory rela
tions in the case of relaxation, we have 

<jR(t) = E(t)eo; 

and in the case of creep, we have 

ec(t) = J(t)<j0-

Now considering initial values, the last two relations become 

<7K(0) = £(0)eo; 
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and 

ec(0) = J(0)ff0. 

Taking the ratio of these last two forms gives 

o-fi(O) = E(Q) e0 

€C(Q) «/(0) ffo" 

Using J(0) = l/i?(0) and the first relation <r0 = E(<*>)eo, we find 

[£(0)1 
O-R(O) = 

.£(»). 
£(0)e c(0). 

This very simple relation reveals the inclination of the relaxation test 
to amplify initial-time nonlinearities over that of the creep test by the 
factor [E(0)/E(<»)]. To say this another way, in a circumstance where 
the long-time stress in a relaxation test and the long-time strain in 
a creep test are adjusted to give the same state of deformation (or 
stress) in the material, then the initial deformation (or stress) in the 
relaxation test is amplified over that in the creep test by the factor 
[(E(0)/E(<*>)]. Thus the relaxation test at short times provides a far 
greater penetration of a possible nonlinear range of behavior than does 
a creep test. 

In the past, it appears there has been no concern for the distinction 
between nonlinear effects in creep and relaxation tests or, more 
generally, in stress-imposed versus strain-imposed tests. The results 
here show that it is overwhelmingly important to make this distinc
tion. 

The present theory and results are limited to nonlinearities inherent 
in the nonlinear kinematics of the problem. There are many other 
sources of nonlinearity in polymeric-material behavior. The role of 
void nucleation and flaw growth in polymers is now appreciated as 
being a major source of nonlinearity. Continuum mechanical theories 
are often applied to model testing results in which these types of 
nonlinearities are present, often with rather poor results. 

The present approach suggests that continuum theories that do not 
explicitly account for flaw growth cannot be expected to have great 
generality. This consideration is expected to be especially important 
in highly filled polymer systems where very rigid particles cause local 
strain-concentration effects, giving local regions of highly nonlinear 
deformation with accompanying flaw growth. 
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Approximate Laplace Transform 
Inversion in Dynamic Viscoelasticity 
Laplace transform techniques greatly simplify many problems in linear viscoelasticity. 
However, if realistic material property representations are used, inversion of the resulting 
transforms can be difficult. Although approximate transform inversion methods have 
been widely used in quasi-static viscoelastic problems, the application of these techniques 
to wave propagation problems has been less successful. Inaccuracy of the transform inver
sion has been noted previously in the literature. The present work shows that one of the 
numerical Laplace transform inversion techniques of Bellman can successfully be applied 
to dynamic viscoelasticity. Comparisons with literature solutions and exact functions in
dicate accuracies to within ±1 percent can be obtained. 

Introduction 
Approximate Laplace transform inversion has played a useful role 

in quasi-static linear viscoelastic stress analysis. The motivation for 
transform techniques stems from the well-known elastic-viscoelastic 
correspondence principle, as discussed by Christensen, for example, 
[1], by which the transform (Laplace or Fourier) of a viscoelastic so
lution can be obtained from an elastic solution. However, if realistic 
viscoelastic material properties are used, it has often been found 
difficult to carry out the transform inversion. As indicated by Cost 
[2], a procedure suggested by Schapery [3] has been found particularly 
useful. In this procedure the transform of an exponential series is 
fitted to the transform of the problem solution, by collocation for real, 
positive values of the Laplace parameter. The inversion of this ex
ponential series transform then is used as an approximate solution 
of the original problem. According to Schapery, the procedure is based 
in part on the fact that many viscoelastic solutions change rather 
slowly with respect to time. 

Attempts by Arenz [4, 5] to use this approximate inversion tech
nique in dynamic viscoelastic problems have met with criticism by 
Knauss [6] and Sackman and Kaya [7]. The difficulty has been asso
ciated with accuracy of the approximate inversion in the vicinity of 
the wave front. Arenz found oscillations at the wave front and at
tributed them to material dispersion. However, using an alternate 
numerical technique Knauss [6] showed that the oscillations were 
ficticious. Thus the accuracy of approximate transform inversion in 
dynamic viscoelasticity was somewhat in doubt. 
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partment. Manuscript received by ASME Applied Mechanics Division, March, 
1980; final revision, June, 1980. Paper No. 80-WA/APM-29. 

However other numerical Laplace transform techniques have been 
presented by Bellman [8], which display good accuracy for a wide 
range of problems. In fact one of these techniques has been employed 
by Tsay' [9] in solving a problem in spherical wave propagation in a 
viscoelastic material, although no basis for judging the accuracy of 
the solution was established. In view of the generality and ease of 
obtaining many solutions in the Laplace plane, it was thus of interest 
to further investigate the accuracy and applicability of approximate 
Laplace transform inversion in dynamic viscoelasticity. 

In the following a brief review will be given of one of Bellman's 
approximate inversion techniques. This technique will then be applied 
to the problem of uniaxial wave propagation in a viscoelastic rod, and 
comparisons with the results of Knauss [6] will be made. A comparison 
with some simple exact functions is used to illustrate the accuracy of 
the method. Finally, the half-space problem previously investigated 
by Arenz [5] is used to illustrate the advantages of the present ap
proach. 

B e l l m a n ' s T e c h n i q u e 
Although Bellman [8] actually presents a number of techniques, 

only one, perhaps the simplest, will be employed in the present work. 
In this technique, the usual Laplace transformation integral is used 
with a substituion of the variable X = exp (—t) so that 

F(s) -s: exp (-st)F(t)dt •• s1 
Jo 

X^Fi- In X)dX (1) 

The integral is then approximated by the sum, as in a standard Gauss 
quadrature, 

F(s)= £ WiXi°-iF(-In Xt) (2) 

where the Xi are the roots of the shifted Legendre polynomials of 
order n and the Wt are weight functions. Choosing various values for 
s (taken as positive integers) leads to a system of equations that can 
be explicitly solved as 
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F(-lnXi)** £ Cn(i,j)F(Sj) 
y-i 

(3) 

where sy stands for integer values of s from 1 to n. Thus the desired 
inverse function F is obtained at.each of the time values £,- = - I n Xi, 
where the Xi are the roots of the rath-order shifted Legendre poly
nomial. These values of F are obtained by evaluating the function F(s) 
at integer values of the Laplace parameter s from 1 to n, multiplying 
by the tabulated coefficients Cn(i, j), and summing. Bellman has 
tabulated the coefficients Cn(i, j) for the shifted Legendre polyno
mials of order n = 3 to 15, as well as the roots. 

Two other properties of the Laplace transform are necessary to 
make the foregoing procedure useful. The first property is related to 
change of scale. Using the usual relationship 

L[FiAt)]-AHi (4) 

where L denotes the Laplace transformation, equation (3) becomes 

F(-A In Xi) •• ZCn(i,j)F(Sj/A)/A (5) 

where the coefficients Cn(i, j) are the same as used in equation (3). 
The second useful property of the Laplace transform is exploited 

when the function F(t) is known over part of the time range 0 < t < 
to. Using the change of interval, 

F(s)> f 
Jo 

f 
Jtn 

exp (st)F(t)dt + j exp (st)F(t)dt (6) 

F(s >-£ exp(-st)F(t)dt 

+ exp ( -st0) r° 
Jo 

exp ( - S T ) F ( T + t0)dr (7) 

The first integral in equations (6) and (7) is assumed to be known. 
For example, in wave propagation problems this may be the case be
fore the arrival of the first wave. 

Combining the relationships given in equations (4) and (7) gives 
finally 

F(t0 -A In Xi) = £ Cn(i, j) exp (s t0/A)\F(sj/A)/A - 1 0 \ (8) 

where 

h = (XIA) f ° exp (st/A)F(t)dt 
Jo 

(9) 

Equation (8) then gives an approximate inverse of the Laplace 
transform, based on the evaluation of the transformed function 
F(SJ/A) for integer values of SJ. This expression can be evaluated with 
the aid of a hand calculator for moderately low values of n, and sur
prising accuracy is obtained for n = 3 or 4, for example. However it 
can also be easily programmed. Because the coefficients Cn (i, j) be
come large as n increases and alternating in sign, double precision is 
recommended. In the present work on viscoelastic wave propagation, 
the highest accuracy was obtained in every case with n = 15, the 
highest order polynomial for which the coefficients are given by 
Bellman. 

In practice it is useful to vary the scale factor A so as to achieve 
increased accuracy and function definition in a selected time region. 
Further discussion will be given on this in conjunction with the ex
ample problems, but as a starting point if tc is a time value approxi
mately at the center of the regime of interest, a reasonable value of 
A is given by 

A » tc — to (10) 

E x a m p l e s 
The procedure previously given will be applied to several problems 

to illustrate the accuracy possible, and the ease of application. These 
problems are wave propagation in a viscoelastic rod, some simple 

Table 1 Prony series coefficients for stress relaxation modulus of HYSOL 
8705, r=291°K , from [10] 

E 
• 

1 

i 

2 

3 

4 

5 

6 

7 

B 

9 

10 

n 

J» n 
» 630 + Z E. exp(-

1=1 ' 
E^psO 

6250 

11950 

56000 

44100 

39400 

11890 

4020 

368 

279 

70.7 

53.4 

. , t ) 

a^ in ln " 1 ) 

1 . E+13 

1 E+12 

1. E+ll 

1 . E+10 

1 . E+9 

1 . E+8 

1 . E+7 

1 . E+6 

1 . E+5 

1. E+4 

1 . E+3 

"wave-like" functions, and a moving pressure load on a viscoelastic 
half space. 

Wave Propagation in a Viscoelastic Rod. The rod problem 
considered previously by Arenz [4] and Knauss [6] will again be 
studied here. Under the usual assumptions the differential equation 
for wave propagation in an elastic rod is given by 

E 
d2u 

dx2" 

d2u 

' dt2 (ID 

where u is displacement in the one-dimensional x -direction, and E 
and p are tensile modulus and mass density. Taking Laplace trans
forms the displacement in the semi-infinite rod (x > 0) for a step input 
displacement uo at x = 0 is given by 

u(x, s)/uo = (1/s) exp (—xs^fp/i/E) (12) 

Using the elastic-viscoelastic correspondence principle [1], the 
elastic modulus E is replaced by sETe\, where Elei is the transform of 
the viscoelastic tensile stress relaxation modulus. The material to be 
employed is Hysql 8705, used by Knauss [6]. The tensile stress re
laxation modulus for this material has been presented in reference 
[10] in the form of a Prony or Dirichlet series as 

Eradt) = Er + E Ei exp (-a,-1) (13) 

The coefficients Er, Ei, and o; from reference [10] are given in Table 
1. As emphasized in [10], this series provides an excellent fit to mea
sured properties spanning 10 decades of time. Further, the required 
transform is easily obtained as 

sEtei(s) = Er + £ Eis/(s + a;) (14) 

which can then be substituted for E in equation (12). 
The inverse of equation (12) after substitution of equation (14) is 

then given in Figs. 1-3. Fig. 1 and in more detail Fig. 2 show compar
isons with the results of Knauss [6]. As can be seen, the agreement is 
within plotting accuracy. Fig. 3 shows another detailed comparison 
with Knauss and also with Arenz taken from [4], Again the agreement 
with Knauss is excellent. The spurious oscillation and rounding of the 
wave form in Arenz's curve can be seen in this comparison. 

It should be pointed out that the solutions presented by Knauss 
[6] and Arenz [4] cannot be directly compared, at least in detail. The 
material properties used by Arenz differ slightly from those used by 
Knauss, and are referenced to a temperature of 14.2° C while Knauss 
uses a reference temperature of 20°C. Further, Arenz plots the dis
placement versus t', which is defined as time minus the time of arrival 
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Fig. 1 Wave propagation In a viscoelastlc rod 
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Table 2 Prony series coefficients for shear creep compliance of polyurethane 
material of [5] 

Fig. 2 Displacement history in a viscoelastlc rod, normalized time scale 
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Fig. 3 Comparison of results of Arenz [4], Knauss [6], and present work for 
wave propagation in a viscoelastlc rod 

of the fastest (glassy) wave. To enable a more direct comparison to 
be made with Arenz's solution, the rod problem was also solved with 
the material properties used by Arenz. 

Arenz gives the real part of the complex shear compliance, shown 
reproduced in Fig. 4. It is easy to show that the coefficients of the 
exponential series representation of the creep compliance 

^crp(t) = Jg+ E tf;[l - exp (-att)} (15) 

are related to the real part of the pomplex shear compliance by 

«/'(&>) =Jg + 2Ji/(l + a;2/V) (16) 

Thus the creep compliance coefficients can be obtained by fitting 
equation (16) to Fig. 4. The coefficients so determined by a least-
squares method are given in Table 2 for n = 9, and the fit to the 
original J'(a>) curve is also shown in Fig. 4. As a side comment it may 
be remarked that a least-squares series fitting is superior to a collo
cation scheme as smoother fits are usually obtained. Finally, following 
Arenz [4], the approximation Dcrp » JCrp/3 was used, where Dcrp is the 
tensile creep compliance. 

The solution obtained with the foregoing properties, and plotted 
versus £', is also shown in Fig. 3. While not differing significantly from 
that obtained using Knauss's properties, it does show that Arenz's 
method does predict the arrival time and displacement away from the 
immediate vicinity of the wave front reasonably well. 

The procedure followed in obtaining these results is as follows. A 
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computation was made for the location x of interest, using in = 0 and 
a range of A -values. This computation served to identify the arrival 
of the wave. Alternatively, the glassy modulus could have been used 
for this purpose. The computation was then repeated with t0 estab
lished so that some of the time values of the roots (say 2-4) occurred 
before the arrival of the wave front. The A-values were then selected 
so that the time values of the later roots occurred "after" the arrival 
of the wave front. Since viscoelastic waves can be quite dispersed, the 
term after can be taken somewhat arbitrarily. The accuracy of the 
solution is not significantly affected by a wide range of A -values. The 

value Jo = 0 is used in equation (8), as the wave propagates into ma
terial at rest. If the value of to is taken too large, i.e., if the displace
ment is specified as zero longer than it should be, the solution will 
diverge in an obvious manner. 

Exact Functions. Although the comparisons just shown are 
certainly encouraging, it is difficult to make statements about the 
accuracy of the present approximate Laplace transform inversion 
technique. This question was addressed more directly by considering 
the functions 

Ft(t) = |1 - exp \-b(t - l)])fexp (-0.1t)}H(t - 1) (17) 

Fx(s) = exp [-(s + 0.1)](6/[(s + 0.1)(s + b + 0.1)]) (18) 

for various values of b, and in the limit as b -» °> 

F2(t) = exp (O.lt)H(t - 1) 

F2(s) = exp [-(s + 0.1)]/(s + 0.1) 

(19) 

(20) 

This function has some of the character of viscoelastic stress and 
strain response curves. A comparison of numerical and exact trans
form inversion for 6 = 5,25, and b ->• <» is shown in Figs. 5-7. It might 
be expected that the more rapidly the function changes with respect 
to time, the more error will occur in an approximate inversion. This 
in fact appears to be the case. However even for b = 25 the approxi
mation reproduces the exact function to within ±1 percent. However, 
for the step function F%(t), more deviation does occur in the imme
diate vicinity of the step function. The deviation is systematic, giving 
first a deviation away from zero and then overshooting the function, 
both by a value of approximately 5 percent. The remainder of the 
function is then reproduced within about ±2 percent. 

It would appear that the dispersion characteristic of viscoelastic 
waves will enhance the accuracy of the approximate Laplace trans
form inversion. However in any case the accuracy would seem to be 
acceptable for many purposes. 

Moving Pressure on Viscoelastic Half Space. The final ex
ample to be considered is that of a pressure load on a viscoelastic half 
space, previously examined by Arenz [5]. The problem is that of 
normal pressure loading advancing over the half space at a constant 
velocity Vn under steady-state conditions, with Vn restricted to be 
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Fig. 8 Coordinate systems for half space with steadily moving step pressure 
load 

greater than the speed of irrotational waves with modulii equal to the 
glassy or short-time viscoelastic modulii. Plane strain is assumed. 
Following Arenz [5] and other elastic solutions [11], we establish a 
fixed coordinate system x', y', and t' and a coordinate system x, y, t 
moving with the front of the advancing load, as illustrated in Fig. 8. 
The coordinates are then related by 

x = x' + Vot' 

y = y' 

t = v (2i) 

The elastic solution can be obtained by means of the Helmholtz 
resolution, by which the displacements u and v in x', and y'-directions 
are given by 

u = - + -L-
dx' dy' 

u = zMzM (22) 
dy' dx' 

where ij> and \[/ are displacement potentials, which when substituted 
into the equations of motion give 

(K + 4/3 G)V2<j> = P ^ 4 
dt '2 

GVH = p — Y dt'2 

(23) 

(24) 

The coordinate transformation (21) is then used, and steady-state 
conditions are obtained by requiring d/d t = 0. Thus 

(K + 4/3 G)V20 = pV0
2 

dx2 

GVV = / o V o 2 ^ 
dx' 

with boundary conditions 

y(x, 0 ) •• 

y(x, 0) = 

; -PoH(x) 

0 all x 

(25) 

(26) 

(27) 

(28) 

Making the further substitution £ = x/Vo (for later convenience) and 
taking Laplace transforms with respect to £ (note that <j> = \p = 0 for 
£ < 0) gives 

d2$ s2 „_ 
° ' " (29) 

(30) 

where the definitions 

dy2 

d2^ 

dy2' 

Ci2 = 

m i 2 

TO22 

Vo2 " - -

s 2 

mo2\li 
V0

2 2V 
= 0 

•• (K + 4/3 G)lp 

C2
2 = Glp 

= VoVCr2 -

= W / C z 2 -

- 1 

1 
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Fig. 9 Comparison of calculations for normal stress response In viscoelastic 
half space 

have been used. Solving these equations, using the radiation condi
tions, the transform of the boundary conditions gives finally 

- PaV0
2T 

Gs3 R 

-PpVo2 2TOl 

Gss R 

exp (-misy/Vo) 

exp (-m2sy/V0) 

where 

T = TO2
2-1 

R = T2 + 4mim2 

(35) 

(36) 

(37) 

(38) 

The stresses are related to the displacement potentials through the 
displacement-potential, strain-displacement, and stress-strain 
relations. Thus, for example, 

-P0 (T2 

oyy = {-— exp (-misy/Vo) 
s l i t 

+ 4 ——— exp (-ro2sy/Vo) 
H 

(39) 

The transform of a viscoelastic solution can then be obtained by 
the usual material property substitution. 

The viscoelastic material property substitution is made as follows. 
The elastic shear modulus G is replaced by the inverse of the elastic 
shear compliance G = llJ. J is then replaced by s Jcip(s) where Jap(s) 
is the transform of equation (15), given by 

</crP(s) = Jg/s + Y, Ji<n/[s(s + a;)] 
;=i 

(40) 

The bulk modulus K was taken as a constant, K = 2.07 Mn/m2 , and 
p = 1077 Kg/m3, in order to match the solution of Arenz. 

Arenz presents a detailed plot of the normal stress ayy due to the 
dilatational wave, which corresponds to the inverse of the first term 
of equation (39). Thus the first term of equation (39) has been nu
merically inverted, using techniques previously described. The 
comparison with Arenz's results is shown in Fig. 9. 
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Perhaps the most noticeable feature of the comparison of results 
shown in Fig. 9 is the good agreement of the two methods. In detail, 
however, Arenz's results show some of the oscillation about the wave 
front seen previously in the rod wave problems, although not nearly 
to the same degree. This oscillation is completely lacking in the 
present results. 

Discussion 
The preceding examples have attempted to show that numerical 

inversion of the Laplace transform in problems of dynamic visco-
elasticity is a simple and reasonably accurate procedure. The accuracy 
has been assessed primarily by means of comparison with the nu
merical viscoelastic rod wave propagation solutions of Knauss [6], and 
some simple exact functions that have properties at least somewhat 
similar to that of viscoelastic waves. 

It is worthwhile to repeat the argument given earlier by Arenz [4] 
to the effect that simple models cannot represent realistic viscoelastic 
materials. However with the techniques discussed in the present work 
there is no difficulty in obtaining accurate material property repre
sentations just by using a sufficient number of terms in an exponential 
series, and inverting the Laplace transforms numerically. In fact the 
broad transition range characteristic of many viscoelastic materials 
appears to enhance the accuracy of transform inversion in dynamic 
problems, by smoothing the waves through material dispersion. 

It would seem that considerable extension of the present technique 
for transform inversion would be possible, and work in this direction 
has been presented by Bellman [8]. Perhaps what is most surprising 
is the accuracy that is apparently obtained by using, say, a 15 term 
polynomial series to represent an arbitrary function. However it 
should be noted that while the problems considered here had solutions 
much less smooth than is characteristic of many quasi-static problems, 
and thus presumably place more stringent demands on the numerical 
transform inversion, certainly less smooth problems may yet be 
envisioned. Thus some modification of present procedures may be 
necessary. But for problems of the type considered here, numerical 
Laplace transform inversion would seem to be little more difficult 
than say numerical quadrature. 

Summary and Conclusions 
Laplace transform techniques greatly simplify many problems in 

linear viscoelasticity, reducing the difficulty to that of an elastic 

problem. However, adequate viscoelastic material property repre
sentations make transform inversion difficult. Although approximate 
inversion techniques have been widely employed in quasi-static vis
coelasticity problems, inaccuracy and distortion of the solution have 
been noted in applications of these techniques to wave propagation 
problems in viscoelastic materials. 

The present work has attempted to show that one of the numerical 
transform inversion techniques of Bellman [8] can be used in dynamic 
viscoelasticity. The procedure presented here is simple to use and can 
be readily implemented, and gives good accuracy. Comparisons with 
the work of Knauss [6] for wave propagation in a viscoelastic rod ap
pear to be within plotting accuracy. Comparisons of numerical and 
exact inversion of some simple functions indicate accuracy of about 
±1 percent, and probably this accuracy can be achieved in viscoelastic 
wave propagation problems. Undershoot and overshoot of a step 
function is about 5 percent. 
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Approximation of the Strain Field 
Associated With an Inhomogeneous 
Precipitate 
Part 1: Theory 
Two independent methods are derived for the calculation of the elastic strain field associ
ated with a coherent precipitate of arbitrary morphology that has undergone a stress-free 
transformation strain. Both methods are formulated in their entirety for an isotropic sys
tem. The first method is predicated upon the derivation of an integral equation from con
sideration of the equations of equilibrium. A Taylor series expansion about the origin is 
employed in solution of the integral equation. However, an inherently more accurate 
means is also developed based upon a Taylor expansion about the point of which the 
strain is to be calculated. Employing the technique of Moschovidis and Mura, the second 
method extends Eshelby's equivalency condition to the more general precipitate shape 
where the constrained strain is now a function of position within the precipitate. An ap
proximate solution to the resultant system of equations is obtained through representa
tion of the equivalent stress-free transformation strain by a polynomial series. For a given 
order of approximation, both methods reduce to the determination of the biharmonic po
tential functions and their derivatives. 

Introduction 
Understanding of the elastic strain energy associated with an el

lipsoidal precipitate has progressed rapidly during the past two dec
ades, principally due to the classical works of Eshelby [1-3]. He con
sidered an ellipsoidal precipitate which undergoes a uniform stress-
free transformation strain. Both precipitate and matrix were taken 
to be elastically isotropic. Subsequently, Willis [4], Kinoshita and 
Mura [5], and Asaro and Barnett [6] proved or extended to the an
isotropic case Eshelby's theorem that the stress field inside an ellip
soidal precipitate is constant when the stress-free transformation 
strain is constant. Robinson [7], Barnett, et al. [8], and Shibata and 
Ono [9] calculated strain energies in the isotropic case, while Lee, et 
al. [10], obtained anisotropic strain energies of ellipsoidal precipi
tates. 

Although the ellipsoid is a versatile shape, other precipitate shapes 
such as the cube and the rectangular parallelepiped are often observed 
in solid-solid transformations [11], thus requiring evaluation of the 
stress fields and strain energies of these mathematically more com
plicated morphologies. The solutions for an inhomogeneous ellipsoidal 
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precipitate, i.e., an ellipsoidal inclusion whose elastic constants are 
different from those of the matrix, are based on the fact that the stress 
in the ellipsoidal precipitate is uniform. However, the stress field 
inside a nonellipsoidal precipitate is not uniform even if the stress-free 
transformation is a pure dilatation. Because of this complexity, no 
exact solution has been obtained for the strain field associated with 
a nonellipsoidal inhomogeneous precipitate. 

In this study we will formulate two distinct methods for calculation 
of the strain field produced by a coherent inhomogeneous precipitate 
of arbitrary shape that has undergone a stress-free transformation 
strain. First, the technique of Moschovidis and Mura [12] will be used 
to extend Eshelby's ellipsoidal equivalency condition to the general 
inhomogeneity. The second method will be based upon derivation of 
an integral equation in the manner of Chen and Young [13] who first 
employed a similar technique in arriving at the strain field associated 
with an inhomogeneity embedded in a uniform strain field. In the 
subsequent paper, Part 2, we will apply these two techniques to the 
case of a cuboidal inhomogeneity within an isotropic matrix. The 
several modes of solution developed in Part 1 will be contrasted in 
Part 2 on the basis of ease and accuracy of solution. 

The Modified Equivalency Method 
Theory. Since the interior strain field associated with an ellip

soidal precipitate is constant for a constant stress-free transformation 
strain, Eshelby [3] was able to arrive at an equation that allowed an 
inhomogeneous ellipsoidal precipitate that had undergone a constant 
stress-free transformation strain, ej/, to be represented as an 
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equivalent inclusion. The equivalent inclusion would result in the 
exact strain field as did the original inhomogeneity, yet would possess 
the same elastic constants as the matrix phase. Such representation 
permits direct computation of the strain field through the homoge
neous Green's function. The equivalency condition for ellipsoids, as 
formulated by Eshelby is 

Ctjkiieh ~ e*7) = CijkiieU - e£j) (1) 

where ejj is the equivalent stress-free transformation strain, e\j is the 
constrained strain and the Cijki represent the elastic constants of the 
matrix and precipitate (the asterisk denotes precipitate) phases. The 
usual suffix notation is also employed. Repeated indices are to be 
summed over the values 1, 2, and 3 and suffixes following a comma 
denote differentiation with respect to the Cartesian coordinates %\, 
x% and X3, i.e., uij - dujdxj. 

For an arbitrary precipitate within an infinite matrix, the con
strained strain within the precipitate is not a constant. Hence, 
equation (1) becomes intractable in its present form. Equation (1) can 
be modified for use with the general precipitate morphology by 
employing a technique first developed by Moschovidis and Mura [12] 
in their work with ellipsoids immersed in a uniform stress field. 
Adopting some of their notation, allow the equivalent stress-free 
transformation strain of an arbitrarily shaped precipitate to be rep
resented as a polynomial, j3y(x), where 

ftj(x) = By + BijkXh + Bijkixkxi + . (2) 

The coefficients, By.. ,m, are symmetric with respect to i and j since 
the strain is symmetric in i and,/. By simple permutation they are also 
symmetric in k, I... m. 

The constrained strain would likewise become a function of the 
position coordinate. Realizing this, Equation (1) can be rewritten for 
the general precipitate as 

C'ijkiHiM • eTi\ Cm[eh(x) - $kl(x)} (3) 

where equation (3) must be satisfied for all points within the pre
cipitate. This modified equivalency condition cannot be solved di
rectly, for equation (3) produces only nine independent equations and 
yet, due to flkii*), consists of an infinite number of unknowns. Such 
difficulty necessitates formulation of an approximation scheme, which 
allows the coefficients of /Sfe;(x) to be calculated to the desired degree 
of accuracy. In order to proceed further along such lines, it is first 
necessary to express the constrained strain in terms of the general 
stress-free transformation strain, ft7(x). 

Determination of e y(x). Assume an infinite matrix containing 
an arbitrarily shaped coherent inclusion that has undergone a 
stress-free transformation strain given by ft; (x), where x is the position 
vector with respect to a Cartesian coordinate system whose origin is 
located within the precipitate. The constrained displacement field 
would then be given by [1] 

i4(x) SSJ CjimnPmn(x')Gij,,(x-x>)dV(x') (4) 

where the integral is taken over the entire precipitate and Gy(x — x') 
is the elastic Green's function. If we assume an isotropic matrix, the 
Green's function can be expressed as 

G y ( x - x ' ) = — 
07r/t 

5 ; ,V 2 - -
d2 

2(1 - v) dx&Xj 
(5) 

where ix and v are shear modulus and Poisson's ratio, respectively, for 
the matrix phase, 8y- is the Kronecker delta function and V2 is the 
Laplacian. Substitution of equation (5) into equation (4), realizing 
that Pij (x) = fat (x) and Cjimn = \t)ji8mn + n(8jmSin + &jn&im) 
gives 

u?(x) = - — 
87T (1 - v) 

*mm,aai\x) 

I 

a-v) 
VjUjlW + *;;,aa((x) + 9li,aal(x) (6) 

where 

*«/(x) = J J v j | x - x'\Pij(x')dV(x'). (7) 

Differentiating equation (6) with respect to Xj, the constrained strain 
expressed in terms of (Ski (x) is 

ecij(x) 
Sir 

v 1 

(1 -v) (1 - v) 
^kl,ijkl(x) 

1, 
+ -(5kj^kl,aailM + Sjl^kLaakiW + Sik^kl,aalj(x) 

+ bil<&kl,aakj(x)) (8) 

Equation (8) presents a means by which the constrained strain can 
be expressed in terms of the equivalent stress-free transformation 
strain. It may be simplified by the introduction of a coupling matrix 
[14] between e;j(x) and ftj(x), that is by expressing efj(x) as 

e-,(x) = Dijkl(x)Bkl + Dijhlm(x)Bhlm + Dijklmn(x)Bklmn + • • (9) 

The respective D;y.. .& can be determined simply by substitution 
of equations (2) and (7) into equation (8). If the resulting terms are 
separated on the basis of the Bki.. ,m and the following definitions are 
adopted concerning the biharmonic potential functions: 

i>ij.. .h = 4>a.. .k(x) = J J J x'ix) ...x'k\x- x'|dV(x') (10) 

then 

8TT l(l - v) (1 - v) 
i/,ijkl+ ~ [f>jkf,aail 

DijklmW = -• 

+ &jlt,aaki+&iktaalj+6ilt,aakj] 

U P . . 1 

8TT [(1 - v) 
faltyrr. 

(l-v) 
tm.ijkl 

Ym,aakj\ etc. (11) 

Notice that the D's are symmetric in i and j and in k and I. Also, as 
originally shown by Eshelby [1], the D's for an ellipsoid would be 
constant. With equations (9) and (11) the constrained strain can be 
represented in terms of the stress-free transformation strain and can 
now be utilized in the solution of the modified equivalency condi
tion. 

Solution of the Modified Equivalency Condition. To solve the 
modified equivalency condition, it has been shown that it is necessary 
to arrive at some sort of approximation scheme [12]. One straight 
forward method is through application of a Taylor series. First, rewrite 
equation (3) as 

where 

ACijkie
c
k,(x) + CijkiPkii*) = Cijufik* 

ACtjki - C\jki - Cijki-

(12) 

The constrained strain can be expressed in a Taylor series expanded 
about the origin as 

e-j(x) = D°tjklBhi + D°jhlmBkim + D°jkimnBkimn + • • • 

+ xP\Dijki,pBki + D 
ijklm,p ijklmn.p Bklmn + • • • I + 2 XpXq{D°jkiiPqBkl + D°j 

+ D 
ijhim.pqBklm 

Bhlrr, ijklmn,pq&klmn ! + . (13) 

where the superscript zero implies evaluation at the origin. 
Now substitute equation (13) along with the expanded version of 

Phl(x) back into equation (12). Equating like powers of X; and com
paring coefficients, thereby requiring that the equivalency condition 
is satisfied for all points within the precipitate, the following system 
of equations is realized: 
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(a) ACijki\Dlim„Bmn + D\lmnpBmnp + D°klmnpqBmnpQ + . . ,j 

+ CijhiBu = C*meli 

\u) &i^ijkl\L)klmn.s^mn ' L*klmnp.sBmnp ' L>klmnpq,sBmnpq < • • •) 

+ CijklBkls = 0 

\c) 0 &^ijklWklmn,st^mn < ^klmnp.st^mnp ' Dklmnpq,st&mnpq 

+ ...\ + CijklBk,st = 0,etc. (14) 

Equation (14) refers only to a constant stress-free transformation 
strain but the more general case of a nonuniform e J* (x) can be handled 
by expressing e Jf (x) in terms of a polynomial and then equating like 
powers of x;. It should be reiterated that the aforementioned method 
is applicable to any precipitate morphology provided the biharmonic 
potential functions and their derivatives are known, that is, the 
Dij.. .k(x) can be calculated. In principle this can always be achieved, 
if not analytically, then through numerical techniques. The method 
is also employable in an anisotropic matrix through the expressions 
for the Dij.. .k M would be much more complex. 

In solving equation (14) it becomes necessary to determine the 
degree of precision that is required. As an illustration assume that a 
second-order approximation is desired, that is one must find the Bki, 
Bkim, and Bkimn for a parabolic representation of the equivalent 
stress-free transformation strain, all other higher-order coefficients 
being taken as zero. Such a solution entails solving for 117 coefficients. 
The corresponding system of independent equations is obtainable 
from equation (14). Part (a) would generate nine independent 
equations, part (6) gives 27 equations with the final 81 independent 
equations being derived from part (c). Taken collectively this gives 
the necessary 117 simultaneous equations for the determination of 
the parabolic coefficients. Any order of approximation can likewise 
be determined though for each increase in the degree of precision the 
number of independent equations and the corresponding potential 
functions needed increases tremendously. Once /3M (x) has been ap
proximated, the constrained strain of the equivalent inclusion cor
responding to the inhomogeneity in question can be calculated by 
employing equation (9). 

T h e I n t e g r a l E q u a t i o n M e t h o d 
Theory. Another means of calculating the strain field of an in-

homogeneous precipitate as engendered by a stress-free transfor
mation strain, is through the derivation of an integral equation. A 
similar method has been employed by Chen and Young [13] in their 
study of the strain field associated with an inhomogenity embedded 
in an applied field. The integral equation method is distinct from the 
modified equivalency condition and hence the two methods may be 
used as checks upon one another. The starting point for the integral 
equation is the equation of equilibrium which, for the matrix and 
precipitate, can be represented as 

a%l,k(*) = 0 if x in matrix 

f *i,*(x) _ "VIM = 0 if x in precipitate. (15) 

Since concern is focused on the case of a constant stress-free trans
formation strain, the two equations of equation (15) may be combined 
to give 

Duuf - [Cijki - Cijhi(x)]dkdjul 

where 

Cijkiuljkix) = Cijkiuc
iJk(x) - Cijki(x)uc

iJk(x) 

Cijhi(x) = Cijhi if x in matrix 

CijkiM = C*jk[ if x in precipitate. 

(16) 

Now define 

Du - Cijki 
dxk dxj 

where henceforth 

oxk OXJ dxk 

(17) 

(18) 

and a comma still denotes differentiation with respect to x;. The 
Green's function, G;m (x - x') is defined as follows: 

D, iG l m (x-x ' ) + « ; m 5 ( x - x ' ) = 0 

where <5(x) is the Dirac delta function. As pointed out by Barnett [15] 
an expression for the constrained displacement can be obtained by 
multiplying equation (17) by G;m(x - x'), multiplying equation (18) 
by «f, subtracting equation (18) from equation (17) and then inte
grating the result over all space yielding 

"m(x') = J £ £ [Gm,(x - x')Duuci - uc,DuGim(x - x')}dV(x) 

+ £ j £ [CijkiM - Cijkl]Gmi{x - x')ulkjdV(x) (19) 

Since in the matrix Cijki(x) = Cijki, the second integral in the foregoing 
reduces to an integration over the precipitate volume, V. The first 
integral of equation (19) can be simplified by considering the following 
two relations: 

Gmi(x - x'Xfcy - uciGim.kj{x - x') = dk[Gmi(x - x ' X ) 

- uciGimj(x - x')] - Gmiik(x - x')ulj + u\kGlmj{x - x') 

and 

CijkiGmi7k(x - x')ucij = CtkjiGmij(x - x')u\ (20) 

Substituting equations (20) into equation (19) and realizing that G;m(x 
— x') = Gml(x — x'), the constrained displacement can be written 

uc
m(x') = j"ffv AC0-fc,Gm,(x - x')ulkjdV(x) 

+ Ciiki fjja dk[Gmt(x - x')u?,y - uc,GimJ(x - x')]dV(x). (21) 

Invoking the divergence theorm and assuming the displacement at 
inifnity is zero, the second integral of equation (21) becomes 

Cijki J £ £ i>h[Gml{x - x ')<y - u1GimJ(x - x')]dV(x) 

= Cijki \ \ [Gmi(x - x')ulj - tijGimjix - x')]nkdS 

- Cijki J J ^ [Gmt(x - x')ulj - uc,Gimj(x - x')}nkdS (22) 

where rik is the unit vector pointing outward from the precipitate, ul 
and U; are the displacement fields on the matrix and precipitate sides, 
respectively, of the precipitate-matrix boundary, S. There must be 
a continuity of the constrained displacement across the precipitate-
matrix interface hence, u,\ = u\. The traction at any point can be given 
by 

and 

(fkiik = Cijkidijtik 

aim ~ "link = C*jhluljnh ~ ol'inh (23) 

and write equation (16) as 

where aui is the stress in the matrix and a%i is the constrained stress 
within the precipitate. Since the traction must be continuous across 
the precipitate-matrix boundary, equations (23) must be equal on S-. 
Substituting equations (22) and (23) back into equation (21) yields 

uc
m(x') = J j J ^ LCmGmi(x - x')ulJhdV{x) 

- j j g ACijki&ljGn,(x - x')nkdS (24) 
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all \ \ Gmt(x - x')nfedS. (24) 

(Cont.) 
*SSSv 'im.nptfz . .pi (x - x')dV(x') 

Using the divergence theorm on the second integral of equation (24) 
gives 

ACijkl j j s dfjGm,(x - x')nkdS 

= &Cijki fjjv dk[uljGml(x - x')]dV(x) 

= ACijki j j j [GmU,ulj + ulJkGml(x - x')]dV(x). (25) 

Substituting equation (25) into equation (24) and using the divergence 
theorm on the last integral of equation (24) yields for the displace
ment 

uc
m(x') = - ACm j"ffv

Gmi,k(* ~ x'XjdVb) 

+ aVi §ffy Gnuj,(x - x')dV(x) (26) 

since 

d'nGim(x - x') = -dnGim(x - x'). 

If the integration is taken over the primed coordinate system, equation 
(26) becomes 

u\(x) = Adjk, fff Gmi.k(x ~ x')d>Kx')dV(x') 

- vfi jffv Gml,k(x - x')dV{x>). (27) 

The integral equation of equation (27) gives us a method for deter
mining the constrained displacement associated with a precipitate 
of general morphology in arbitrary anisotropy 

Solution of the In tegra l Equation. Of the several means avail
able for numerically solving the integral equation [13] perhaps one 
of the easiest and most direct is through the use of a Taylor series 
expansion of the constrained displacement about the origin, that is, 
let 

where 

C-imnp^p^. . .pl 
8lTfl 

7-* o 
°nm®imnpip2.. .pi 

(32) 

Oimy,aanpiPi. . .pi W.imnp^^. • .pd ( 33 ) 

2(1 - V) J 

and i/'0 refers to the biharmonic function, ip, defined by equation (10) 
and evaluated at the origin. 

Now express dyujj(x') in the first integral on the right-hand side of 
equation (31) in a Taylor series expanded about the origin, 

»>**(*') = E - U'HJ, •11\12- • •q,J,qiJ,qi • (34) 
s=o s! 

Again, the f/£ implies that the coefficients are evaluated at the origin. 
Substituting equations (32) and (34) back into equation (31) and 
realizing that the derivatives of U°k are just constants to be evaluated 
yields, 

Ui.Pi. . .pi ~~ &^kjnm 

X jjf dndPl.. . dPlGim(x - x') £ , Ukjqi. . .q, 
=os! 

dV(x') + ol*ma]mnp. . ,p. (35) 

or upon rearrangement and introduction of a new tensor, T, gives 

Ui.Pl- • -Pi &f-'kjnm 2^ . Ukjqtfi. . .q„l im,np1p2. • .pi.q 

T* 
nm^imnpi. . .p[ + <rnmOli 

where 

Tt m,npip2. . -P|,<?i«2-

-JE e»„dp ,(x - x')x'qix'q2... x'qdV(x') 

(36) 

(37) 

Upon substitution of the isotropic elastic Green's function given by 
equation (5) into equation (37) the expression for the T"s becomes 

-* im,n 
1 

8-ir/x 
Simfqi. .qs,aanpv . .pt 

where 

U-i(x) - X, ,, " i , P i P 2 - • PlXPlXPl' 

U?,PlP2- • Pl ~ d p A > 2 • • • ^ P l ^ l W l x = 0-

(28) 

(29) 

1 

2(1 - v) +W. qs,imnp\. . ,pj (38) 

The strain at an arbitrary point x within the precipitate would then 
be given by 

e1'M> ~ n * - t " i J P l P 2 - • Pn "*" " ; . < P l P » • pJXPlXP2- • • XPn 
2 n=0 

(30) 

An origin expansion would be incapable of giving the strain at a 
point outside of the precipitate. Such results are understandable in 
that the constrained strain is discontinuous at the interface. Equation 
(30) then necessitates determination of the U\jPl,. ,Pn, which can be 
accomplished by the following procedure. Differentiate equation (27) 
I times with respect to xp and evaluate the results at the origin; 

Ui.PlPz- • Pl = ACkjmndpldp2 • • • dpi 

x J J J GfawC* - x')a>4(x')dV(x') 

- "Vm \ \ \ Gim>npiP2. . , p ( ( x - x')dV(x') 

Using the elastic Green's function for an isotropic system given by 
equation (5), the second integral on the right-hand side of equation 
(31) can be simplified to 

where the i^'s are given by equation (10) and the superscript zero refers 
to evaluation at the origin. Note that here, as in the modified equiv
alency condition, the solution of the integral equation reduces to the 
determination of the biharmonic potential functions and their de
rivatives for an isotropic system and for the precipitate morphology 
under question. 

Equations (36) and (38) now supply the means for arriving at the 
coefficients employed in the Taylor series expansion. Two approaches 
immediately present themselves. For the first approach assume that 
a second-order or parabolic approximation is desired; that is it is 
necessary to calculate the U°kj, Uljm, and U°kjmn- The simplest means 
of doing this is to calculate the different orders of coefficients inde
pendently. Returning to equation (36), taking I equal to one and s 
equal to zero yields the following system of equations, 

Ui,p i-^hjnmUkjl im.np "•" °nmaim (39) 

(3D 

which can be solved simultaneously for the U\,p- Similarly, I could be 
taken equal to two and s equal to one in equation (36) and the resul
tant system of 27 equations solved simultaneously for the UliPq pro
vided that the UliP values appearing are taken as those that would be 
calculated from equation (39). Subsequent to the determination of 
the f/°iP and U°ipq take / equal to three and s equal to two to calculate 
the U]iPqr in the same manner as just described. 

A second and intuitively more accurate process involves a simul-
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taneous solution of all 117 coefficients that comprise the second-order 
approximation, a technique similar to that used in the modified 
equivalency condition. The system of equations can be generated by 
taking I equal to one. and s equal to two in equation (36) yielding nine 
independent equations, / equal to two and s equal to two giving 27 
equations with the final 81 of the total 117 independent equations 
arising from the case of / equal to three and s equal to two. Both of the 
foregoing approximation schemes can be directly extended to en
compass any degree of accuracy required. 

Taylor Expansion About an Arbitrary Point. To enhance the 
accuracy of the integral equation method for the solution of the con
strained displacement without increasing the number of potential 
functions needed, a Taylor series expansion can be taken about the 
point of which the strain is to be calculated. Such a procedure would 
help eliminate the difficulty of representing a rapidly changing strain 
field with a finite number of terms by a Taylor series. Following the 
same format as when computing the displacement with an expansion 
about the origin we allow 

1 
«?(x) = £ 77 f/*,PlP2.. .p, (*Pl - yll)(xP2 - y P 2 ) . (*P,-y'pi) WO) 

where x is the point at which the displacement is to be calculated, y* 
is the point about which the expansion is taken and the U]iP1.. p2 are 
the Taylor coefficients evaluated at the point y* which need to be 
determined. Again differentiate equation (27) with respect to xp I 
times. For an expansion about an arbitrary point the constrained 
displacement u|, ;(x), would be given as 

ujj(x) 
s = 0 S ! 

(xqi - y*Q1) • • • (XQB - y*„). (41) 

This allows equation (27), when «f(x) is expanded about an arbitrary 
point y* to be expressed as 

Ui,P\P2- • -Pl ~ ALkjnm I I I ^Jt"i,npiP2- • -PI ' x x ' 

EQ - U'k,jqi.. .„, (x'qi - y'qi). . . (x'Qs - y'J dV(x') 

' Gnm&imnpiPz. . .p\ (42) 

where a* has the same definition as a° of equation (32) only that the 
potential functions are evaluated at the position coordinate y* rather 
than at the origin. Upon rearrangement of equation (42) 

U'.Pl- • Pl ~~ M-'kjnm X, "*J9 i . . .q. 

SSL' Pl. . .pj(x x ) , (*ii - yli) 

(*'?. - y*q,)dV(x') + arma'imnp1.. .P, (43) 

mined from the case of I equal to three and s equal to two. The 117 
independent equations are listed in tensor form as follows: 

Ui,p — &(-<kjnm\Uk,jl im.np + t / & j s - ' im,np,s + ~ L/*,>«(•' i'm,np,stl 

Ui,pq ~ ^^kjnmlUh,jl im,npq "t" Uk,js* im,npq,s ' ~ Ukjst* im,npq,sti 

Ui.pqr = &^kjnm\Uk,j* im.npqr ' Ukjs* im,npqr,s 

+ ~ <Jk,jstl im,npqr,st>- ( ™ ) 

S u m m a r y 
Two distinct methods have been derived for the calculation of the 

strain field associated with a coherent inhomogeneity embedded in 
an isotropic matrix that has undergone a stress-free transformation 
strain. The first method employs the technique of Moschovidis and 
Mura [12] in an extension of Eshelby's ellipsoidal equivalency con
dition to the general precipitate morphology. This is achieved by 
representing the inhomogeneity as an equivalent inclusion which 
would produce the identical strain field as did the original precipitate 
and yet not require knowledge of an inhomogeneous Green's function. 
The equivalent stress-free transformation strain is represented as a 
polynomial, the order of which is determined by the desired degree 
of accuracy. The results are developed completely for an isotropic 
system and the method reduced to the determination of the bihar-
monic potential functions and their derivatives for the precipitate 
shape under study. For a parabolic representation of the equivalent 
stress-free transformation strain, it is in general necessary to solve 
117 simultaneous equations for the corresponding polynomial coef
ficient. 

Inspired by the recent work of Chen and Young [13] in their con
sideration of inclusions subjected to an applied stress, we have de
veloped a second approach to the misfitting inclusion problem. This 
method is based upon derivation of an integral equation which arises 
from consideration of the equations of equilibrium associated with 
the precipitate-matrix system. Solution of the integral equation was 
predicated first upon a Taylor series expansion of the constrained 
strain about the origin. In general, it is again required that a system 
of 117 independent equations be solved for a parabolic representation 
of the constrained strain about the origin. Invoking symmetry argu
ments may, however, substantially reduce such a system of equations. 
In an effort to circumvent any shortcomings of an origin expansion 
accruing from its inability to follow a rapidly changing strain field with 
a finite number of terms, a Taylor expansion centered on the point 
of interest was also developed. The integral equation and modified 
equivalency methods and their techniques of solution are contrasted 
for a cuboidal precipitate in an isotropic matrix in Part 2. 

Ui.Pl. . .Pi ~ &Lkjnm X, , t/fcj'cji. . ,qBTi 
OS! 

m,npi. . .pitfi. . .<JS 

+ <rVm<X*imnPl. . .p, ( 4 4 ) 

where 

Tim,nPl. . .p,,qi. . .q, J J J y 
Sim 

87T/1 
d a d a d n d„ 

167171(1 — v) 
didndmdp 

(x'qi - y'qi) • • • (*',. ~ y'JdVW). (45) 

To determine the Taylor coefficients, U*>Pl, p / , we need only 
proceed precisely as before to generate 117 equations for the 117 un
knowns accruing from a second-order approximation. First, in 
equation (44), take / equal to one and s equal to two to generate nine 
independent equations, take (equal to two and s equal to two to yield 
27 equations with the final 81 independent equations being deter-
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Approximation of the Strain Field 
Associated With an Inhomogeneous 
Precipitate 
Part 2: The Cuboidal Inhomogeneity 
The modified equivalency and integral equation methods for determination of the con
strained strain field associated with a precipitate that has undergone a dilatational 
stress-free transformation strain as developed in Part 1, are applied to the case of a cub
oidal inhomogeneity within an isotropic matrix. Agreement between the two methods is 
good for small and moderate differences in the shear moduli between precipitate and ma
trix. For large differences in the shear moduli, some divergence is observed in that fluctua
tions in the constrained strain field become quite pronounced near the cube edge and cor
ner when considering the integral equation method. Although some error is inevitable due 
to the cutoff of higher-order terms in the Taylor series expansion, the modified equivalen
cy method yields fair results under such circumstances. With the latter method, the con
strained strain field of a cuboid is analyzed as a function of position and orientation. Al
though the strain field behaves as expected in the central regions of the cube in that the 
harder the precipitate the larger the constrained strain, its behavior becomes complicated 
as the precipitate-matrix interface is approached, demonstrating a strong dependency 
on precipitate rigidity. As a result, the dilatation in the inhomogeneous cuboidal precipi
tate is found not to be a constant as contrasted with the homogeneous case. 

Introduction 
In the previous paper [1], Part 1, two methods are derived for the 

calculation of the strain field associated with a general inhomogeneous 
precipitate embedded in an infinite matrix. Due to the inherent dif
ficulties encountered with the anisotropic Green's function, the two 
methods are formulated only for an isotropic system. Unlike the case 
of a homogeneous inclusion, an analytical solution is unobtainable 
and it is necessary to invoke an approximation scheme. In employing 
the modified equivalency condition it is necessary to express the 
equivalent stress-free transformation strain as a polynomial in the 
position coordinates. The coefficients engendered by the polynomial 
are determined by the solution of a system of equations, the size of 
which depends upon the degree of accuracy desired. (For example, 
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nine equations for a zeroth-order expansion compared to 117 equa
tions for a parabolic representation.) Once the polynomial coefficients 
are computed, it is necessary only to calculate a limited number of the 
biharmonic potential functions at the point of which the strain is to 
be determined. 

The integral equation also presents several different modes of so
lution. Here the constrained strain is expressed in terms of a poly
nomial. Different orders of expansion for the constrained strain can 
be taken about either the origin or about the point of which the strain 
is to be calculated. Ideally, an origin expansion of sufficient accuracy 
could be employed once the Taylor coefficients are calculated and the 
strain then determined at the point of interest through a simple 
polynomial. Otherwise, in the presence perhaps of a highly changing 
strain field, the Taylor series could be taken about the individual 
points of which the strain is to be calculated. In calculation of such 
strain fields, the relative computation time involved in the different 
techniques varies drastically with the order of approximation. Hence 
it becomes desirable to optimize both computation time and accu
racy. 

The inhomogeneous ellipsoidal transformation problem has been 
solved for both the isotropic [2-6] and anisotropic [7-10] systems. 
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Fig. 1 Schematic drawing of a cuboidal precipitate showing coordinate axes 
and dimensions 

However, precipitates and voids are often found to possess cuboidal 
[11] or rectangular [12] morphologies. It is the intent of this paper, 
Part 2, to examine the strain field associated with a cuboidal inhom-
ogeneity that undergoes a purely dilatational stress-free transfor
mation strain while immersed in an isotropic matrix. A comparison 
of the two techniques is also employed in gauging their relative ac
curacies. For small changes in the precipitate shear modulus, it is seen 
that a very simple zeroth-order approximation of the integral equation 
can be employed to calculate the strain field while large differences 
in the precipitate and matrix shear moduli require use of the modified 
equivalency method or higher-order approximations of the integral 
equation. 

S y m m e t r y P r o p e r t i e s 
A cuboidal precipitate embedded in an isotropic matrix and coupled 

with a stress-free transformation strain that is a pure dilatation, 
presents a highly symmetric system. It is advantageous to consider 
such symmetry arguments before directly applying either the modi
fied equivalency or integral equation methods to the cuboid. 

As shown in Pig. 1, allow the origin of a Cartesian coordinate system 
to coincide with the center of the cube with axes perpendicular to the 
cube faces and edges of length 2a. Now assume that the constrained 
displacement arising from the foregoing system can be expressed in 
terms of a Taylor series expansion about the origin of the coordinate 
system, that is, 

«f(x) £/! U° PiP2- • PrPi-*-P2 • (1) 

where u; 00 is the constrained displacement and U°ip , refers to the 
Taylor coefficients, the superscript zero denoting evaluation at the 
origin. From the symmetry of the system a large number of the Taylor 
coefficients are zero. If we employ a symmetry analysis similar to that 
of Chen and Young [13], relations between the Taylor coefficients can 
be deduced from consideration of the displacement of an arbitrary 
point and the displacements at points corresponding to a transfor
mation of that point through planes and positions of symmetry. In 
Fig. 1, choose an arbitrary point, x = (xi, x% xa). By symmetry it fol
lows that the constrained displacement in the ^i-direction, 

u\{x\, X2, X%) = u[(Xi, -X2, X3) 

= Uci(Xi, X2, ~X3) = u\(%i, -X 2 , -X3) 

= -uci(-xh x2, xa) = ~u°(-xi, -x2, x3) 

= -u{(-xi,x2, ~xa) = -u\{-xi, -x2, -xa). 

In general, the relationship between the displacement at a point and 
corresponding points taken through planes of symmetry can be given 

where 

u-(x) = uf(x') if Xi = x\ 

ul(x) = -uf(x') if Xi = -x'i 

\xi\ = \x'i\, 1 = 1,2,3. 

(2) 

(3) 

The derivative of equations (2) with respect to xj under the re
striction of equation (3) can be written formally as 

ufj(x) = u;j(x') if i = j 

ulj{x) = ucij(x') if i 9^ j and xiXj = x\x'j (4) 

ufj(x) = -iti j(x') if i ^ j and XiXj = -x\x) 

Take the derivative of equation (1) with respect to Xj. 

"I'M = £ 
1 

•U°h 'JP1P2- • Pl-l^Pl^P2 (5) 
£ i ( j - i ) ! 

This relationship must hold for any point within the cube. If we choose 
a point x and a symmetry point x' under the restriction of equation 
(3), then we can relate the derivatives of the displacements of these 
two points through equations (4) and (5). Since there must be term 
by term equality in the Taylor expansion of equation (5) for each point 
x and x', it becomes apparent that the following Taylor coefficients 
of equation (1) become identically zero: 

Uu •0 (6) 

if an odd number of indices are the same. By this we mean that as long 
as all indices do not appear an even number of times, the coefficient 
must be zero, for example, 

£A,12 = ^2,3311 = £̂ 2,111 = U 1,2 = 0. 

Further simplification can be achieved by invoking the argument 
that the cube remains invariant for any 90° rotation about a coordi
nate axis. This allows the Taylor coefficients when expanded about 
the origin to be represented as 

U°k,i = Abu 

UlM = 0 

U'k,lmn = C(8kl&mn + &km&ln + hn^lm) + (B - 3C)<5fc/mn, etc. (7) 

where 

A ^ t/1,1, B^U{m, C = U\.v 

&ki is the Kronecker delta function and Skimn equals one if k = I = m 
= n and is zero otherwise. For the parabolic approximation, there are 
only three independent coefficients that evolve due to the high sym
metry of the system. If these constants can be determined, the con
strained displacement and hence strain can be calculated at any point 
within the cuboid via equation (1). It can be shown that the constants 
B and C are not totally independent. 

This is accomplished by applying the equilibrium equations of 
elasticity to the stress field within the cuboidal precipitate giving 

<r**l,iM = [CllijecijW],l = 0 (8) 

where ofj (x) is the constrained stress, e ;y(x) is the constrained strain 
and C*jki are the elastic constants of the precipitate phase. Substi
tuting equation (7) into the expression for the constrained strain as 
calculated from equation (1), retaining only up to the parabolic terms 
and expanding gives for equation (8), 

[(AC + 2B)X + (8C + 4B)fi]xi = 0. 

Since both X and n are independent, it is required that each of their 
respective coefficients go to zero, i.e., B = - 2 C or U\:m = 
—2t/ l i l22-

I n t e g r a l E q u a t i o n 
Equation (7) permits solution of the system of equations given by 
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equation (36) in Part 1. All that need be determined are C/y and Ul:m 
for a second-order (parabolic) approximation to the constrained 
displacement field. With two unknowns, two independent equations 
are required. The first such equation can be derived from equation 
(36) of Part 1 by taking I equal to one and s equal to two yielding, 

Ui,p ~ LlLkjnmUk,ji im,np "*~ h&^kjnm* im.np.stUkjst "*" ffnmaimnp-

(9) 

Substituting equation (33) of Part 1 and equation (7) into equation 
(9), setting i = p and summing give for the first independent equa
tion 

An „ „ 
•A(l — AivT,m mi) — C ——- (T;m m; ss + 2T1S (,- s( 

o 

- 5 T im,mi,mmi 

K*e (1 - 2i/) 

' 2/i (1 - v) 
(10) 

where K is the bulk modulus, AX = K* — K, A/x = fi* — fi, v is Pois-
son's ratio and e is the misfit, that is e j* = e&ij. The following notation 
is adopted concerning a repeated indice appearing four times: 

Tu, • Tumi + T"ij2222 + Tua 

The second independent equation is obtained in the same manner by 
equating I to three and s to two in equation (36) of Part 1: 

U i,pqr &^kjnmU kj* im.npqr ' h&L kjnmU kjst * i kjnmukjst* im.npqr.st 

( ID 

By setting i = p = q = r, summing and realizing that £/;_,-;,• = - 6 C , 
equation (11) reduces to 

-3AKAT°, •• C|6 + Aii[T°ir i ' ^1 is,tiii,st &1 im 

3K*c (1 - 2v) 
€ (12) 

Wiry. (1 - v) 

Simultaneous solution of equations (10) and (12) yields for the 
origin Taylor coefficients A and C, 

K*e(l - 2v)Z 

C - £A,122 _ 

3K*e(l - 2v)X 

167^(1 - i>) ^,m 2^(1 - v) 

XW+YZ 

K*e(l - 2v) 

A = U°v 

2M(1 - v) 
+ CY 

X 
(13) 

where 

IV = 6 + An[T°im s ~f" ^-* is,tu 

X=l- AKT°im 

bT\ m,miu,mm\ 

A/ i 
^ o ' im,mi,ss > <£J- is,ti,st "-* im,mi,mmi 

o 

Z = 3AKT'imMii. 

The values for the tensors T° are given in Appendix A. 
Equation (13) gives the coefficients to the parabolic representation 

for the constrained strain when the constrained displacement is ex
panded in a Taylor series about the origin. Both constants now can 
be determined solely from the elastic constants of the precipitate and 
matrix. A first-order approximation may be quickly obtained from 
equation (13) by setting C equal to zero and then solving for A. For 
an expansion about the point of which the strain is to be calculated, 
no such simplification is possible and the entire system of equations, 
as given by equation (46) of Part 1, must be solved simultaneously at 
every point. Note that from equations (44) and (45) in Part 1 a more 
direct zeroth-order approximation may be attempted. Instead of 
solving the system of 117 equations for a parabolic expression at every 
point of interest, / could be taken equal to one and s equal to zero and 
the resultant system of nine simultaneous equations solved for the 
U°ijP. This is similar to the first method employed in solving the in

tegral equation discussed in Part 1 when an origin expansion was 
considered. 

Modif ied E q u i v a l e n c y M e t h o d 
The symmetry arguments leading to equation (7) also allow for a 

reduction in the complexity of the system of equations associated with 
the modified equivalency method (see equation (14) in Part 1). The 
modified equivalency method is based upon expressing the strain field 
of the inhomogeneity by an equivalent inclusion which engenders the 
identical strain field as does the original precipitate. Such represen
tation requires determination of an equivalent stress-free transfor
mation strain, /Sy (x), which can be expressed in terms of a polynomial 
in the position coordinates (equation (2) in Part 1). 

The coefficients comprising fty (x) can be determined through the 
following analysis. From equation (5) obtain the constrained strain 
and equate this with the expression for the constrained strain as given 
by equation (13) in Part 1. A term-by-term comparison requires 
that 

DijklBkl + DijkimBklm + D ijklm„Bklmn + • • . 

Dijkl.pBkl + Dijkim„Bklm + D°jklmnpBklmn + 

•Mda 

Dijkl,pqBkl + Di ijklm,pq*- , + D ijklmn,pqDklmn ' 

' N\8ij8pq + 8ipbjQ + 8iq8jp — 58ijpq}, etc. 

(14) 

: 0 (15) 

(16) 

for the constant through parabolic terms, where M and N are con
stants. Now assume, as in the integral equation, that a parabolic or 
second-order approximation is desired. 

The numerical values of the coupling matrix, £),-,• /,, depend upon 
the biharmonic potential functions and their derivatives. These ex
pressions can be simplified through the following considerations. 
Remembering that the integral of an odd function over a region 
symmetric with respect to the origin is equal to zero, it becomes ap
parent that any biharmonic potential function (for a cube evaluated 
at the origin) with an odd number of subscripts is identically zero. For 
example, 

ft ijklm : K jklm fa klmnp •o. 

A direct consequence is that any D;y.. k with an odd number of 
subscripts is also identically zero. Realizing this yields immediately 
for equation (15) 

D ijklm, p Bklm 0. (17) 

By definition, both D°jkimiP and Bklm are symmetric with respect to 
k, I, and m and since the - D ^ ; m p are not all equal to zero, it follows 
that (remembering that i, j , and p are free indices) Bkim = 0. This 
leaves only the Bki and Bkimn to determine, the nature of which can 
be extracted from equations (14) and (16) with the following consid
erations. It has been shown that for an invariant transformation of 
a cube no contribution from the permutation tnesor occurs [14]. The 
nonzero D;. j values of equations (14) and (16) display invariance 
under a cube symmetry rotation by virtue that the constituent po
tential functions are cube invariant when evaluated at the origin. Since 
the right-hand sides of the equations are cube invariant [14] and each 
addition factor on the left-hand side undergoes a tensor contraction 
to a cube invariant function, it can be shown to follow that the Bki and 
Bkimn must also be cube invariant. In general, the B's must be ex
pressible as 

Bki = dSki 

Bkimn = ebklbmn + f(8km5ln + hn^lm) + (h - e - 2f)5klmn (18) 

where d, e, f, and h are constants. Hence there are at most four inde
pendent values comprising /?y (x) when a parabolic approximation is 
considered. 

The numerical values of d, e, f, and h can be determined by con
sidering the equations of equilibrium for the inhomogeneity and 
equivalent inclusion, that is 

CiJkiWkiM]j = 0. (19) 
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Substituting equation (18) into equation (19) and expanding gives 

[(h + 2e)X + (4/z + 8f)n]xi = 0. (20) 

Again, since both X and n are independent, e = f and h = —2e. 
Hence, 

Bki = d8ki 

Bklm = 0 (21) 

Bhlmn = e\(>kl<>mn + hmhn + <>kn?>lm ~ SSklmnl 

Therefore, for a cuboidal precipitate that undergoes a stress-free 
transformation strain of a pure dilatation, there are only three unique 
values appearing in ftj(x). This assumes that only a parabolic ap
proximation is being treated. The three independent values are ex
emplified by flu, Sun , and S1122 = #1212 and their permutations 
where S i m = —2Bum-

The two unknowns d and e, can be determined by substitution of 
equation (30) of Part 1 into the system of equations given by equation 
(14) in Part 1. Only two independent equations are needed. For the 
first equation use equation (14a) of Part 1 and let i = j . In the second 
independent equation, let i = j = s = t in equation (14c) of Part 1 and 
then sum. The two simultaneous equations are then expressible as 

dAKD°kkmm + eAK\D°khmmpp + 2Dkkpmpm 

-5D°kkmmmJ + 3dK=3eK* (22) 

and 

dAXD°kkmmM+ 2dAnD°iimmM + e\AXD°khmmpPiii 

+ 2AXD kkpmpm.ii — 5 AXD kkmmmm.ii + ^AflDnmmppn 

+ 4A/xDlipmpm,ii - 10AnD°Hmmmm,u - 24ft) = 0. (23) 

Solving equations (22) and (23) simultaneously for d and e gives 
3eK*Q , 3eK*-eS 

e = — d = 24 
SQ-RZ R 

where 

R = 3K + AKD°kkmm 

& ~ £A1V\L/kkmmpp "•" ^^ hkpmpm vljkkmrnmm) 

Q = AXD°kkmmM + 2AiiD°iimmM 

Z = AXD kkmmpp 11 + 2 AXD kkpmpm.ii ~ 5 AXD kkmmmm.ii 

+ 2AfiD°UmmppM + 4AnD°iipmpmiU - \QAnD°iimmmmM - 2 4 / J . 

Note that a lower-order approximation may be obtained directly from 
equation (24) by setting e = 0. Such a representation approximates 
the equivalent stress-free transformation strain within the cube as 
a constant, the value of which is given by d = icK*/R. Once the B^i 
and Bkimn have been determined, the constrained strain can be cal
culated from equation (9) in Part 1. The values of the D° are given in 
Appendix B. 

The Strain Field 
In the section, "Symmetry Properties," symmetry arguments as

sociated with the cuboidal morphology are coupled with a uniform 
stress-free transformation strain to yield a simplified relationship 
between the Taylor coefficients of the constrained strain when the 
expansion is performed about the origin. These results can then be 
applied directly to the integral equation method and the 117 simul
taneous equations associated with a second-order or parabolic ex
pansion can be reduced to three independent equations. Further 
consideration of the equations of equilibrium requires that £7i?m = 
—2C/1422; allowing the Taylor coefficients of the origin expansion to 
be representable by two constants whose values are dictated by the 
elastic constants of the precipitate and matrix phases. A more accurate 
solution requires expansion of the constrained strain about the point 
of which the strain is to be calculated and the corresponding solution 
of the resultant 117 simultaneous equations that would accrue from 

the parabolic approximation (see equation (46) in Part 1). A less 
complicated though somewhat less accurate version is the zeroth-order 
approximation which requires solution of only nine independent 
equations and yet encompasses a correspondingly tremendous de
crease in the number of potential functions that need be calcu
lated. 

The cuboidal symmetry arguments can also be applied directly to 
the modified equivalency method which allows the equivalent 
stress-free transformation strain to be expressed in terms of three 
coefficients. Application of the equations of equilibrium again requires 
the relationship S u n = —2B1122 for a parabolic approximation about 
the origin. The values of these two coefficients are dependent upon 
the elastic constants of the precipitate and matrix phases. 

With the plethora of solution techniques varying drastically in 
complexity and computational time, it becomes necessary to deter
mine which solution mode optimizes desired quantities for a given 
situation. It is also necessary to determine the reliability of the indi
vidual techniques, a process which is facilitated in that the integral 
equation and modified equivalency methods are based upon two 
disparate approaches. With the intent of examining the strain field 
of a cuboidal inhomogeneity while also substantiating the reliability 
of the two methods, we will begin a systematic approach to examining 
the correspondence between the two techniques and their modes of 
solution. Homogeneous and other degenerate cases will be examined 
first, progressing from very small to very large differences in the elastic 
constants between the precipitate and matrix phases. 

Degenerate Cases. The homogeneous case for a cuboidal inclu
sion and a pure dilatational stress-free transformation strain has been 
treated by Faivre [15]. For any degree of reliability, the modified 
equivalency condition and integral equation methods should degen
erate into the homogeneous case when the elastic constants of the 
precpitate and matrix phases are equal. The only exception may be 
the origin expansion of the integral equation where the strain field 
is being approximated by a parabolic representation. Such an ana
lytical situation is realized for the equivalency condition which is 
straightforward in that equation (14) in Part 1 reduces directly to 
/3y(x) = ejj'. Such exact results are also ostensible when the integral 
equation is expanded about the point of interest. However as ex
pected, when the results are calculated from an origin expansion, 
deviation from the exact result is observed. The extent of the deviation 
is negligible out to a distance of about 0.6a from the cube center 
especially in those directions approaching the cube face. As the cube 
edge or corner is approached this difference is magnified. The origin 
expansion of the integral equation does provide an overall feel for the 
strain field behavior and therefore has been retained. For a precipitate 
morphology with a more gently curving surface in which the strain 
field would not be expected to be such a strong function of position, 
the origin expansion approach may be highly desirable. Analytical 
expressions for the constrained strain are available [4, 5,16] for the 
case when the stress-free transformation strain is a pure dilatation 
and [i* = ix but X* ̂  X. This provides another check on the different 
solution schemes and again the same behavior is observed as in the 
homogeneous system with all methods yielding exact results. 

As a further indication of the reliability of the various modes of 
solution, the Lame constant for the precipitate and matrix phases are 
equated (X* = X) while the shear modulus of the precipitate is allowed 
to differ from that of the matrix by 5 percent. Since the elastic con
stants of the inhomogeneous system are almost identical, its strain 
field should behave similarly to that of the homogeneous system. This 
behavior is observed for all methods of solution with the difference 
between each method being negligible. 

General Case. In order to measure the relative reliability of the 
various solution schemes, we have first allowed X* = X and /x* = 1.3/x, 
where X = 12.14 and /x = 7.54 in units of 104MN/m2 are those of Cu. 
Here, the 30 percent difference in shear moduli should have a pro
found influence on the convergence of the respective solutions. The 
following three solution schemes are considered in the present and 
subsequent examples: 
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X, Coordinate 

Fig. 2 Constrained strain as a function of the normalized x-, coordinate for 
three different methods of solution in the [110] direction, ji* = 1.3 

1 Modified equivalency method—parabolic expansion about 
origin. 

2 Integral equation—zeroth-order expansion about the point of 
interest. 

3 Integral equation—parabolic expansion about the point of in
terest. 

Methods 1 and 3 yielded essentially the same results in that the strains 
agree to at least three or four significant figures in the [100] direction. 
Even in the nonsymmetrical direction of [210], the diagonal strain 
components differ by less than 1 percent between schemes 1 and 3 
while differences in the shear term vary from a few percent as the 
interface is approached to almost 7 percent at the interface. Method 
2 is within 1 percent of methods 1 and 3 in the [100] direction, within 
2 percent of the diagonal terms, and 8 percent of the shear terms along 
the [210] direction. Method 2 tends to approach 1 more closely than 
3 at close approach to the interface. No apparent preference is ob
served away from the interface. 

Fig. 2 depicts the strain behavior of the diagonal components for 
the case of n* = 1.3/u along the [110] direction. The constrained strain 
has been normalized in terms of the stress-free transformation strain 
and is plotted as a function of a reduced x i-coordinate in units of the 
semiedge length, a, from the center of the cube. The dashed line 
represents the zeroth-order approximation to the integral equation 
(Method 2) and the solid line the second-order approximation to the 
integral equation, again expanded about the point of interest (Method 
3). The parabolic approximation to the modified equivalency condi
tion (Method 1) is depicted by the dashed line of alternating length. 
The [110] direction is chosen in-that it depicts the largest differences 
between the respective solution schemes. Note the instability in 
Method 3 at close proximity to the cube edge. Method 2 appears to 
demonstrate some divergence at very small distances from the edge. 
The shear term as computed by Method 3 also experiences a large 

fluctuation near the edge discontinuity. The behavior of Method 3 
is identical to Method 1 out to about X\ = 0.5a from which the dif
ference in shear terms gradually increases to about 6 percent at x\ = 
0.9a and about 12 percent at x\ = 0.95a. The difference in the shear 
strain between solution Schemes 1 and 2 is within about 12 percent. 
The same relative behavior between Methods 1, 2, and 3 is observed 
in the [111] direction as in the [110] direction with roughly the same 
tolerances applying, though the instability in Method 3 is accentuated 
very close to the cube corner. 

At this time we have examined the case in which the shear moduli 
of precipitate and matrix were almost equal, yielding practically 
identical results for all three methods of solution; We have also dis
cussed the situation where n* = 1.3/u. Here there was an introduction 
of some degree of instability into the strain field of the integral 
equation method as the point of interest approached the discon
tinuities of the edge and corner. No such instability was indicated in 
the [100] or in nonsymmetric directions such as [210] in which the cube 
edges or corners are not approached. Since the agreement is found 
to be good between Methods 1 and 3, which theoretically should be 
more accurate, it is felt that either of these two methods can be used 
in determination of the strain field for a precipitate in which the 
difference in shear moduli is not too large. In the vicinity of the cube 
edge or corner the modified equivalency condition, Method 1, is felt 
to yield fairly reliable results for the strain field. Such a statement is 
based upon two observations: (a) good agreement between Methods 
1 and 3 in directions which do not approach either the cube edge or 
corner and (b) the fact that the expansion of the equivalent stress-free 
transformation strain is taken about the origin and not the point of 
interest. Such an origin expansion is not much influenced by a fluc
tuant mode of strain near the precipitate-matrix interface. 

When there is not a radical difference in the shear moduli between 
precipitate and matrix phases, the integral equation and modified 
equivalency approaches are seen to behave quite similarly. For small 
differences in the shear moduli, Method 2 may be used as a good ap
proximation to the strain, particularly the diagonal components which 
are used in any calculation of the elastic self energy of a precipitate 
that had undergone a pure dilatation. 

In an effort to gauge the reliability of the equivalency condition and 
integral equation methods for systems in which there is an extreme 
difference in elastic constants between precipitate and matrix, at
tention is focused on the case where X* = X and fi* = 3fi. Here any 
inherent inconsistencies in the numerical solutions should be greatly 
magnified. Essentially the same respective behavior between the so
lution schemes is observed as was seen for smaller differences in the 
elastic constants. The fluctuation in the strain field of Method 3 is 
more pronounced and has spread to some of the nonsymmetrical di
rections. The difference between Methods 2 and 1 has also increased 
a little, about 3 percent in the [100] direction and slightly more in the 
other directions. If the precipitate is softer than the matrix, the dis
crepancy between Methods 1 and 3 is minimal, at least in the diagonal 
strain components. For the case of X* = X and fi* = ft/3 in the non-
symmetric [210] direction, the difference between the two methods 
is less than 6 percent for the diagonal terms through the discrepancies 
in the shear terms are much more pronounced (15-20 percent). The 
[100] direction also exhibits quite close agreement between Schemes 
1 and 3. As the cube edge or corner is approached, instability in 
Method 3 is again observed. 

In light of these results, it becomes apparent that the present Taylor 
series solution technique, which accounts for only a few lower-order 
terms, as applied to the integral equation is incapable of adequately 
expressing the strain field of a cuboidal (and hence probably any 
parallelepiped) precipitate when the difference in shear moduli is very 
large. Such results are not a reflection on the integral equation for this 
equation is exact; rather it is the technique of solution that becomes 
incompatible, by virtue of the cutoff of higher-order terms, with the 
problem when the precipitate-matrix interface is approached and is 
magnified as the difference in elastic constants become more pro
nounced. For such drastic differences it may become necessary to 
adopt a more time-consuming convergence method of solution such 
as perhaps a Born approximation [13], for higher-order Taylor series 
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X, Coordinate 

Fig. 3 Relative behavior of the constrained strain as a function of distance 
from the cube center for hard, soft, and homogeneous precipitates in the [100] 
direction 

approximations may be too intrinsically complex. One may use a 
Taylor series expansion only for the central regions of the cube. 

The modified equivalency condition, on the other hand, appears 
to give fairly reliable results near the cube interface, even for large 
differences in the shear moduli. Such results are predicated upon three 
distinct factors. First, is the very close agreement between Methods 
1 and 3 in the interior of the cuboid for both very hard (/x* = 3/x) and 
very soft (fi* = fi/3) precipitates. This correlation is still retained for 
such systems, even as the interface is approached, along such direc
tions as [421] and [100] though very near to the precipitate-matrix 
interface fluctuation is again observed. Second, is the ability of the 
zeroth-order approximation of the integral equation when expanded 
about the point of interest to detect all maxima and minima observed 
via the modified equivalency condition. The accuracy of the numerical 
results of Method 2 is questionable for such cases as fi* = 3fi but the 
fact that it always predicts the same trends as the modified equival
ency condition indicates that the modified equivalency method is 
behaving properly at large distances from the origin. Actually, no 
fluctuation or instability would be expected from the modified 
equivalency method since the equivalent stress-free transformation 
strain is expressed as a polynomial expanded about the origin, and 
is far removed from a corner or edge. Its accuracy is maintained in that 
it still requires calculation of the potential functions at the point of 
interest. Another important factor is that the equivalent stress-free 
transformation strain does not appear to vary near as drastically as 
the constrained strain and is hence more susceptible to representation 
by a lower-order Taylor series expansion. Such a concept is reinforced 
in that at any point of calculation, the equivalent stress-free trans
formation strain is integrated over the entire precipitate and in the 
central regions of the cuboid the strains still agree quite closely with 
the parabolic expansion of the integral equation. Error bounds on the 
modified equivalency method would also increase, however, as the 
interface is approached for the equivalent stress-free transformation 
strain would presumably deviate more from the exact value where 

W*= 1/3 U / 

i l l i 
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Fig. 4 Relative behavior of the constrained strain as a function of distance 
from the cube center for hard, soft, and homogeneous precipitates In the [110] 
direction 

even higher-order terms may have an effect. Such differences are 
tempered to some extent because the integral encompasses large re
gions of accurate equivalent-strain representation. 

The third point in favor of the equivalency condition is its satis
faction of the boundary conditions. The boundary conditions of the 
solution require that the constrained displacement as well as the 
surface traction must be continuous across the percipitate-matrix 
interface. From the displacement consideration it can be shown that 
in the [100] direction, e i f = eff where eff and eff are the constrained 
strains in the matrix and precipitate, respectively. Actual values 
computed for n* = 3/u are efx = -0.9502 and e i f = -0.9429, a dif
ference of less than 1 percent. Similar analysis also indicates that the 
remaining diagonal terms must be continuous. Computed values give 
ec22 = ec

3f = 0.5634 and e$ = e%f = 0.5621, a difference of less than 
1 percent. The traction also requires computation of the strain im
mediately on both sides of the interface. Due to the discontinuous 
nature of the potential functions at this point, exact values are un
obtainable in that the strains are calculated near but not on the in
terface. For the case of fi* = 3jt and the [100] direction, the stress 
component au in the precipitate must equal <7n, the stress component 
in the matrix. The values actually obtained are dn = — 1.79JUE and a f 
= — 1.59/te or a difference of about 11 percent. Traction calculations 
employing the diagonal components demonstrate reasonable agree
ment while the tangential components show some divergence, an in
dication that the shear terms may not be as accurate as the diagonal 
terms. 

In Figs. 3-5, the normalized constrained strain, efj(x)/e, is shown 
as a function of a reduced x i-coordinate from the cube center for three 
different directions [100], [110], and [111]. The numerical values of 
ecij(x) are obtained with Method 1, i.e., the modified equivalency 
method. For the purpose of comparison, three different types of 
precipitates are considered. The first, depicted by the solid line, is 
representative of a homogeneous inclusion. The dashed line depicts 
the case of a more rigid precipitate where n* - 3M. and a softer pre
cipitate where ft* = JJ/3 is represented by the dashed line of alter-

786 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1.0 

0.8 

0.6 

0.4 

0.2 

0 

— 

-0.4 

-0.6 

-0.8 

-1.0 

-1.2 

-1.4 

-

-

-

-

-

-

I I I I 

e i l = e ! S = e33 \ 

J 

e c c \ N > -
e,2=z,3=e2 3 N \ \ 

\ \ 

[m] V 
U*-- 3H 'V 
a* u M 

* i 
U -- 1/3 U 1 

V 
L 
1 
1 

I i I I I 
0.2 0.4 0.6 

X, Coordinate 
0.8 1.0 

Fig. 5 Relative behavior of the constrained strain as a function of distance 
from the cube center for hard, soft, and homogeneous precipitates in the [111] 
direction 

nating length. Along the [100] direction from the precipitate center, 
the e\i component increases smoothly up to the interface for all three 
precipitates. The rate of increase of efi, however, depends upon the 
rigidity of the precipitate. The softer the precipitate the larger is the 
rate of increase in ec

n. Hence, while the ec
n value of a soft particle is 

smaller than that of hard particle in the central regions of the cube, 
the situation is reversed near the interface. The other two diagonal 
components, e\i and e^, decrease up to the interface but their dif
ference due to the rigidity of the precipitate is nearly constant along 
this direction. All shear components are zero in this case. 

Similar behavior is observed along the [110] direction (Fig. 4), ex
cept that ec

n and el2 are now increasing from the cube center while 
the e§3 component decreases. As pointed out previously, the numerical 
values become unreliable near the cube edge or corner because of the 
cutoff of higher-order terms in the Taylor expansion. The sudden 
decrease of the ec

n component near the interface in the case of fi* = 
3/n seems to reflect some error in the solution technique. Fig. 5 shows 
both diagonal and shear components for the [111] direction. Again, 
a soft particle shows smaller ec

n values than those of a hard particle 
in the central region, but yields higher values near the interface. The 
shear components approach a large negative value at the interface 
along this direction, which is characteristic of a faceted precipitate. 
When a precipitate is faceted, as is a cube, the sharp edges and corners 
are singularities where some strain (hence stress) components become 
unbounded [17,18]. When the elastic constants of a precipitate are 
the same as those of the matrix phase, the dilatation, e%k, becomes 
a constant regardless of the precipitate shape provided that the 
stress-free transformation is purely dilatational [4]. This is seen in 
Fig. 5 from the constancy of the e\h e^ , and e|3 components repre
sented by the solid line. On the other hand when the elastic constants 
of the precipitate and matrix are different, the dilatation, e%k, becomes 
a function of position as is also demonstrated in Fig. 5. This difference 
in behavior, which may also be manifested in the strain fields of the 
matrix phase, among other effects may have a profound influence on 

the rates of diffusion in the immediate neighborhood of the precipitate 
[19]. 

S u m m a r y 
In this study we have applied the integral equation and modified 

equivalency methods, as derived in Part 1, to a cuboidal precipitate 
in an isotropic matrix. The establishment of reliability for the two 
methods and their respective techniques of solution is based solely 
upon their ability to reproduce degenerate cases in which analytical 
solutions are available and on the convergence of solutions for the two 
methods. Further verification comes from the reasonable satisfaction 
of the boundary conditions such as the continuity of displacement 
and traction at the precipitate^matrix interface. 

For small changes in the elastic constants, the modified equivalency 
methods and the zeroth and parabolic approximations to the integral 
equation when expanded about the point of interest, all agree quite 
closely. Hence in this case, a zeroth-order approximation of the in
tegral equation should be appropriate in determining the strain field, 
for it requires substantially less effort than the other two methods. 
For moderate changes in the shear modulus of the precipitate, either 
a second order approximation of the integral equation or the modified 
equivalency method yields fair results. The former does begin to show 
some fluctuation as the cube edges and corners are approached. 

With large differences between the shear moduli of the precipitate 
and matrix (fi* = ju/3 or fi* = 3/i), large fluctuations are observed to 
spread from the corners and edges to other regions near the precipi
tate-matrix interface when the integral equation is employed. Such 
behavior reduces the confidence that can be placed in these results 
when strain values are computed near the interface. Such tendencies 
are probably mainfestations of the solution technique applied so near 
the discontinuities in the constrained strain field found at the inter
face and may be avoidable if a larger number of terms in the Taylor 
expansion are taken into account. The modified equivalency method 
is found to exhibit fair behavior even for large differences in shear 
moduli between the precipitate and matrix phases. Such a conclusion 
is based upon the reasonable satisfaction of the boundary conditions 
across the precipitate-matrix interface. 

Using the modified equivalency method, the constrained strain 
efy(x), is analyzed as a function of position and orientation for three 
different types of cuboidal precipitates with a dilatational stress-free 
transformation strain. In the central regions of the cube, the con
strained strain increases as the shear modulus of the precipitate in
creases. Since the total elastic strain of the precipitate is the con
strained strain minus the stress-free transformation strain, this result 
simply demonstrates the fact that the harder the particle phase the 
more the deformation is accommodated in the matrix phase. As the 
precipitate-matrix interface is approached, however, the behavior of 
the strain field becomes complicated because of facets, edges and 
corners associated with the precipitate. For example, along the [100] 
direction, the ec

n component of a soft particle near the interface be
comes much larger than that of the hard particle while the other strain 
components remain nearly independent of the precipitate rigidity. 
As a result, the dilatation of an inhomogeneous cuboidal precipitate 
is not constant as is found for a corresponding inclusion. 
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APPENDIX A 
T]m,mi=-\/M 

T\m.miii = 1.47021/M 

Tl.tiM = 1.51520/M 

T ° • • 
* mi,in, 

• 0 .51520/M 

= - 5 . 7 1 8 6 0 / M 

T°is,mi,st = -5 .38025 /Af - 3 . 0 2 6 5 / M 

tfiimmmm = "36 .95042 

M = \ + 2n 

APPENDIX B 
D°iikk = 3 K / M 

*-* iikk.mm ~ ^ 

D'iikk.ii = 4 .41063K/M 

*-* iikkmm ~~ ^ 

Diikkmm.pp = 1 8 K / M 

Dukkmm,u = 17 .16581X/M 

D'ukiu = - 3 . 0 3 0 4 l ju /M 

D'ukiki.pp = 6X/M + 24^/Af 

D'ikiki.u = 6.05316 + 5.71860X/M + 10.76811/ t /M 

Dukkkk = - 1 . 0 3 0 4 W M 

Dukkkk.pp = 6 

Duhkkk.u = 3.0265 + 5.71860X/M + 8.32447,u/M 

M = X + 2ju 
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A Semi-Infinite Elastic Strip Bonded 
to an Infinite Strip 
The solution is obtained for the plane strain problem of a semi-infinite elastic strip whose 
end is bonded to and pressed against an infinite elastic strip. The infinite strip is support
ed by a pair of symmetrically located, concentrated forces. Using integral transform tech
niques, the solution is reduced to a set of singular integral equations of the second kind. 
The order of the singularity is determined and the equations are then solved numerically. 
The results show the normal and shear stress distributions as well as the stress-intensity 
factors for a range of support locations corresponding to various width ratios and material 
combinations. 

Introduction 
The elastostatic solution for a semi-infinite strip with arbitrary end 

conditions was obtained by Bogy [1]. In [2] this solution was used to 
solve the problem of joined semi-infinite strips of different material 
properties in tension. The corresponding bending problem was solved 
by Adams and Bogy [3]. They then obtained solutions for a semi-
infinite strip in contact with a half plane [4] and for two contacting 
semi-infinite strips of different widths [5]. 

Here we consider the problem of a semi-infinite strip whose end 
is bonded to an infinite strip. Such a "T-joint" occurs in many phys
ically relevant situations. Of particular interest here is the stress 
distribution along the bond and the effects of the width ratio, the 
composite material parameters, and the location of the supports. 

First a solution is obtained for an infinite strip satisfying appro
priate boundary conditions along the edges. This is combined with 
the semi-infinite strip solution [1] and continuity conditions are ap
plied. This procedure finally yields a system of singular integral 
equations which is analyzed in order to find the order of the singularity 
at the corners. These equations are then solved numerically using the 
method of Erdogan and Gupta [6], yielding the normal and shear 
stress distributions along the interface. An interesting result is that 
for sufficiently narrow infinite strips, there exists a certain location 
of the supports for which shear stress is bounded. Another support 
location corresponds to bounded normal stress. 

Problem Formulation 
The problem consists of an isotropic, homogeneous, semi-infinite 
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Fig. 1 A semi-infinite strip bonded to an infinite strip of different widths and 
material properties 

elastic strip of constant width 2a, with elastic constants it', i/. This 
is bonded to an infinite elastic strip of uniform width 2h, having elastic 
constants fx", v". The semi-infinite strip is pressed against the infinite 
strip by a resultant force P acting in the ^-direction, whereas the 
infinite strip is supported by a pair of concentrated forces of magni
tude P/2 (Pig. 1). We wish to find the two-dimensional (plane strain) 
stress and displacement fields which satisfy the appropriate elasticity 
equations for each region and which also satisfy the following 
boundary conditions: 

T'U (±a, x2) = 0, -°° < x2 < 0 (1) 
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T'12 (±a, x2) = 0, - ° ° < x 2 < 0 "(2) 

T12 U I , X2) — 0, T22 (*i, x2) - • -P/2a, \xi\ <a,x2~+ -°° (3) 

Ti;(xi,Z2) — 0, 0 < x 2 < 2 f e , | * i | — « (4) 

Ti2 (xX, 2/l) = 0, | x i | < co (5) 

r^2 (*i, 2h) = - (P /2)5( |x i | - c) (6) 

r l 2 ( * i , 0 ) = 0 , |x i | > a (7) 

T22(*i,0) = 0, | * i | > a (8) 

and continuity conditions 

T ' 1 2 ( X 1 , 0 ) = T I 2 ( X 1 ) 0 ) , |aci| < a (9) 

T 2 2 U l , 0 ) = T 2 2 U l , 0 ) , | x i | < 0 (10) 

u\ (xi, 0) = u[ (x\, 0), |JCI| < a (11) 

u'2(xi, 0) = u 2 (x i , 0), | x i | < a (12) 

Inf in i te S tr ip S o l u t i o n 
Applying the exponential Fourier transform, with respect to Xi, to 

the elasticity equations for the infinite strip and taking advantage of 
symmetry, the stress and displacement fields become 

/>" „ 
4>(w) = vzAr 1 0i(xi) cos ooxidxi, 0i(xi) = r2 2 (xi, 0), 

J o 

t(u) = VWir i 02(*i)sino)Xidxi, <j>2(xi) = T\2 (xi, 0) 

03(*l) = M""2,l (*1. 0). <M*l) = M""l,l (*1, 0). (16) 

Evaluating (13) at x2 = 0, using (14)-(16), then interchanging the 
orders of integration, and finally using 

V2/-7T J 0(o>) cos a;xida> = 0i(xi), 
J o 

V2/7r I 0(a)) sin oixido) = I dt, 
Jo IT J-a t — X\ 

/ o7" C° 11 \ J l C ^(t) .,, V2/7r I V'(a)) cos o)Xiaa) = — I at, 
J o ir »/-a t — x\ 

\/2/w | i/'fai) sin aixido) = 02(xi), (17) 
Jo 

gives 

T"U (XI, x2) = —y/2/ir I a>{[a>Ai(a)) + a)x2B] (a)) 

4U1) = Y20i(*i) - 71 J K'n (*i> t)0i(t)dt 

J - a |t — Xi 71 

a f 1 
+ 2v"B2((x))] sin a)x2 + [a>A2(a>) + wx2B2(io) 

+ 2u"Bi(a))] cosh a>x2) cos aixida), 

0 3 Ui) = - 7 i f" + K"2 

J-a [t — X\ 
L ( * 1 , t ) 

02(t)dt - P71L1U1), 

l(t)dt - 7202(*l) 

2̂2 Ul, X2) /2Ar j <i)\[u)Ai(b>) + o)x2Bi(a)) 

+ 7 i f" #22 (*i, t)fa(t)dt - PyiL'2{xi), (18) 
»/—a 

where 
• 2(1 - i/')B2(a>)] sinh a)x2 + [a)A2(a)) + a>x2B2(a)) 

- 2(1 - u")-Bi(a))] cosh 01x2) cos a>xida>, 

T1 2 (xi, X2) = —y/2/ir i 0){[a)Ai(a)) + a)X2Bi(a)) 
J o 

- (1 - 2u")B2(a>)] cosh a>x2 + [a)A2(a)) + a>X2B2(a)) 

— (1 — 2u")Bi(a>)] sinh a)X2J sin aixida), 

2 | 4 " K I (XI, x2) = -\]2I-K j a)([Ai(a>) + x2Bi(a>)] sinh a)x2 

+ [A2(a>) + x2B2(u>)] cosh a)x2) sin a>xida>, 

2fi"u"2 (xi, x2) = \/277r I ([ajAiM + o)x2B1(a)) 
J o 

— (3 - 4i/')B2(a))] cosh a>x2 + [a)A2(a)) + a>X2B2(a)) 

- (3 — 4D")BI(O))] sinh a>x2) cos aixida). (13) 

Using the traction conditions (5) and (6) on the upper surface 

o)2Ai(o)) = -(4o)/i + sinh 4ah)uBi(oo)/2 

+ [(1 - 2D") - sinh2 2co/i]<oB2(o) 

+ (P/\/27r) sinh 2co/i cos o>c, 

o)2A2(o)) = [(1 - 2D") + cosh2 2wh]wBi((o) 

+ V2 (sinh 4co/i — 4a>ft)o>B2(a)) 

- (P/V2TT) cosh 2w/i cos coc, (14) 

Klj(xi,t)= I kij(2d)h)Ri(ioxi)Rj(uit)dw, 

L"i(x{) = I Z;(2a>/i)fl;(a>xi) cos cocdco, 
Jo 

feii(a)) = a)2/a(a)), fei2(a)) = (a)2 - a) + e_a> sinh a))/a(a)), 

^21(0)) = (a>2 + a> + e-™ sinh o))/a(a)), k22(o>) = kn{w), 

h(u>) = a) sinh a)/a(a)), i2(a)) = (a> cosh a) + sinh ai)/a(a)), 

a(a)) = ai2 — sinh2 a), 

fli(a>) = cos (a>), fl2(o) = sin (to). (19) 

Due to the behavior of fen(o)), fe2i(a>), Zi(a>), /2(a)) in the limit as a> 
-«• 0, the corresponding integrals K"u (xi, t), K"21 (xi, t), L\(x{),L2 (x\) 
do not exist. This situation can be rectified by writing 

f ° K"n (xi, t)4>i(t)dt + PLI(JCI) = f ° K'n Ui , t)*i(t)dt, 

f K"21 (xi, t)^(t)dt + PL"2 (xi) = C" K"2X (xi, t)<t>i(t)dt, 

J-a J-a (20) 

where 

is obtained. Now applying the traction conditions (7) and (8) to the 
lower surface 

A(a))a)B1(a)) = sinh2 2o)h 0(a)) + (4a>h — sinh 4coh)\j/(w)/2 

+ (P/V27r) 2coh sinh 2coh cos a>c, 

A(a))a)B2(a)) = -(4a)/i + sinh 4&>/i)0(a>)/2 + sinh2 2a)fe V M 

- (P/\/2~7r) (sinh 2a)/i + 2a)/i cosh a>/i) cos a>c, 

A(OJ) = (2a)fe)2 - sinh2 (2aih), (15) 

is determined where 

Ki! (xi, t) = j [£n(o)/i) cos a>t - /2(a)) cos a>c] cos aixido), 
J o 

^21 Ui . ' ) = 1 [k2i(wh) cos cot - /2(a)) cos aic] sin aixido), 
J o 

in which the resultant condition 

£ " 0i(t)dt: 

(21) 

(22) 

has been used in order to combine the two integrands on the left-hand 
side of (20) to obtain the properly defined integrands on the right side 
of (20). 
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S e m i - I n f i n i t e S tr ip 
The solution for a semi-infinite strip with arbitrary end conditions 

has been obtained by Bogy [1], The resulting equations are 

H'u'ui (x1; 0) = (73/2) f - ^ - + K'n (xh 
J-a [t — X\ 

- M 7 3 J + ^ 1 
•J-a [t — Xi 

t) 

12 (*1, *) 

T'12 (t, 0)dt 

u'21 (t, 0)dt + — , 
4a 

T22(*l, 0) + 73 J 

-*»X" 

021 

£ — Xl 

a 22 

+ K 2 1 (x i , t ) T'12 (t, 0)d£ 

< — x x 

+ K"22 (xi,t) p!u% x (t, 0)dt = , (23) 
2a 

where 

73 = 1/TT(1 - 1/). 

The constants aij and the kernels K\j(x\, t) are given in [1], and for 
brevity will not be repeated here. 

Cont inu i ty a t I n t e r f a c e 
Applying the continuity conditions (9)-(12) across the interface, 

the following system of singular integral equations is obtained: 

y=l J-a [t — X\ 
+ Mij(x1,t) <j>j(t)dt 

+ T. Cij4>j(t)dt = fi(xi) i = 1, 2, 3 (24) 

where 

b i 2 = - ( ^ 7 3 0 1 1 / 2 + 71) . 613 = 73012, 621 = 7 1 . 

632 = 02173, 633 = -273022/fe, 611 = £>22 = 623 = 631 = 0, 

Cll = C22 = 72, C23 = C31 = 1, C12 = C13 = C21 = C32 = C33 = 0, 

MnOci, t) = -yJC'n (*!, t), 

M12U1, t) = yiK"l2 (xh t) - kysK'n (xh t)/2, 

M13(xi, t) = ysK'12 (xi, t), M2i(xi, t) = yji'u (xlt t), 

M22(*i, t) = - 7 i # 2 2 (xi, t), M23(xi, t) = 0, M3i(*i, t) = 0, 

MS2(xh t) = y3K21 (xh t), M33(xi, t) = -(273/fe)K22(x1, t), 

ft(Xl) = Pkv'lia, /2(JCI) = 0, f3(xi) = -P/2a, (25) 

where k = n"/fi'. The resultant conditions 

s: (t>2(t)dt = 0, (26) 

(27) H(t)dt = 0, 

along with (22) are also necessary. 

Analys i s of S i n g u l a r I n t e g r a l E q u a t i o n s and 
N u m e r i c a l S o l u t i o n 

The system of singular integral equations (24) must now be ana
lyzed in order to determine the order of the singularity at the corners. 
We note that the kernels Klfai, t) are bounded whereas K\j {x\, t) 
have regular as well as singular parts as discussed in [1]. (That analysis 
will not be repeated here.) Following the procedure of Muskhelishvili 
[7, chapter 4], we define Hj(t) through 

<t>j(x1) = Hj(xl)/(a2-x1*)y 

Hj(a) , Hj(-a) 
- + - • + 0 ( 1 ) as xj — ± a (28) 

( 2 a ) T ( a - x i ) T (2a)y(a + xi)y 

and it follows that 

'" <t>j(t) , _Hj(—a) cot 7T7 Hj(a) cot ivy 

( 2 a ) T ( a - X I ) T 

as xi — ± a (29) 

1 f" <j>j(t) Hj(—a) cot 7T7 
— 1 dt = 
•KJ-at-Xl (2a)T (a + Xl)T ( 

• + 0(1) 

where 7 is the order of the singularity. Then we rewrite (24) so that 
only the singular terms are on the left-hand side, use (28) and (29), 
and take the limit as xi —• a. Since the sum of the singular terms on 
the left-hand side of each equation must be bounded, a 3 X 3 set of 
homogeneous equations results. Setting the determinant equal to zero 
yields the order of the singularity (7). The result is 

2 sin2 (TT7) [1 + cos (ity) - 2(1 - 7)2]/32 

+ 4(1 - 7) 2 sin2 (7T7)a!|3 + [1 + cos (^7) - 2(1 - 7)2]a2/2 

— 4(1 — 7) 2 sin2 (iry)l3 + [4(1 — 7) 2 sin2 (^7) + 1 + cos (7r7) 

- 2(1 - 7 ) 2 - sin2 (TT7)]O! + V2 ~ (%) cos {iry) 

+ 2 cos3 (iry) - (1 - 7) 2 = 0, (30) 

which is written in terms of the composite material parameters a, ft 
introduced by Dundurs [8] 

(1 - v") - (1 - v')k (1 - 2v") - (1 - 2v')k 
a = , a = . (31) 

(1 - v") + (1 - v')k (1 - v") + 2(1 - v')k 
The details involved in obtaining (30) have been omitted since the 
singular terms are similar to those encountered in [4], in which a 
semi-infinite strip with a half plane is treated. The results also agree 
with the bonded wedge solutions of Bogy [9]. 

Having determined 7, we now proceed to solve (24) numerically 
using the method of Erdogan and Gupta [6]. Applying that method 
to (24) along with (22), (26), (27) yields a system of 3N linear algebraic 
equations 

3 N 

£ E Aj 
bij , it / \ 

1 aM,j (ayii, arj) 
ITj - yn 

<I>(TJ) 

+ E C^(yK)/(l - yfoy = h(hyK), 
7 = 1 

i = 1, 2, 3, K = 1, 2,. 

N _ 
L AAJ(TJ) = dj, , ' = 1,2,3, 

. N - i (32) 

(33) 

where 

di = -P/a, d2 = d3 = 0, 

4>j(r) = <frj(aT) (1 - r 2 ) \ 

The quadrature points TJ, J = 1, 2 , . . . JV are the N roots of the Jacobi 
polynomial P N ( ~ 7 ' ~ 7 , ( I " ) , the collocation points yx, K = 1,2,. . . N 
- 1 are the N - 1 roots of PN-i< 1 _ 7 '1 _ Y )(y) and the weights of the 
Gaussian quadrature are 

2(N - 7 + 1) r2(iV - 7 + 1) 
Aj=-

(N + 1)](N - 27 + 1) r(iV - 27 + 1) 

X-
2 - 2 7 

(34) 
'pv-*'-~<)(Tj)Ptor)(Tj) 

Because the equations are of the second kind there are 3N equations 
but 6iV-3 unknowns. We expand 4>J(T) in terms of Jacobi polyno
mials 

*>(T) = NZ GjrPjt-y.-yi (r), 
7=0 

in order to reduce the number of unknowns to 32V [4]. 

R e s u l t s a n d D i s c u s s i o n 
Using the method just described, numerical results are obtained 

for the three material composites shown in Fig. 2. These correspond 
to some of the material pairs used in the strip half-plane solution [4]. 
The results are shown in Figs. 3-8 in terms of the stress-intensity 
factors K22, K2\, defined as 

K22 = - l im ( a 2 - x2)7T22(*i, 0), 

K2i = - lim (a2 - x?)7T2i(xi, 0). (35) 
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Fig. 3 Stress-intensity factor /f22 versus c/h for various width ratios (com
posite No. 1) 

Evaluating these quantities numerically gives 

J V - 1 

1=0 

Kn = -ay Y. G 2 / P 7 ( - T . - T ) ( I ) . 
1=0 

(36) 

In Fig. 3 is shown the variation of stress-intensity factor K22, with 
the support location c/h for different width ratios h/a and with 
identical materials. Note the variation of stress-intensity factor for 
equal width strips. As h/a increases the variation of K22 with support 
location decreases, and K22 becomes a constant for very large h/a. This 
corresponds to the strip half plane results [4]. Conversely, for smaller 
width ratios K22 depends very strongly on c/h. This is because for large 
c/h the correspondingly larger bending moment causes a greater 
bowing effect, resulting in the load being transmitted closer to the 
corners of the bond. For sufficiently small values of c/h, the thin in
finite strip allows the bending effect to be reversed, actually resulting 
in small tensile regions at the corners. This transition from tension 
to compression will be discussed later. Fig. 4 shows similar results for 
the stress-intensity factor Kn. They are qualitatively similar to Fig. 
3 and will not be discussed in detail. 

Fig. 5 shows the variation of K22 with c/h for composite No. 2, which 
corresponds to a relatively stiff semistrip. Large values of c/h corre-

Fig. 4 Stress-intensity factor /f2i versus c/h for various width ratios (com
posite No. 1) 

Fig. 5 Stress-intensity factor K22 versus c/h for various width ratios (com
posite No. 2) 

spond to even larger if 22 than in Fig. 3 due to the combination of a 
stiffer indenter along with the larger bending effect. Also large values 
of h/a yield greater K22 than in Fig. 3 due to a less uniform distribu
tion of normal stress across the bond. Qualitatively similar results are 
shown in Fig. 6 for K2i-

In Fig. 7 is shown the variation of stress-intensity factor K22 with 
c/h for composite No. 5, which corresponds to a relatively stiff infinite 
strip. The variation of K22 with c/h is not as pronounced as in the 
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Fig. 9 Normal stress variation along the interface for h/a = 1 and various 
values of c/h (composite No. 1) 

Fig. 7 Stress-intensity factor K22 versus c/h for various width ratios (com
posite No. 5) 

other cases since the stiffness of the infinite strip tends to shelter the 
semistrip from the direct effects of the support locations. Also note 
that the results for h/a = 2.0 are are barely distinguishable from those 
for a semistrip and half plane [4]. Related results are shown in Pig. 
8 for Jf 21. In both cases the stiffness of the infinite strip is sufficient 
to prevent either tensile regions or a change in the sign of the shear F|g, 10 s h e a r s t r e s s variation along the interface for h/a = 1 and various 
stress near the corners. values of c/h (composite No. 1) 
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Fig. 11 Values of c/h and h/a such that K21 = 0 or K22 = 0 

The distribution of normal and shear stress along the bond is de
termined by 

</>;« = (1 - T*)-y N±l G j /P /<-T.-7)( r) ; j = l, 2 (37) 
/=o 

The results for the normal stress are shown in Fig. 9 for various sup
port locations with h/a = 1.0 and identical materials (composite No. 
1). Notice that as c/h increases, the distribution of normal stress be
comes less uniform. This is due to the bending effect discussed earlier 
which causes the normal stress to be greater nearer the corners and 

less in the central region. Fig. 10 shows the corresponding results for 
the shear stress distribution. 

As mentioned earlier, for each sufficiently small value of h/a there 
exists a value of c/h for which the stress-intensity factor vanishes. This 
is because the flexibility of the infinite strip allows a small enough 
value of c/h to cause the strip to bend upward rather than downward. 
Fig. 11 shows the values of h/a and c/h for which either if 22 or K-n 
vanishes (composite No. 1). For values of c/h to the left of these curves, 
the sign of the stress-intensity factor is negative. 
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The Dynamic Three-Parameter 
Method for Determination of Stress-
Intensity Factors From Dynamic 
Isochromatic Crack-Tip Stress 
Patterns 
Correction methods for the determination of dynamic stress-intensity factors from iso
chromatic crack-tip stress patterns are developed within the framework of a Wester-
gaard-type stress-function analysis where higher-order terms of the series expansions of 
the stress functions are retained. The addition aox to the extensional stress ax, is regarded 
as a first correction term, and the far-field correction term which is proportional to r112 

is referred to as the ^-correction. The fi-term represents effects that are due to particular 
loading systems and situations including finite specimen boundaries. The associated 
method to determine K can be termed a three-parameter method since it contains K, a, 
and |8 as parameters. The correction methods, i.e., velocity correction and higher-order 
term corrections, permit modification of the "static" crack velocity versus stress-intensity 
factor (c-K) relationship by correcting the static K for the influence of crack speed and 
higher-order terms. The results show that both corrections assist the interpretation of 
current photoelastic c-K-data even though the crack speeds do not exceed one third of the 
shear wave speed. 

Introduction 
In the past substantial effort has been devoted to the determination 

of crack-tip stress fields and associated stress-intensity factors by 
using photoelastic techniques. 

Post [1] and Post and Wells [2] in the early 50's were the first in
vestigators to apply photoelastic methods to fracture mechanics. Irwin , 
[3] in a discussion to reference [2] showed that the stress-intensity 
factor K could be determined from a single isochromatic fringe loop 
at the tip of a crack. According to Irwin's two-parameter method, the 
stress-intensity factor K and an additional uniform stress field aox 

are functions of the radius rmax of the fringe loop and its angle of tilt 
#max as defined in Fig. 1. The two-parameter method and its modifi
cations [4, 5] for determining the stress-intensity factors from pho-

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
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partment. Manuscript received by ASME Applied Mechanics Division, Sep
tember, 1979; final revision, February, 1980. 

toelastic isochromatic fringe data have been critically reviewed re
cently by Etheridge and Dally [6]. 

Kobayashi, et al. [7], have shown that isochromatic fringe loops 
obtained analytically within the framework of the static two-pa
rameter method match to a high degree the shape of the dynamic 
isochromatic fringe loops if small loops (of higher order) close to the 
crack tip are employed. They recommend that small fringe loops 
whose apogee distance, rmm, is about 2-5 mm should be taken for 
measurement purposes. 

There are, however, practical objections to use of small fringe loops, 
such as the transition of the state of stress, nonlinear effects close to 
the crack tip, and uncertain localization of the exact crack-tip position. 
Regarding all the uncertainties included in experimental close-to-
crack-tip measurements it is desirable to abandon the crack-tip vi
cinity and take measurements from larger loops. These fringe loops, 
however, exceed the range of applicability of the singular solution and 
a two-parameter representation of the stress field may not be ade
quate. 

It is thus natural to consider higher-order terms in the expansion 
of the Westergaard functions which enable one to analyze fringe loops 
further away from the crack tip. The addition aax to the extensional 
stress, GX, which is proportional to r to the zero power and thus has 
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Fig. 1 Definition of geometrical parameters associated with an isochromatic 
fringe loop 

the appearance of a superimposed uniform stress is regarded as a first 
correction term and will be referred to here as the a-correction. A 
natural choice for a second far-field correction term would be one 
proportional to r1 '2 and will be referred to here as the ^-correction. 
The associated method to determine K can be termed a three-pa
rameter method since it contains K, a, and 8 as parameters. Physi
cally, a and 8 account for significant influences on the stress pattern 
near the crack tip of the loading and geometry of the specimen in
vestigated. Irwin, et al. [8], and Etheridge and Dally [9] compared the 
two and three-parameter dynamic solutions, respectively, introduced 
several approximate relations pertaining to the dynamic analysis and 
proved the convergence of the dynamic solution to the static solution. 
The comparison between static and dynamic calculations then showed 
that the static solution would overestimate the if-value only slightly 
for the high velocity range where c/c2 >0.2. This was supported by 
the strong similarity between the computer-generated static and 
dynamic fringe loops which showed practically no difference. 

The use of the exact formulas, however, reveals appreciable dif
ferences between the calculated static and dynamic if-values for 
moderate and high crack propagation velocities. The results exhibit 
smaller if-values for the dynamic case and the difference between 
static and dynamic if-value exceeds 5 percent in almost all cases. 

Analysis 
The components ax, cry, and rxy of the stress field associated with 

a constant velocity semi-infinite tensile crack opened by a traveling 
line force may be represented in the form [10] 

• 1) Re Zx - fi Re Z2] + ffo: 

= Afi \ - (1 + r2
2) ReZi + Q Re Z2 

TXy = All 2r\ [Im Z2 — Im Zi\ (1) 

The coordinates x and y refer to a Cartesian coordinate system 
whose origin remains fixed at the crack tip. The expressions r;-

2 = 1 
— (C/CJ)2 (j = 1, 2) and fi = 4rir2/(l + r2

2) have been employed, where 
c\ and c2 are the longitudinal (or P) and transversal (or S) wave ve
locities for plane waves in an infinite medium. 

The stress functions Zj are chosen (following Irwin's procedure [11] 
of factoring out K/^/2irzj) as 

Zj 
K 

s/2n 
l - f /3^+0(z 2 ) (2) 

The if/v27rzy term describes the crack-tip singularity of any 
opening mode crack where the nonlinear zone containing the fracture 
process is relatively small, the plate exhibits uniform thickness and 
has no finite boundaries. The factor 8 models the effect of the pres
ence of near boundaries, and rs is a reference length-factor constant 

which can be selected to equal the size, rm, of a particular isochromatic 
fringe loop, or the crack size, a, etc. 

The near crack-tip stress field may be represented by 

(3) 

where the coefficients Ey depend on the velocity ratios C/CJ and the 
angular coordinate 8 but not on the radial coordinate r/rs. 

The expressions (9) contain three elementary parts: the leading 
term En (i = 1, 2, 3) correspond to the singular near crack-tip stress 
field, the /3*-term indicates the higher-order term influence when 
expanding the range of analysis, and the a*-term which appears in 
the expression for stress ax only is a measure for the degree of biaxi-
ality of the crack-tip stress field. 

The introduction of a* and 8* 

Vox ' 

K 

r 
-; B* 
r. 

•8- (4) 

permits joint parametric studies for varying a and for 8 for fixed r/rs 

as well as for varying r/rs for a and for B fixed. 
Equations (3) reduce in the limit c —• 0 to the well-known static 

crack-tip stress expressions [9] and for B = 0 to the classical two-
parameter crack-tip stress equations [3]. 

The maximum shear stress r m is expressed in terms of the Cartesian 
stress components as 

+ T
 2 

' ' xy • 

Substitution of equations (3) into equation (5) yields 

2AnK 
F(8*)- — 

2A/x. 
+ [G(B*)]z 

(5) 

(6) 

where F and G now are functions of the angle 0, the velocity ratios C/CJ 
(j = 1, 2), and the parameter B*: 

F(8*) ••'klEn-E^ + BHEzt-Eu)} 

G(B*) = E3l + B*ES2. (7) 

Irwin observed the geometry of the fringe loops and noted that 
(Fig. 1) 

d0 
= rmk . 
= Omk 0(k = l, 2) (8) 

holds at the apogee (r = rmk, 8 = 8mk) of each fringe loop. 
Differentiating equation (6) with respect to 6 and using equation 

(8) gives 

u* = 2Aii[G(8*)g(B*) + F(B*)} (k = 1, 2,...) (9) 

where 

( )• = d( )/d0 and g = G/F. 
Inspection shows that equation (9) holds for any fringe loop around 

the crack tip. The functions F,G, and their derivatives depend es
sentially on the velocity of the running crack and on B*. 

Combining equations (6) and (9) yields the fundamental equation 
for the normalized stress-intensity factor if„ [12] 

g » % % = ^ ~ | r l )T^^^H(8m,rm;c,B*) (10) 
2rmV27rrm 2A,u |G | V I + g 2 

Equation (10) reduces in the static case (c = 0) to 

if„ = sin2 M l - 2(3* cos 8m + B*2) 

I 38 8\ 1-1/2 
- 2 a * sin 0 sin B* sin-\ + a*2\ (11) 
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c-K Characterization for Homalite 100 
Dynamic crack propagation in birefringent polymers has been the 

subject of extensive study. Homalite 100 is a commercially available 
transparent birefringent polymer of appreciable photoelastic sensi
tivity to be used in crack propagation studies employing high-speed 
photography in conjunction with dynamic photoelasticity. Thus the 
preceeding analysis is applied to Homalite 100. The models were 
fabricated from uniform sheets (12.5 mm). The assumption of 
plane-stress conditions is appropriate outside of a small region around 
the crack tip where the problem is a three-dimensional one. The fol
lowing input data for Homalite 100 have been used: state of plane 
stress, Poisson' ratio v = 0.31, c\ = 2662 m/s, ci = 1234 m/s, and plate 
wave velocity CL = 2148 m/s. 

Dynamic Two-Parameter Method. Results for Homalite 100 
for the normalized stress-intensity factor Kn obtained from equation 
(10) are shown in Fig. 2, as a function of 8m over the range 69.4° < 0m 

< 148.5°. This range for the tilt angle Bm is associated with the main 
loop of the isochromatic fringe pattern around a running crack tip. 
The cutoff points of the Kn 8m -curves, i.e., the intersection of the 
curves with the abscissa are velocity-dependent and define the range 
of applicability of the two-parameter method. The difference between 
static and dynamic stress-intensity factor for different velocities 
depicted in Fig. 3 reveals that the static analysis provides acceptable 
results for low and medium velocity crack propagation. For high-speed 
running cracks the differences in K between static and dynamic 
analysis are by far too large and the static analysis gives too high 
values for K. 

Dynamic Three-Parameter Method. When higher-order terms 
are retained in the analysis both the velocity effect and the /3-effect 

Fig. 4 ( b ) Normalized stress-Intensity factor K„ versus fringe loop tilt angle 
6 relationship for varying /J*-term for a medium velocity propagating crack 
(c/c2~ 0.2) 

influence the distribution of the stress-intensity factor, and their 
interplay eventually generates complex situations. Figs. 4(a) and (6) 
show results pertaining to Homalite 100 for the normalized stress-
intensity factor Kn as a function of the tilt angle over the range 68° 
< dm < 153°. This range is related to the main loop. Different curves 
correspond to different /3* -values. For the sake of comparison and 
completeness the curves for fi* = 0, c = 0 have been added. The Kn 

versus 0m -curves for the approximately static case are given in Fig. 
4(a). An important result obtained in the two-parameter method was 
that the K-curves for higher velocities lie below the K-curves for low 
crack velocities. This fact holds also for the three-parameter method 
and implies that the sets of K-curves for a variety of (3*-values give 
lower K-values for higher velocities. From this one concludes that the 
dynamic effect and the /3*-term effect work in opposite directions for 
j3* < 0. The magnitude of (negative) /?* required to annihilate the 
velocity-induced correction depends on the tilt angle. The dynamic 
effect and the (S*-term effect, however, superimpose for /?* > 0 and, 
hence, may yield to appreciable corrections of the K-value. 

Corrections Due to High Velocity and Higher-Order Terms. 
Several dynamic correction factors may be defined by relating the 
results of different methods used to one another. Figs. 5(a) and (b) 
show the dynamic correction factor Koosd as a function of crack ve
locity c for various tilt angles dm. 
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The combined /?*-c correction factor K0p
sd shown in Figs. 6 (a-d) 

represents the correction which is introduced when the dynamic 
higher-order stress field around the tip of a propagating crack as de
termined by the dynamic three-parameter method is approximated 
by the static stress field associated with the staic two-parameter 
method. Inspection of Figs. &(a-d) shows that the correction for K 
becomes inevitable, in the high velocity region whenever /3* > 0. No 
correction is necessary for situations where the effects of negative @* 
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CT) 

CRACK VELOCITY c ( m / s l 

0 I25 250 375 

CRACK VELOCITY c (m/s) 

0 I25 250 375 

6(c) dm = 110° (slightly backward leaning loops: M-CT); (d) 0m = 140° 
(strongly backward leaning loops: DCB) 

Fig. 6 Combined c-/3 correction factor KO0 sd = Kp "IKa" versus velocity 
c for varying /3" and fixed fringe loop tilt angle 6m 

and high velocity compensate. Situations of low crack velocity and 
i8* < 0, however, require correction in the reverse direction. 

A critical examination of the (3-terms reveals that the value of § 
depends on the crack type (Griffith-crack, semi-infinite crack,..) and 
loading conditions (e.g., crack-line loading, internal pressure, remote 
biaxial loading . . . ) . Unlike in the static case, where it is possible to 
assign a restricted range of/3-values to each specimen configuration, 
the extraction of an explicit expression for /3 on the basis of a Tay
lor-series expansion is not apparent for running cracks. The reason 
for this may be found in the continuous change of /3 during the process 
of crack propagation. Nevertheless, it is believed that some qualitative 
estimates derived from a staic situation may hold in the dynamic case 
too [12]. 

Comments on the Dynamic c-K Curve 
The analysis of the constant speed running crack under Mode-I 

stress conditions is also valid for any nonuniformly propagating crack 
because the singular part of the stress field, i.e., the — % term in the 
series expansion of the Westergaard stress function is invariant with 
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respect to nonuniform crack propagation. Thus a dynamic 2-pa-
rameter method gives reasonable K-values also in a situation where 
the crack velocity changes provided the fracture process zone and the 
range of influence of the higher-order terms do not overlap or inter
fere. 

When material points close to the crack tip experience an increasing 
effect of higher-order terms (rapid crack acceleration or velocity 
changes in small specimens) and/or the fracture process zone is large 
(rough fracture) higher-order term effects have to be taken into ac
count. Inertia effects of material particles in the extended fracture 
process zone influence the dynamic fracture behavior when sudden 
crack velocity changes occur. Moreover, in-plane wave propagation 
effects cause continuous redistribution of the crack loading which in 
turn changes the /3-term. During a general dynamic fracture process 
c and /3 are functions of the crack length or time and the resulting 
/3-behavior is extremely complicated. Nethertheless it is believed that 
the qualitative features of a quasistatic /3-study can be transferred 
to the dynamic situation of nonuniform crack extension. The K„ 
versus 6m tables generated involving corrections due to dynamic ef
fects and higher-order terms, may be utilized helpfully also in the most 
general dynamic situation provided the crack advances under pure 
opening mode conditions. 

Assume that the fracture process zone of a running crack is rela
tively small and that changes in crack speed have limited gradients 
relative to time and crack extension. One can then assume that ob
served values of c and K are restricted to a natural c-K curve which 
may be defined as one which is associated with dynamic fracture of 
a larger specimen where the fracture process zone is confined to the 
immediate vicinity of the crack tip and higher-order terms have no 
effect. Any c-K curve obtained by analytical reduction of experi
mentally obtained data possibly involving velocity effects and 
higher-order terms is considered a "test" c-K curve. These test c-K 
curves must not be confused with the natural c-K curve. 

Fracture experiments utilizing specimens of any arbitrary shape 
and size reproduced similar c-K curves within error bounds set by the 
experiment when a static 2-parameter analysis of data reduction was 
employed. This fact led to the idea that the c-K curve may be a ma
terial property regardless of the type of specimen used to perform the 
fracture test [13,14]. 

The independence of a c-K relationship from specimen geometry 
was questioned when experimental results obtained by different re
search teams employing specimens of the same shape, but different 
in size, did not agree. Large and small size members of a specimen-
type family produced different test c-K curves which approximate 
a natural c-K curve with different degree of accuracy. 

A possible explanation for this size effects is offered by the /3-term 
study. Let us consider two equal sets of crack-tip fringe loops, one set 
in a large specimen and the other set in a small specimen. The speci
mens are of the same type and subject to similar loading conditions. 
The set of isochromatics in the smaller specimen is more influenced 
by the presence of near boundaries than the corresponding set in the 
larger specimens. This causes different a and /J-values for the two sets 
and therefore different K-values. 

A (dynamic) three-parameter based c-K curve is constructed by 
applying (velocity corrections) and higher-order term corrections to 
a c-K curve which was obtained by means of the static two-parameter 
method of K-determination. 

The influence of the higher-order terms onto the c-K relationship 
is more complex than the velocity effect because the /3-correction 
affects the entire c-K curve. 

Positive /3-values require a correction toward smaller K-values, i.e., 
velocity correction and /3-term correction superimpose and amplify 
the backward correction of c-K curves. Note, that a positive /3-cor
rection shifts the entire /3-curve toward lower K-values. The amount 
of shift depends on the /3-value at crack initiation. This is illustrated 
in Fig. 7(a). SEN-CPL-type specimens are associated with positive 
initial /3-values and therefore require positive ^-corrections. 

Negative /3-values introduce a correction toward larger K-values. 
Velocity effect and negative /3-effect subtract and the combined effect 
is to increase K in the lower velocity region (where the /3-effect 

— — static 2-parameter c-K-curvc 
P-correction 
velocity correction 
dynamic 3-parameter c-K-curve 

Fig. 7 Influence of the combined c-/3 correction on the c-K relationship; (a) 
positive /3 correction (/3+); (b) negative /3 correction (/3~) 

dominates) but it may cause K to increase in the high velocity region 
(where the c-effect may dominate). The root of the c-K curve inde
pendent of velocity corrections shifts to higher K-values for negative 
/3-values at crack initiation. SEN-CLL, M-CT, and DCB-specimens 
are associated with slightly negative initial (3-values, and thus require 
negative ^-corrections. This type of correction is shown in Fig. 7(b). 
Note, that any negative /3-correction causes a negative slope at the 
root and the lower part of the stem of the dynamic 3-parameter c-K 
curve provided the corresponding static 2-parameter c-K curve has 
a vertical stem. 

The upper part of the c-K curve, the so-called "second plateau" 
where even large changes in K produce small c-changes alters ap
preciably. The dynamic correction does not change the altitude of the 
plateau, however, it shifts points on the plateau to the left, i.e., to 
considerably lower K-values. This implies that unsuccessful branching 
attempts and successful crack branching occur at lower K-values in 
SEN specimens than assumed in the past. 

Conc lus ions 
The preceding dynamic 3-parameter analysis reveals several im

portant implications for the practical determination of the stress-
intensity factor from isochromatic fringe loops. 

1 Dynamic K-values are smaller than K-values obtained from a 
static analysis. Their difference exceeds the 5 percent error found for 
moderate crack velocities and exceeds the 12 percent error bound for 
high crack velocities encountered in experiments with Homalite 
100. 

2 SEN-specimens (forward leaning fringe loops) and DCB-
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specimens (strongly backward leaning fringe loops) are very sensitive 
to velocity effects and a dynamic correction for K becomes inevi
table. 

3 Dynamic fringe loops are slightly larger in size than the corre
sponding static counterparts. 

4 The incorporation of the /3-term into the analysis and the results 
obtained provide an explanation of the specimen geometry influence. 
Corrections due to different /3-values results in different c-K curves. 
Dynamic and higher-order term correction amplify (subtract) for 
positive (negative) values of ft. 

5 The results imply that test c-K relationships obtained by 
employing specimens of different type and size are in fact dependent 
of the specimen geometry. The size effect is predominant. 

6 The influence of higher-order terms disappears at the crack tip 
and hence the use of small isochromatic fringes close to the crack tip 
has been recommended in the past. Practical objections to use of small 
fringe loops are the transition of the state of stress in the vicinity of 
the crack tip and some materials show considerable nonlinear effects 
close to the crack tip. Moreover, the determination of the exact 
crack-tip position is often a difficult task for several reasons. 

7 Smaller fringe loops give slightly higher values for the stress-
intensity factor with /^-correction absent. The dynamic K-values 
associated with unsuccessful branching attempts and successful crack 
branching in SEN-samples are considerably lower than the K-values 
obtained from a static analysis. 

8 The dynamic analysis provides helpful information for future 
fracture test specimen design philosophy. It is found that the CT-
specimen is least sensitive with respect to dynamic fracture be
havior. 
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Transient Response ©f a Finite 
Crack in a Strip With Stress»Free 
E i 

UQuli 
We have considered the problem of determining the dynamic stress distribution in an infi
nitely long isotropic homogeneous elastic strip containing a Griffith crack which is per
pendicular to the edges of the strip. The crack is opened by internal pressure with the 
Heaviside function time-dependence. By using the Fourier and Laplace transforms, we 
can solve the problem with a set of dual integral equations in the Laplace transform do
main. These equations are solved using the Schmidt method. The Laplace inversion of 
the stress-intensity factor is carried out numerically. 

1 I n t r o d u c t i o n 
Prom an engineering point of view, the dynamic crack problems are 

of particular interest, because the dynamic stress-intensity factors 
are 1.2 or 1.6 times larger than the corresponding static values. From 
this reason, many studies have been carried out to determine the 
dynamic stress fields around a finite crack in an infinite elastic solid. 
Among these, the work carried out by Sih and his coworkers [1-8], Mai 
[9,10] and Thau and Lu [11,12] are immediately useful in designing 
the various parts of a machine or structure which are composed of 
brittle materials. 

In comparison with the studies that are concerned with a single 
crack in an infinite elastic solid, relatively little work has been per
formed concerning problems which involve other boundaries. Re
cently, the dynamic stress-intensity factors for a centrally cracked 
rectangular bar under impact loads were computed by the finite-
element method [13], the finite-difference methods [14] and the fi
nite-element technique with the calibrated element [15]. Later, an 
analytical approach to the transient crack problem including the ef
fects of the boundaries was investigated by Chen [16]. He considered 
the impact response of a finite crack in an elastic strip under antiplane 
shear, to the edges of which the crack is placed perpendicularly. He 
solved the mixed boundary-value problem with a Fredholm integral 
equation of the second kind in the Laplace transform domain and 
inversed the Laplace transforms using the numerical technique [17]. 
The dynamic stress-intensity factor for an in-plane problem was also 
obtained by Chen [18]. In these investigations [16,18], when the a/h 
ratio approaches zero, the solutions reduce to those of an infinite 
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medium with 2a being width of the crack and 1h being the width of 
the strip. 

On the other hand, the dynamic solution obtained by Thau and Lu 
for a finite crack on which a plane transient compressional wave im
pinges [12] contains Chen's limiting one. In the symmetric problem, 
the incident P wave produces a zero shear stress along the surfaces 
of the crack, and then this solution corresponds with that for a/h -* 
0.0 in reference [18]. Quite recently, Kim studied the transient 
problem for a finite crack whose tips propagate nonuniformly with 
time due to the action of an arbitrary time-dependent normal load 
on the face of the crack [19]. The special case for a stationary crack 
also agreed with that of the limiting solution for a/h -* 0.0 in reference 
[18]. However, there is disagreement between Chen's results and those 
in references [12, 19]. 

In this paper, the same problem which was treated by Chen [18] is 
reworked using a somewhat different approach. Laplace and Fourier 
transforms are applied and a mixed boundary-value problem is re
duced to dual integral equations by a method similar to that employed 
by Sneddon and Srivastav [20] for the corresponding static problem. 
In solving the equations, the crack surface displacement is expanded 
in a series using Jacobi's polynomials and Schmidt's method is used. 
This process is quite different from that adopted in references [1-10]. 
The obtained Laplace transform solution is inverted numerically by 
the method developed by Miller and Guy [17]. Numerical calculations 
are carried out for the transient stress-intensity factor. 

2 F u n d a m e n t a l E q u a t i o n 
We consider a strip bounded in the x, y- plane by the lines x = ±h 

and a finite crack located along the *-axis from —a to +a as shown 
in Fig, 1. 

For the plane elastodynamic problems, the displacement potential 
functions are usually introduced in the following way: 

V = (f,y + i>,x, 

(1) 
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Fig. 1 Geometry and coordinate system 

where u and u are defined as the x and y components of the dis
placement, respectively, and the indices following the comma indicate 
the partial differentiation with respect to the variable, e.g., 4>,x = 
d<j>/dx. 

Substituting equation (1) into the motion equation reduces it to 

<t>,tt, (2) 

where the medium is assumed to be homogeneous and isotropic and 
CL = {(\ + 2y.)/p\1/2, CT = Wp)1/2 are the dilatational and shear wave 
velocities with X and fi being the Lame constants, p being the density 
of the material. The stresses are written in terms of $ and \p as 

with 

Tyy/(2H) = ~(piXX + JX2(0,IX + 0,yy) + l/^y, 

T«/(2/i) = -<t>tyy + iK2((j>,XX + (j>,yy) ~ \[/,xy, 

Tyx/(2H) = 4>>xy + \j/,xx ~ h(T)/,XX + i/,yy), 

K2 = (CL/CT)2, 

(3) 

(4) 

where elastic constant K2 takes the value 2(1 — v)l(\ — 2v) for the plane 
strain and 2/(1 — v) for the generalized plane stress with v denoting 
Poisson's ratio. 

The boundary conditions for the problem to be studied are as fol
lows: 

/*(«)= f" exp {-st)f{t)dt, 
Jo 

fW = T~- f exP (st)f*(s)ds, 
2lCl JBr 

(7) 

(8) 

where the second integral is over the Bromwich path. Applying 
equation (7) to equation (2) results in 

<t>,xx + 0*yy = ~7 0*. 

+u+v*>=s- +•• (9) 

The solution for equation (9) will be in the following forms in terms 
of its unknown coefficients Ai(s, £), A2(s, £), Si(s, f)» and B2(s, f) 

0* = 2 ( Ai(s, £) exp (-yiy) cos (£x)d£ 

+ 2 f ° Bx(s, f) cosh (ftx) cos (fy)df, 
Jo 

tp* = 2 f A2(s, | ) exp (-72 y) sin (£c)d£ 

+ 2 f".B2(s, f)sinh(/?2x) sin (fy)d£ (10) 

with 

7 i - ( ? + «2/cl)W, 
72=(£2 + K%7ciF2, 

/31 = (f2 + s
2/cl)1« 

02=(f2 + K2s7c£)1/2-

(ID 

(12) 

The Laplace transforms of the boundary conditions (5) and (6) are 

Ty'y= -P/s, for y = 0, \x\ < a, 

u°* = 0, for y = 0, a <x\ §_h, 

T°* = 0 'yx u> for y = 0, 0 £ \x \ £ h, 

r'xx = 0, 
Kx = 0, 

for x = ±/i, \y\ < 

(13a) 

(136) 

(13c) 

(14) 

(15) 

Tyy=-PH(t), 

Ax = 0, 

Txx 

Tyx 

; 0 , 

= 0, 

for y = 0, |x| < a, 
for y = 0,a<\x\£h, 
for y = 0 , 0 s |x| %h, 

for x = ±h, |y| < <», 

(5) 

(6) 

where P is the constant, H(t) is the Heaviside unit step function and 
the superscript means that the values with it are those at y = 0. Be-

of the symmetry conditions in equations (5) and (6), it is possible cause 
to consider only the problem for the half plane, y g 0. 

3 Analysis 
A Laplace transform pair is defined by equations 

Prom equation (13c), we obtain 

A„(«, {) = friAifc, £)/{£2 + K2S2/(2C£)!. 

For convenience, we represent Ai(s, £) by Fourier transformed dis
placement U°* as follows: 

Ai(s, | ) = -(£2 + K2s2/(2c2
L)\ iJ0*/(7if2s7c!), (16) 

where u°* is defined by 

V°* = 2 f y°* cos (£x)d*. (17) 
Jo 

Then, equation (14) can be satisfied if we choose 5i(s, f) and S2(s, 
f) to be such that 

5i(s, f )=77 f " u°*ffi(«) cos (fh)d{ + 22 
D J o D 

X C° v°*K2(s) sin (£h)dt, 
Jo 

Ms, f) = - 77 f " u°*Xi(s) sin (^)d? 
D Jo 

-?2 r°jj°*if2(s) cos (^)d^, (18) 
D Jo 

with 

ai = {f2 + K2
S

2/(2cl)|cosh(ft/i), 
<*2 = - ^ 2 f cosh(/32/i), (19) 
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a3 = -jSif sinh (fth), m) = a4|K
2s2/(2c|) - /3f) sinh (fi1x)/(fi1D) - a3f sinh (/32x)/£>, 

04 = 101 - KV/ (2CD) , (19) / 4 ( f ) = a2(K2s2/(2c2) _ ^ s i n h ( ^ / ( f t D ) - a i f Sinh (ft*)/!). 
(Co«*-) (28) 

D = axa4 - a2a3, (20) The semi-infinite integrals in equation (26) with respect to variable 

K (s) = 2 l£2 + K2S2/(2C2 )] fei(s)/(Tr2K2s2/c2) ^ c a n b e e a s i l y e v a l u a t e d numerically because the integrands almost 
1
 ! ? H „ l h i ! / w / 9 9 2/Vi all decrease exponentially. For a large value of J, ifi(s) and K2(s) 

tf2(s) = - 2 [£2 + K2S2/(2C|)J fe2(s)/(7rVs2/c!), behave as 
ki(s) = y[\- 7? + K2

S
2/(2ci)) |?2 + K2

S
2 / (2C|)) (7I + f2) 

+ £27l (7f + rW[(7? + D(7 l + f2) (£2 + «s«2/(2ci))], * * "* ' 2 ' (29) 
A2(s) = 7W7l-7f ) / ( (7f+f 2 ) (7 l+f 2 ) i - (21) a W ^ U l t >. 

Here, boundary condition equations (13c) and (14) have been satisfied f t h a t , t h« l a s t, ^ ° semi-infinite integrals concerned with variable 
and remaining equations (13a) and (13i) give dual integral equa- $ c a n a l s° b e p l a t e d numerically by Filons method [22]. The first 

semi-infinite integral in equation (26) is modified as 

Ty'y/(2n) = 2 fj v°* [[?27i72 - IP + K2s2/(2C|)j]/(7r7iK
2s2/c|) fQ g(B -Jm-dfr) sin (£*)d£ 

hMKi(s)d$ = I \g($)-g(5)}-J2n-i(&)sm(£x)dZ 

+ sin ($7i) f"/2(D^2(s)dfl d£ = -Pl(2ns), +S^)jZ 77 sin l(2n - 1) sin"1 (x/a)|, (30) 

for y = 0, I* | < a, (22a) where 6 represents the infinite limit of £, or 

1 / " 
uo* _ _ | yO* c o s ( ^ )d j = 0, for y = 0,a<\x\ sh, 

«" J o tf(8) = lim *(f) = (K2 - l)s2/(2c£). (31) 
(22b) «--

with 
The function |g(£) - g{5)} behaves as £~2 for a large £, so that the in-

fi(D = ~ M - Pi + ^sV(2cl)} cosh (/3lX) - aa&fcosh (/?2*)], tegral in equation (30) can be evaluated numerically. 
D Thus equation (26) can be solved for coefficients cn(s) by the 
i Schmidt method [23]. For brevity, we have rewritten equation (26) 

h(¥) = - M - j8f + K2s2/(2ci)j cosh (fax) - a A f cosh (fox)]. a s 

<23) Z cn(s)En(s, x) = -u(s,x), for 0 :£x<a , (32) 
n = l 

To solve integral equation (22), we represent displacement u°* by the 
following series: where £„ (s, x) and u (s, x) are known functions and coefficients c„ (s) 

are unknown and to be determined. A set of functions Pn (s, x) which 
2fiv°* = T, c„(s) Pi]l2±H2) (x/a)(l - xVa2)1'*, for y = 0, \x | < a, satisfy the orthogonality condition 

re=l 

= 0, for y = 0, a < \x\ £ h, (24) C" pm(s, x)P„(s, x)dx = Nn&mn, Nn = C" P„2(s, x)dx, (33) 
Jo Jo 

where cn(s) are unknown coefficients to be determined and pi1'2'1/2) , . , . 
. . . ' , . . . , r„,i mi TI j. j.- r can be constructed from the function, En(s, x), such that 
(x) is a Jacobi polynomial [21J. The Fourier transformation for 

equation (24) is [21] P„(«,«) = £ ^ £ , • ( « , x), (34) 
r(2n - Jt) i-lAf,,„ 

2 ^ ° * = Zcn(s)2V^(-l)»~i-± -g-Jto-ifr), (25) 
«=i (2n ~ 2)!? where M;„ is the cofactor of the element d,„ ofDn, which is defined 

where T(x) and Jn (x) are the Gamma and Bessel functions, respec- a s 

tively. 
Finally, substituting equation (25) into equation (22a), we obtain 

for \x | < a after integrating with respect to x 

X C g(l)\j2n-x(ia) 
Jo £ 

A 
Dn = 

du d\2 • • • din 

d 2 i • 
, din= Cl 

Jo 

Using equations (32) and (34), we obtain 

c„(s , A Mnj 

)= £ <u-rr. 
j=n Mjj 

,x)dx. (35) 

i Cn(s)=Y.qjTT, (36) 

X sin (£x)d£ - J^ -«/2B-i(?a) cos (g/i) J /3(f) with 

X KxUJdfldf - J*o"i J*.- i«a) sin «h) [ J^°/4(f) * = ̂  X ° a f c %)PM X)dX- (37) 

X/f2(s)dndf I =-PJC/S, for \x\<a, (26) 4 Stress-Intensity Factor 
Coefficients cn(s) are known, so. that the entire stress field is ob-

.,, tainable. However, in fracture mechanics, it is of importance to de
termine stress Tyy in the vicinity of the crack's tip. Tyy at y = 0 is given 

g(& = M2 + «V/(2ci))2 - ?27i72]/(f7!), (27) . by 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 803 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.0 

Thau and Lu's 
result 

0.0 5.0 CJ la 10.0 

Fig. 2 Dynamic stress-Intensity factor K, 

T°* = E <!»(») V5f(-D" 
T(2n - i) 

(2M - 2)! 

X c o 3 ( ^ ) - l / | J 2 n - 1 ( ^ o ) c o s ( ^ ) J " ° / 1 ( f ) X i ( s ) d f - 1/? 

XJtn-ifajamGh) J ^ " / a ( n / f j ( * ) d r d f 1 (38) 

The singular portion in the stress field results from the relation
ship, 

f " J 2 n - i (£a ) cos (£x)d£ = ( - D - o ^ - V K x 2 - a 2 ) 1 ' 2 

X (* + V x 2 - a2)2""1!, for x > a > 0. (39) 

Then, we obtain stress intensity factor K\ in the Laplace transform 
domain as 

K\ = yj2ir(x - a) T%\x—a+ 

2(K2 - 1) - , , T(2n - | ) 
E c„(s)- (40) 

V ^ K 2 „- i ( 2 « - 2 ) ! ' 

The Laplace inverse transformation in equation (40) is carried out 
by the numerical method given by Miller and Guy [17]. When the 
Laplace transform f*(s) can be evaluated at discrete points given 
by 

s = (/3 + l + k)d', k = Q, 1, 2 , . (41) 

we can determine coefficients Cm from the following set of equa
tions: 

d'f* {(P + 1 + k)5'} 

= E kl/\{h + P + l)(k + p + 2) 
m=0 

(k + P + 1 + m)(k - m)!\Cm, (42) 

where &' > 0 and P > —1.0. If coefficients are calculated up to C N - I , 
an approximate value of /(£) can be found as 

fit) = E CmPT \2 exp (S't) - 1), (43) 

where P j j " (2) is a Jacobi polynomial. Parameters 5', /?, and N are 
selected such that f(t) can best be described within a particular range 
of time t. 

5 N u m e r i c a l E x a m p l e and R e s u l t s 
In the plane strain state, the dynamic stress-intensity factor K\ is 

1.3 

x: 

1.0 

Chen's result 
(^=0.29) 

0.0 0.5 a / h 

Fig. 3 Ratio K,m/K? versus a/h 

1.0 

computed numerically for Poisson's ratio v = 0.25. The semi-infinite 
numerical integrations, which occur, are evaluated easily by Filon and 
Simpson's methods because of the rapid diminution of the integrands. 
From references [24, 25], it can be seen that the Schmidt method is 
performed satisfactorily if the first five terms of the infinite series to 
equation (32) are retained. 

To invert the Laplace transforms numerically, we must select the 
values of jS, 5', and N, the number of terms in equation (43). However, 
there is no best way of selecting these values. From the results given 
by Sih and his coworkers [6-8], it can be considered that stress-in
tensity factor K\ may have a form which is similar to 

f(T) = Q l [ l - exp ( - o 2 D + <J3 |1 - cos iqiT)]IT\, (44) 

where T is a dimensionless time variable. The Laplace transform of 
equation (44) is 

fHs) = 9i [l/s - XIis + q2) + &H log ((s2 + <742)/s'2 (45) 

Numerical inversions to equation (40) are first carried out with some 
combinations of P, 5', and N. From these results, the three best curves 
are selected and they are approximated with equation (44) separately, 
adjusting the values for q\, q2, q% Q4. Next, the Laplace inversions of 
/* (s) are carried out numerically for the three cases of the constants 
Qi, 92, 93, 94- Comparing/(T) with the numerical inversion of/*(s), 
we can see which combination awards the best approximation. As a 
result, we know that the numerical Laplace inversions of K\ can be 
carried out satisfactorily for a/h = 0.6 by using P = 0, &' = 0.3, JV = 
7 and for a/h = 0.7, by P = 0, 5' = 0.4, N = 7.It can also be seen that 
P = 0,S' = 0.2, N = 7 covers for a/h = 0.0-0.5. 

In Fig. 2, transient stress-intensity factor K\ is plotted against ctt/a, 
in which the broken line is Thau and Lu's exact results for a/h = 0.0 
[12], and the corresponding static values given by Ishida [26] are also 
shown in it. The curve for a/h = 0.0 is omitted because, for the scale 
shown, the results for a/h = 0.0 and a/h = 0.2 are indistinguishable. 
The present calculations cannot detect discontinuity which appears 
in the exact solution owing to its numerical analysis. However, as a 
whole, both curves for a/h = 0.0 almost agree and further the exact 
peak value exceeds the other one by only 2.5 percent. Therefore, it is 
considered that the numerical results of K\ are satisfactory from an 
engineering point of view. In Fig. 3, the ratio of the peak value of Ki 
to the corresponding static value, namely, Kf /K\ is shown graphically, 
where the slender broken line shows the results given by Chen for v 
= 0.29 [18]. Chen insisted that the wavelike curve is attributed to the 
interaction between the dynamic and finite boundary effects. How
ever, the author considers that this is caused by the crude numerical 
Laplace inversion. 

In general, stress-intensity factor K\ shows a similar tendency which 
was observed in the investigations by Chen [16,18]. The peak value 
of if 1 is increased by 23,19, 7, and 3 percent over its static value for 
a/h = 0.2,0.5,0.6, and 0.7, respectively. The dynamic stress-intensity 
factor approaches the corresponding static value after some time. This 
means that the Kf/K\ ratio is not less than unity. Therefore, it may 
be very possible for the ratio to approach unity for the limit of a/h —>• 
1.0. 
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Stress Analysis of a Penny-Shaped 
Crack Located Between Two 
Spherical Cavities in an Infinite 
Solid 
The problem of a penny-shaped crack located between two spherical cavities in an infinite 
solid subjected to uniaxial loads is considered. Using transformations between harmonic 
functions in cylindrical coordinates and those in spherical ones, the problem is reduced 
to nonhomogeneous linear equations. The obtained equations are soloed numerically and 
the influence of the two spherical cavities upon the stress-intensity factors at the penny-
shaped crack tip is shown graphically. 

Introduction 
Recently interest in crack problems has been focused on interaction 

of cracks and cavities for various technical applications. Many recent 
papers on the subject are reviewed by Sih [1-2]. However, most of 
them are results of two-dimensional problems and few studies on 
three-dimensional problems have been reported. Srivastava and 
Mahajan [3] investigated the problem of finding stresses in an infinite 
solid containing a spherical cavity and an external crack. Sternberg, 
Eubanks, and Sadowsky [4] studied the axisymmetric problem for 
a solid bounded by two concentric spheres. The problem of stress 
concentration around a spherical cavity in a semi-infinite body was 
analyzed by Tsuchida and Nakahara [5], who used the method of the 
transformations between harmonic functions in cylindrical coordi
nates and those in spherical ones. The problem of a solid which con
tains discontinuities such as a penny-shaped crack and some other 
flaws has not been analyzed as yet. 

The objective of this paper is to investigate the stress-intensity 
factor for a penny-shaped crack located between two spherical cavities 
in an infinite solid uniformly stretched. Using Hankel transform 
technique and the transformation of a harmonic function from 
spherical coordinates into cylindrical ones, the boundary conditions 
of the penny-shaped crack lead to the set of dual integral equations. 
Next, the transformation of a harmonic function from cylindrical 
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coordinates into spherical ones is used. Thus the boundary conditions 
of the two spherical cavities are reduced to the nonhomogeneous linear 
equations of arbitrary constants. 

Formulation of Problem 
Consider a penny-shaped crack located between two spherical 

cavities in an infinite solid subjected to uniaxial loads p in the z -di
rection (Fig. 1). As the problem is symmetrical for the plane of the 
penny-shaped crack, let cylindrical coordinates (r, </>, z) and spherical 
ones (R, 8, <j>) be set as shown in Fig. 2. The boundary conditions for 
the problem can be specified as follows: 

Onz = —c 

(1) 

(2) 

(3) 

(4) 

(5) 

Assuming that there is symmetry about z-axis and the displacement 
UQ vanishes, we can use the solution of Navier's equation in the 
form 

2Gur = — + z 
dr dr 

OnR = b 

Trz = 0, OSr 

(fz = 0, 0 £r £a 

uz = 0, a <r 

Tfl = 0 

Tfl0= 0 

2Guz = — + (4v - 3 ) * + z 
dz dz 

(6) 

where the unknown harmonic functions $ and St' are expressed in the 
following forms, so that uniaxial loads p appear at infinity, i.e., 
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t f f p ! } and where <j>(\) and \p(X) are unknown functions and Am and Bm are 
arbitrary constants, which are to be determined from the boundary 
conditions. In order to transform the harmonic functions in spherical 
coordinates into those in cylindrical ones, the following relation [6] 
is useful: 

(u) l—1)n / •» 
l-^ = ^ - r ( XV0(Xr)e

x*dX, ( z < 0 ) n + 1 n\ J o R 
(9) 

Rewriting the spherical harmonic functions in equations (7) and (8) 
by using equation (9), we have the displacement uz and the stresses 
<r2 and r r2 as follows: 

2G r"° T • " (—1)m 

— Uz= j -X|(6(A) + ( 3 - 4 ^ + X2)f(X)!e-X2+ £ "—— Xm 

p J o I m = 0 m! 

X |XAm + (4» - 3 + Xz)Bmjex Jo (Xr)dX + 
2 + C 

1 + !/ 

p J o 

-J." 

X|4>(X) + (2 - 2K + Xz)i//(X)!e~Xz + £ ( -1)" 
Xm 

m=0 m! 

X jXAm - (2 - 2» - Xz)Bm)ex Jo{\r)dX + 1 

A(0(X) + (1 - 2v + Xz)i/<(X)|e~x* - £ 
( -1)" 

'o m! 
X™ 

I I IPJ | X |XAm - (1 - 2v - Xz)J3m|e^ Ji{\r)d\ (10) 

Applying equations (l)-(3) to equation (10), we get the following set 
Fig. 1 A penny-shaped crack located between two spherical cavities In an f d u a l j n t e j e q u a t i o n s : 
infinite solid subjected to uniaxial loads a n 

r XvHA)e^+ £ ^ ^ X " - i 2 X A „ 

+ (4v - 3 - 2\c)Bm)e-*c 

( - ! ) • 

Jo(Xr)d\ = - 1, O s r s a (11) 

nx^(x) eXc + £ X m B m e - X c J0(\r)d\ = 0, 

a < r (12) 

where the unknown function 0(X) is related to the unknown function 
\p(\) and the arbitrary constants Am and Bm as follows: 

0(A) = O - 1 + XcWX) + £ 
( -1)" 

A"1"1 

m=o m! 

X | X A m - ( l - 2 ; / + X c ) B m j e - 2 X c (13) 

Equation (12) can be satisfied by letting 

$ = p 

* = p 

Fig. 2 Coordinates systems 

PmGu) 

*(X) = 
X 

f ° g ( 0 sin (Ai)dt - £ 
• ' O m = 0 

(-1)" 
X" 1 "^^- 2 ^ 

(14) 

where g{t) is an auxiliary function. Substituting equation (14) into 
equation (11), we obtain 

f "*(X)Jo(Xi- )e -^dX+ E 4 D + ] 
J o m=o flm+1 * ( * ) ' 

1 

j"°\t(\)J0> 
l + v 

+ cz 

4 => (- i )" i 
- £ — r - [ym+2(t)Am + [2(v - l)7m+i(t) 
im=o m! 

(7) 

(Xr)e"XzdX 

- cym+2(t)}Bm] - - 1 (15) 
•7T 

+ v S
 Pm(^ z 

m=o m flm+1 2(1 + K) 

where 

(8) 7m(t) = ( m - l ) ! s i n m • arctan (c2 + i 2 ) m / 2 ( 1 6 ) 

- N o m e n c l a t u r e . 

G = shear modulus 
v = Poisson's ratio 
ix = cos 8 
P„(yu) = Legendre polynomial 

Jn(ar) = Bessel function of the first kind 
a = radius of a penny-shaped crack 
b = radius of a spherical cavity 
c = distance from the plane of a penny-

shaped crack to the center of a spherical 

cavity 

m, n = 0,1, 2, . . . 
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From equations (13)-{15), we have 

0(A) = E 
( - 1 ) ' 

m=0 TO 
'4e~Xc 

4 e -xc 

TTX 
(1 - 2K - Xc)ajm+2(X) + Xm e-2Xc 

TTX 

- 2cXme~2Xc 

(1 - 2v - Xc) {2(1/ - l)<om+i(X) - co)m+2(X)| 

"H 2e"~*c /»" 
B m + ( l - 2 v - X c ) — — J t sin (Xt)dt (17) 

fn= f % 7 „ ( £ ) d i 
Jo 

(25) 

Making use of equations (6)-(8) and (21), the stress components OR 
and Tjis in spherical coordinates can be expressed as 

(-l)mIT 4e 
CR 

# X ) = £ H — "m+2(X)Am - — — |2(K - l )owi(A) 
m=o m! |L 5rX [ TTX 

- co>m+2(X)) + X"1"1 e - 2 H B m | - ^ - ^ J ^ ° t sin (Xf)d£ (18) 

P n=0 

(ra+l ) ( ra + 2) ra(n2+3re-2K) 
A„ + — , ,_ . , Bn-i R" (in - l ) f l n + 1 

(» + 1) (re + 2) (n + 5 - 4K) 
H ; ——— B„+i + (re - l)rei?" 2a„ 

(2re + 3) fl"+3 

( r e - 1) tt (n — 4 + 4 K ) 

where 
+ 

a>m(X) = f a 7 m ( t ) s i n ( X t ) d t (19) 
Jo 

In order to transform the harmonic functions in cylindrical coor
dinates into those in spherical ones, the following identity [7] is 
useful: 

2 n - 1 

( n + l ) ( n 2 - r e - 2 - 2K) 

2 n + 3 

Rn-2i3n-i 

RnPn Pn(ll) 

+ - | P O ( M ) + 2P 2 ( /* )} (26) 

Tfl« 

«/0(Xr) «*->-- £ ^ ^ P „ ( / u ) (20) 

Using equation (20), we can write the cylindrical harmonic functions 
in equations (7) and (8) as 

f"<A(X)Jo(Xr)e-**dX= £ a „ K " P n ( M ) 
• 'o „=o 

f°°Xi / ' (X)Jo(Xr)e -^dX= £ pnR"Pn(fi) 
Jo „=o 

p sin 0 „ - i 

+ 

n + 2 n 2 - 2 + 2K 

lfl»+» ^ " + (2I . - 1)B»+ 1 B _ 1 

(n. + 2) (n + 5 - 4K) 

(2n + 3)fi"+3 

, (n - 1) (4 - n - 4K) 

B „ + I + (1 - re)fl"-2a„ 

+ 

2 n - l 

(1 - 2re - n2 - 2K) 

fl"-2pV 

2n + 3 
-«»&. ^-Pn(n)-\~PM (27) 

(21) 

where 

( -1 ) " ca 

an = ̂ ~ 0(X)X"dX 
n! i/o 

( - 1 ) " r*" 
Pn = ~ ~ M\)\»+1d\ (22) 

n! »/o 

Substituting equations (17) and (18) into equation (22), we obtain 

In deriving equations (26) and (27), the recurrence formulas of Le-
gendre polynomials are used. Applying equations (4) and (5) to 
equations (26) and (27), respectively, we get the following equa
tions: 

For n = 0 

2 2(5 - 4K) 2 1 

an= L (C„ '"+ 1 /U + D„'"+1 Bm)+En 

m=0 

Pn= £ (Fnm+1 Am + G„">+1 S m ) + tf„ 
m=0 

(23) 

where 

/_1 )m+n 
C m+i = - y 

ml n\ 
(_l)m+n 

D B m + l = L J J 
m\ n\ 

- i(l - 2K)?„-+2 - c£„+1»>+2j + - J ^ g -
T (2c)m + , J + I 

- (1 - 2K) |2(K - l ) £ „ m + 1 - e£„ m + 2 | 

For n = 1 

6 , 2 ( 2 - K ) 1 2 ( 3 - 2 K ) „ 4 , 
^ A 1 + - ^ - B 0 + - ^ - B 2 - - ( 1 + K ) ^ = 0 

For re = 2 

12 4 12 
T j A 2 + — ( 5 - K ) f i 1 + — ( 7 - 4 K ) S 3 + 2 « 2 

+ -(2v-l)fi1-~vb^ = - -

For ra > 3 

- - cj2(K - l ) U i m + 1 - e U i m + 2 l - T ^ T — 
7T (2c)"*+n, 

2 ( - l ) n 

7r re! 
4C_1 )m+n+l 

p m+1 _ v ' £ . .m+2 

(n + 1) (re + 2) re(re2 + 3 r e - 2 y ) 

bn+z A»+ ( 2 „ - l ) 6 « + i B " - 1 

, (ra + 1) (re + 2) (n + 5 - 4K) „ 

(2re + 3)b"+3 

+ (re - l)re6«"2«„ + nin-lHn-4 + 4,) ^ ^ 

i ! n ! ir ml nl 
t--l\m+n+l f4 

+ 1 = > L' | _ 

in+l" 

m!n! Iir 

2 r a - 1 

(ra + l ) ( n 2 - r a - 2 - 2 K ) 

2ra + 3 
fc"j8„+i = 0 (28) 

P'or n = 1 

• c^+r+ 2 l + 
(m + n)\ 

(2c)m+n+1 

3 , ^ 2 K - 1 - 6(3 - 2K) D 2(1 + v) 
—; A i i x5n " oo 
64 62 564 5 

_ 2 ( - l ) ^ i 
« n ; fn 

and where 

(24) 
For n = 2 

4 . , 2 d + ") n , 4 ( 7 - 4 K ) 

bb 363 7b5 (29) 
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Fig. 3 Normalized stress-intensity factors for a penny-shaped crack located 
between two spherical cavities in an infinite solid subjected to uniaxial loads Fi9- 4 Normal stress in the neighborhood of a penny-shaped crack (a - 0.25, 
„ c = 1.0) 

, 2(1 - 2i>) a (7 + 2i>) L 9 n 1 

For re a 3 

re. + 2 re2-2 + 2v (n + 2) (re + 5 - 4 P ) 

• f t ^ " n + ( 2 n - l ) b ' » + i " _ 1 + (2re + 3 ) b " + 3 . " + 1 

(n - 1) (4 - re - 4i/) 
+ (1 - r e ) 6 " - 2 o : n + • 

2 r e - l 

l - 2 r e - r e 2 - 2 i / 

2re + 3 
b«Pn+i = 0 (29) 

(Coret.) 

Substituting equation (23) into equations (28) and (29), we get the 
nonhomogeneous linear equations of the arbitrary constants An and 
Bn. The unknown functions <£(X) and \̂ (X) are given by equations (17) 
and (18) in terms of An and Bn just obtained. 

The stress-intensity factor, K\, is defined in terms of the stress on 
the plane z = — c as 

Ki = lim |2(r - a)}l'2az{r, 4>, - c) 

(-1) 
: 2 P 

ji/2 4p 

•7T -7ml'2 
L —[7m+2(a)Am + (2(v - l)7m+i(a) 

m=o m! 

-c7m+2(a)!Bm] (30) 

The first term in equation (30) represents the stress-intensity factor 
in the case where the two spherical cavities are absent. The second 
term represents the influence of the two spherical cavities on the 
penny-shaped crack. 

Numerical Results and Discussion 
Computations were carried out for Poisson's ratio of 0.3. Fig. 3 

shows the normalized stress-intensity factors plotted with b/c for a/c. 
As b/c increases, all the curves decrease in magnitude very sharply 
at the beginning and this tendency is more noticeable for the lower 
value of a/c. The two-dimensional problem of a crack located between 
two circular holes in an infinite plate subjected to uniaxial loads was 
discussed by Newman [8], In the two-dimensional problem, we assume 
that a,b, and c stand for the half-crack length, the radius of a hole, 
and the distance from the plane of a crack to the center of a hole, re
spectively. Comparing the results shown in Fig. 3 in this paper with 
those contained in the paper of Newman, we note that, as b/c in
creases, the normalized stress-intensity factors in two-dimensional 
case decrease more rapidly than those in three-dimensional case and 
this tendency is more conspicuous for the lower value of a/c. Figs. 4 
and 5 show the stress component az and the displacement uz on the 
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\A 

0.2 

i 
.bsO.©-
.0.3 
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Fig. 5 Displacement in the z-direction on the surface of a penny-shaped 
crack (a = 0.25, c = 1.0) 

plane z = —c, respectively. As b increases, the normal stress az near 
the crack tip and the displacement uz on the crack surface decrease. 
The foregoing curves are drawn on the results which have 3 digits of 
efficient numbers by taking 10 terms of the arbitrary constants An 

and Bn, respectively. 

Concluding Remarks 
In the present paper, the interaction of a penny-shaped crack and 

two spherical cavities in an infinite body uniformly stretched was 
investigated. It was found that the magnitude of the stress-intensity 
factor Ki decreases rapidly as the radius of the penny-shaped crack 
becomes smaller than those of the spherical cavities and in addition 
as the spherical surfaces approach the crack surface. 

As for the problem of a penny-shaped crack and two spherical 
cavities in an infinite body, the technique employed here will also be 
applicable to determine the stress intensity factors Kn for shear loads 
and Km for torsional loads. 
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Fatigue Crack Closure Following a 
Step-Increase Load 
A Dugdale-Barenblatt model is used to examine the effects of crack closure following a 
step increase in the applied cyclic loading. Complex function formulation is employed 
to calculate opening and contact loads. It is shown that the effect of previous history of 
loading on crack growth is significant only when the extent of crack growth is within about 
one plastic zone size. 

I n t r o d u c t i o n 
Experimentally, it has been observed that a sudden increase in the 

level of loading for a crack under constant amplitude cyclic stress has 
a large influence on the crack-growth rate (see, for example [1-2]). 
This behavior of crack growth acceleration and retardation has been 
explained on the basis of fatigue crack closure first proposed by Elber 
[3] and subsequently made use of by various authors [4-10]. 

According to Elber's concept, the residual plastic stretch left in the 
wake of a steadily advancing crack interacts with the plastic zone 
ahead of the crack tip and causes closure above zero load. 

Earlier, finite-element calculations have been carried out by 
Newman [4], Ohji, et al. [5,6], on crack closure. More recently, there 
have been combined numerical-analytic studies [7-10] and analytical 
studies [11, 12] on this subject. McCartney [11], using the Dugdale 
model, studied crack closure for a finite-length crack in an infinite 
medium. In [12], Budiansky and Hutchinson examined the effects 
of crack closure for a steadily growing semi-infinite crack under 
constant amplitude cyclic loading. Their study [12] is different from 
some of the previous studies [4,8] in that no explicit reference is given 
to the actual crack growth process 

In this paper, we study the problem of crack closure following a step 
increase in loading in the same spirit as [12]. A modified Dugdale-
Barenblatt model under the assumptions of small-scale yielding is 
used. Numerical results are given for the opening and closing loads 
and the influence of the prior loading history is assessed. 

F o r m u l a t i o n and Ana lys i s 
We base our theoretical study on the two-dimensional Dugdale-

Barenblatt model. According to this model, the plastic yielding region 
is confined to a narrow slitlike region directly ahead of the crack tip 
where the material is yielding at some maximum constant tensile 
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Fig. 1 Crack-tip geometry 

stress try. We assume small-scale yielding conditions under which 
the far-field behavior is governed by the asymptotic crack-tip elastic 
stress field, 

<rij~Kfij(6)/y/2wr as (1) 

where K, the elastic intensity factor, is considered a prescribed load 
parameter. 

For a stationary crack, the results of the Dugdale model are sum
marized as follows [12]: 

8<TyW 7r/K_\2 = K2 

8 WYI ' ° Eay irE 

f, 5/&0 = g{xlw), g(& s v T q : - | h, 1 + VT^I 
1 - V T ^ | 

(2) 

where w is the plastic zone size, K is the Mode-I elastic stress-intensity 
factor, So is the crack opening displacement and 5 is the plastic stretch 
in the interval (0, w), and E is Young's modulus. 

This model was modified in [12] to account for the residual plastic 
strain that is left behind as the crack advances through the material. 
This introduces an incompatibility which gives rise to the effects of 
crack closure. Under steady cyclic loading between Kmin = 0 and K 
= KmBX

L, the crack approaches a steady-state situation as shown in 
Fig. 2. This is the picture analyzed in [12] and from the associated 
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Fig. 3(a) Growing crack at overload K = Kmax
 u 

Sfe/2 

0 / a W 

Fig. 2 Growing crack with residual plastic deformation and plastic zone at Fig. 3(6) Growing crack at minimum load Kmt„ = 0 immediately after 
(a) maximum and (6) minimum load Kma%

 u 

boundary-value problem at Km\n - 0, the residual stretch was found 
to be 8R

L = 0.8562 80
L (see equation (26) of [12]), where 80

L is the 
crack-tip opening at load Kmax

L. At this point we consider the sit
uation where the load is raised to -K"max

U (> KmayL
L). The plastic 

stretch just created ahead of the crack tip by the overload Kmax
u is 

greater than the existing stretch 8RL caused by Kmax
L. Consequently, 

due to the incompatibility of the plastic stretches caused by two dif
ferent load levels, there is a region (on the crack face) in which the 
crack is "propped" open. The picture now at Kmin = 0 is given by Pig. 
3(6). Further crack growth will reduce the strain incompatibility until 
the plastic stretch becomes completely compatible with that due to 
a constant cyclic load between K = 0 and K = Kmax

u (see Pig. 
2(6). 

Since the load KmXnU is greater than Kmax
L, the plastic zone size 

is increased to 

(see equation (1)). Reversed plastic yielding occurs directly ahead of 
the crack tip as soon as unloading takes place. The crack opening 
displacement at load K is now given by 

8 = S0
U \g(xlwoL> ~ 1{ahlw0L)g(x/ak)] 

where 

ah •^Ka 
WQL , 

4 
(3) 

On lowering the load to K = 0 corresponding to the picture in Fig. 
3(6), contact first occurs when the crack opening displacement 8 in 
(3) is equal to the residual stretch 8RL created previously during the 
cyclic load between K = 0 and Kmax

L, i.e., 

and 

g(x/woi) - 2(ak/w0L) g(x/ah) = 8R
L/8a

l 

'(X/WOL) - 2g'(x/ak) = 0 

(4) 

It turns out that with the function g(x) given by (2), equations (4) can 
be solved exactly to give the two roots K = KCOnt> x = xc, 

Kcont/K rt i - v i - (hL/&our 
= l - VI - (&RL/KLmo

LIKu)2 

and the point of contact at xc, 

& * XJWOL = - [ 1 - («flL/5oC/)2]2/4(5flV«„c/)2 

(5a) 

(56) 

As mentioned earlier, 8RL/80
L was calculated in [12] to be 0.8562 

and hence, with the use of (2), this gives 

Kcont/Kmm
u = 1 - V I - 0 . 7 3 3 (K m a x ^ /K m a x

u )* (6) 

It is noted that equation (6) in general predicts a very low contact 
load. 

The problem corresponding to Fig. 3(6) is illustrated in Fig. 4. An 
elastic field is sought with the following boundary conditions given 
on the real axis: 8 = 8RL in (—M, —d), ay = 0 i n ( - d , 0),and<ry = — ay 
in (0, a), the yield stress in compression, and S = 8QUg(xlwoL) in (a, 
U>OL)-(80

U = 8(TYWOL/T'E from (1).) By the Barenblatt hypothesis, 

we require the stresses to be bounded. Because Kmjn = 0, the condition 
at infinity must correspond to that of a dislocation 8RL along the 
negative x-axis. Finally, it has to be checked a posteriori that the 
solution satsifies \<jy\ < ay on the x-axis and cry < 0 in the contact 
region. 

The method of analysis involves using Muskhelishvili complex 
potentials cj>, \p [13] in two-dimensional linear elasticity. Since similar 
analysis has been carried out in considerable detail in [12], the theo
retical formulation in this study will only be sketched. For com
pleteness, the Appendix summarizes all the results needed for the 
present analysis. 

The problem for K = 0 immediately after the change in loading 
(Kmax

L to Kmax
u), illustrated in Fig. 3(6), can be reduced to the fol

lowing problem for the potential $ = ij>' which, except along a branch 
cut on the x-axis, is analytic everywhere. The boundary conditions 
given on the x-axis are 

$ + - $ _ = 0 

$+ + * _ = 0 

$+ + $_ = -ay 

$ + - $ _ = iEd8M/dx 

for x < — d 

-d < x < 0 

0<x <a 

a < x < WQL 

(7) 

where 8M(X) = 80
u gix/woi)- In order that the solution at infinity 

corresponds to that of a dislocation 8RL along the negative x-axis, the 
function $ = 4>'(z) must behave like E8RL/8ITZ as \z\ -* <». The so
lution of the aforementioned boundary-value problem, with the use 
of Plemelj integrals [14] and the auxiliary function A(z) = 
V(z + d){z — a), is then found to be given by 

E8RL 
X ( * ) $ f » 

8TT 

; _ ay_ r-

2-irJo 

° V(x + d)(a - x)dx 

+ -
E_ C"QL^(x + d)(x -a) d8M 

x — z dx HIT 1 dx (8) 

where the branch cut is along (—d, a) (\(z) ~ z as \z \ 
Introducing the following dimensionless variables: 

f = Z/WOL, ? = X/WOL, oi = a/woL, 
we can express the result (8) as 

7 = d/woL, F = (7T2/<ry) $ 
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Fig. 4 Boundary conditions along crack line corresponding to deformations 
shown in Fig. 3 
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Fig. 5 Growing crack at (K = 0) minimum load (b > 0) 
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Fig. 6 Boundary conditions along crack line corresponding to deformations 
shown in Fig. 5 

KL / K U 
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Fig. 7 Opening and contact loads immediately after Kmax
 u (b = 0) 

x( f )W) = s 
•K C 

2 Jo 
"V(£ + 7)(»~£) 

rf« 

-J A(€)d{ 0) 

where 

' 8RL/80
U = (8R

L/80
L)(80

L/80
U) = 0.8562 (KaM*L/Kw

u)2, 

hit) •> • - ( S M / 5 O U ) , x ( n s V ( f + 7 ) ( f - « ) -
at 

Requiring that the stresses be bounded at f = a, -y gives two 
conditions for the two unknowns a, y: F(a) = F(—y) = 0. This gives 
two equations for the determination of a and y, 

s + -/ay + (a + 7 ) sin"1 \ / — f fi(t) \l -dt = 0 
\ a + y Ja V t — a 

s + v^7 - (a + 7) sin-1 \ — f fi(t)\ -dt = Q 
V a + 7 Ja V ( + 7 

(10) 

These equations were solved numerically and the results are given 
in Fig. 8 for different values of Kmax m a x ^. Having determined a, 
y for a given Kmax

L/Km!lx
u, we can calculate the displacement gra

dient 8' in (0, a) from (18), (9), and (10). It is given by 

d 

dk 
(8/80U) = - M ) 

• - V « + T)(«-f) J" 
7T / ^ a 

h(j)dr 

?)V(r + 7 ) ( T - a) 

(r - £ ) V ( T + 7) (« - T)J 
(11) 

where the second integral is to be interpreted in the Cauchy principal 
sense. We note that this integral gives a logarithmic singularity at the 
crack tip £ = 0. The stresses were calculated numerically according 
to the formulas in the Appendix and they were found not to exceed 
yield in the intervals (—°°, —7) and (a, 1). 

During the reloading process from K = 0 to K = Kmax
u, the picture 

for K > _K"open is identical to that analyzed in [12]. The opening load 
Kopen ((equation (42) of [12]) is given by (see (20) in the Appendix) 

• = I pMM + I r1 h(S)dt 
(12) 

where /2(£) is calculated numerically from (11). The results are 
summarized in Fig. 9 and, consistent with the results for Kcont, 
(equation (6)) Kopm is drastically reduced. For example, Kopen/KmRX

u 

= 0.078 for Km8iX
L/Kmlix

u = 0.7 compared to KopeJKmstx = 0.557 in 
[12]. 

Consider now the situation in which the load is allowed to remain 
between K = 0 and Xm a x

 u. The parameter b in in Fig. 5 denotes the 
extent of the crack growth once the load has been raised to Kmax

u. 
Relative to the position of the current crack tip, which is fixed at 0, 
the point — b moves from right to left as the crack advances in the 
position ^-direction. As in [12], the actual kinetics of crack growth 
is not considered here; rather, our main objective is to analyze crack 
closure as it affects Kopen, KQont and the crack-tip deformation as the 
crack advances. As b —• °°, the steady-state situation in Fig. 2 is re
covered with the maximum load now given by Km&x

u. The residual 
plastic stretch in this limit is given by 8RU = 0.8562 80

u where 80
u 

is the crack opening displacement created by K m K
w and equal to 

(TT/8) (KmaxU/aY)*. 

As the crack advances (b increases), the crack-tip field is given in 
Fig. 5 and the associated boundary-value problem is illustrated in Fig. 
6. In terms of the dimensionless variables, we want F to satisfy on the 
x-axis: 

F+ - F- = 0 

F+ + F- = 0 

F+ + F- = - 7 

F+ -F- = Q 

F+ + F- = -% 

for 

F+-F- 2ir i— (8MI'80
u) 

at; 

£<-7 

-y < £ < _ e 

- c < £ < -b ! 

-b < £ < 0 

0 < £ < a : 

a < £ < l 

(13) 
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Fig. 8 Contact points at K = 0, Kcm\, Immediately following overload 
(6 = 0) 

b/w0 L 

Fig. 9 Reversed yielding zone versus crack-tip position 

where c = C/WOL, b = b/wpi. We now have to introduce the auxiliary 
function x(f) = V f ( f - « ) ( f + c ) ( f + 7) and the branch cuts are 
along ( - 7 , - c ) and (0, a). (x(f) ~ f2 as | f | — «>). The far-field be-

.The havior is, as before, given by F(f) " 
solution of the problem is given by 

x ( { W f l = A + sJ- + 

'(dRL/80U)^as\^\ 

•w r -

2 J-b 

IT r« dt ri 

2 J o v(t)(t - f) J « v. 

X(t)(i - f) 

dt fi(t)dt 

where x(t) 

X(t)(t - f) J « x(«)(t - f) 

| x ( f ) | _ 1 and s, as before, is equal to 0.8562 (K, 

(14) 

iax / 

Imposing the boundedness conditions F(— 7) = F(— c) = i?(0) = 
F(a) = 0 gives four equations for the unknowns A, a, c, y. They can 
in turn be combined to yield three equations for a, c, 7. Omitting 
details, we merely mention that these equations were solved numer
ically and the results are summarized in Fig. 9, in which the reversed 
yield size is plotted against the extent of crack growth b, (b = b/woL,)-
Having determined a, c, 7 as functions of b for a given value of 
Kmax

L/Kmax
u, we are in a position to calculate the opening loads. The 

displacement gradient in (0, a) which is needed to compute the 
opening loads may be calculated numerically from (21) (see Appendix) 
after a, c, 7 are determined. 

D i s c u s s i o n of R e s u l t s 
The results for Kcont/^max u are plotted in Fig. 7 for various values 

of the load ratios Kmax
L/Km!lx

 u. We note that over a range of values 
of KmSLX

L/Kmax
 u, the initial contact load Kcont when little or no crack 

growth has taken place is typically quite small. For example, for an 
overload of a 100 percent (Kmax

L/Kmllx
u = 0.5), the contact load 

immediately after K 
max^ is ^cont/^max^ — 0.023. This means that 

initially the effective stress range AKea = Kmgx
u — Kcont is increased. 

If we were to assume that crack growth rate is primarily affected by 

0 1 2 3 
b«b/W0L 

Fig. 10 Opening loads Kofe„
 u versus crack-tip position 

b = b/w0L 

Fig. 11 Contact loads ATCOnt versus crack-tip position 

AKeff= Kmax
u~ KopBn

u (oiKmBX
u - Kcont17), our theoretical result 

is at least consistent with the often observed experimental fact [1] that 
there is an initial increase of crack growth rate for a very short period. 
We note also that the point of contact (see Fig. 8) as indicated by xc 

(equation 5(6)) in general extends a large distance behind the crack 
tip; this is in contrast to the result in [12] that the contact point is very 
close to the crack tip (xc/w = —0.0243) for a crack under constant 
amplitude cyclic load. 

It is interesting to note that, according to the picture given in Fig. 
5, two different values of opening loads can be defined. The lower 
KopenL is the load when the crack faces are opened up to the point 
x = —c. Of greater interest, however, is the actual (higher) opening 
load Kopm

u and it is still given by equation (12) (with /2(£) cal
culated according to (21)). The numerical values of KQpen

u are 
summarized in Fig. 10. The closing loads ifCont are calculated ac
cording to (5a) with 8R U now computed from /2(£) in (21) and /i(£) 
in (2) for a range of values b. We note that, from Figs. 10 and 11, 
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KopenU and Kmnt
u approach the steady-state situation (6 -» <») quite Since the solution we seek is symmetric and hence rxy = 0 along the 

rapidly over a range of Kmax
L/KmaLll

u. In fact, even for a 100 percent x-axis, this gives 
increase in the step load, Kopen

u reaches 95 percent of its limiting 
value (0.577 Kmax

u) once the crack has grown about one plastic 
zone size WOL, assuming that small-scale yielding conditions are 
maintained. This means that the effect of prior history of loading 
is significant only in a range in which crack growth is less than WQL-
In the limit as 6 -*• <», Fig. 2(6) is recovered except that the plastic 
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APPENDIX 
The gener.al formulation of two-dimensional linear elasticity in 

terms of the complex potentials 4>, \p can be found in [13, 14]. The 
potential \p can be expressed in terms of qb from stress continuity 
across the x-axis and the stresses are then given by 

Ox + o-y = 4 Re [$'(z)] 

o-y -irxy= <t>'(z) + </>'(z) + (z-z) $"(z) 
(15) 

(-'+«-' (16) 

where the subscripts + and — denote the limit of <j>' as z approaches 
the x-axis from above and below, respectively, i.e., 

4>± = lim (j> (x ± iy), y > 0 
y—o 

The displacements u and u in the x and y- directions, in plane stress, 
can be expressed as 

E — (u + iv) = (3 - v)<j>'(z) - (1 + v) [0'(z) -(z-z) 0"(z)] 
dx 

(17) 

Since u is continuous across the x-axis, this implies that 

dj> = / du\ _ I dv\ = _4_ _ 

dx \dxj+ \dxj- iE 

Using the solution in (8) and (16), we can show that the stress ay in 
(-co, — y) for the problem in Fig. 3(6) is given by 

• T dr 
ay/ay = — 

/ a - £ f f" la — 
y T - £ 

4 p /EEiA 
7T2 J a V T + 7 7 

(T)dT 
for £ < —y 

. y T _ £ 
For completeness, we restate the problem during reloading at K (> 
-Kopen). The boundary conditions along the x-axis are 

F+ + F- = 0 for £ < 0 

F+ + F- = rr2 0 < £ < /? (19) 

F+-F- = 2mf2{® 

F+-F- = 2irih(0 0 < € < i 

and F ~ Tr(KyKmflx
u)/vT as | f| -*• => and /? denotes the extent of 

tensile yielding ahead of the crack tip. The solution is given by 

Vff^lrfg 
2 Jo £ - f Jp 

' V T ^ 
/a(€)d£ 

-r vT 
* - r 

ir (20) 

Imposing F(/3) = 0 and setting /3 = 0 gives (12). 
With the use of (18) and (20), the displacement gradient in (0, a) 

is given by 

-MO^-^AOM/SO") 

= _I / I 
7rV(a-£) (£ + c)(£ + d) 

•K na dt I(a - t){t + c)(t + d) 
s-iio T^\~ 1 

rlh(t)dt fl 
J a t-H V 

l(t - a)(t + c)(t + d) 

JL C~° dt / ( « - t ) ( - t -
2 J-b t - t V • -t 

-t -c)(t + d) 
(21) 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 815 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///dxj-


A. F. Mak 
L. ML Keer 

Professor. 
Mem. ASME 

Department of Civil Engineering, 
The Technological Institute, 

Northwestern University, 
Evanston, III. 60201 

A No-Slip Edge Crack on a 
Bimaterial Interface1 

A solution for an interface edge crack whose surfaces experience no tangential slip is pre
sented. At the crack tip, K/ is found to be identical to that for a surface crack in a homoge
neous medium. Moreover, the shear stress is singular both at the surface and at the crack 
tip, with Kn at the crack tip being equal to -|8K/, where ft is Dundurs' constant. The 
crack opening displacements were calculated using a successive approximation scheme, 
which shows remarkable speed of convergence in this case. 

Introduction 
Because of the increasing use of adhesive structures in different 

areas of engineering, interface fracture mechanics has become an 
important research subject. Several interface crack models have been 
recently suggested [1,2] to overcome the mathematical difficulty that 
the conventional treatment possesses, namely, the oscillating singu
larities and material overlapping at the crack tip [4,5]. Also, there are 
compelling motivations from physical applications that require 
studies such as the present one [3]. 

We note in many actual engineering applications interfaces are very 
rough and interdigitated. The presence of such interdigitations can 
prevent relative slip at the interface or a portion thereof and thus 
enable shear loads to be sustained there even when the interface has 
failed in tension. A typical example is the interface between cancellous 
bone and PMMA, and in [3], an investigation of such a no-slip inter
face crack was solved for two bonded half planes. This paper continues 
the study and presents a solution for such an interface surface crack 
between two bonded quarter planes. In this investigation we use the 
work of Sneddon [6] as a point of departure. It will be seen that the 
method used in reference [6] provides a technique that most efficiently 
determines the pertinent physical quantities. 

Problem Formulation 
Consider two elastic quarter planes of different materials that are 

bonded along the interface y - 0 except for a region 0 < x < L where 
adhesion perpendicular to the interface is lost (Fig. 1). The symbols 
u. and v are, respectively, the shear modulus and Poisson's ratio. The 
derivation below is for plane strain; for plane stress replace v by 

1 Part of this work was supported by Grant NIHR 23P-55898 and the Army 
Research Office under Grant DAAG 29-78-G-0199. 

Contributed by the Applied Mechanics Division and presented at the 
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partment. Manuscript received by ASME Applied Mechanics Division, January, 
1980; final revision, April, 1980. Paper No. 80-WA/APM-14. 

y\ 

p, v, 

— L H M* "« 

Fig. 1 Geometry and coordinate system for interface edge crack 

v/(l + v). Note that due to interdigitations, relative shear motions are 
prohibited even within the region, 0 < x < L. The boundary conditions 
are as follows: 

v ( * , 0 ) •• y(*,0) 

a\y(x,0) = a\y{xfi) x > 0 

o\y(x,V) = oyy(x,0) = -P 0 , 0 < * < L 

ul(x,0) = ul(x,0),x > 0 

ul(x,0) = ul(x,0), x>L 

c4(0,y) = o-L(0,y) = 0 

oU0,y) = <Tly(0,y) = 0y>0,y<0 

(la) 

(16) 

(lc) 

(Id) 

(le) 

(1/) 

(1*) 
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where <rIX, ayy, <s\y and ux, uy are stresses and displacements, re- , ( . = ( / ) 1 / i r~ , _ fA,(«le-«y d£ 
spectively, (i = 1,2). Superscripts are used to distinguish the field °xA"'y' W> J 0 WW ^ i H ^ i W + ^ i W J e a* 
quantities in their respective quarter planes (Fig. 1). _ „ 

The displacements, which automatically satisfy the field equations - (2/ir)1/2 J Ci(f) cos fy df, (11a) 

of elasticity, can be expressed in terms of their suitably chosen Fourier 

sine and cosine transforms as follows [6]: a2My) _ ( 2 / 7 r ) i / 2 J " [ ( £ y + 2„1){flg(f) + £A2(£)]e«* d£ 

2li1u
1
x{x,y) = (2W* ("°[Ai(&=yZBlG)]e-tyamfrdt ~ (2Mm fQ C2(f) cos fy df, ( l ib) 

, /-»» and, clearly, 
+ (2/Tr)1'2 ^ d t f ) (2 - 2i/i + fx)e-S* cos fy d f (2a) 

^ ° < ( 0 , y ) = <r2
y(0,y)^0. ( l ie) 

2ii2U2
x(x,y) = (2/7r)1/2 I [A2(£) + y£B2(£)]e^ sin £x d£ Thus boundary condition (lg) is satisfied automatically. 

Jo Writing 

+ (2/TT)1/2 J*°° r i C 2 ( f ) (2 -21/2+ fx)e-f* cos f y d f (2ft) £Bi(£) = £>i(£) + £(£) 

£Ai(£) = - 2 ( 1 - „!)£(£) - (1 - 2i»1)D1(f) 

2/xiujU,y) = (2/ir)i/2 f " [Ai(£) + (3 - 4* t £B2(£) = C-2(£) + #(£) 

° _ £A2(£) = 2(1 - e2)£(£) + (1 - 2K 2 )D 2 (£ ) (12) 

+ y?)Bi(£)]e y cos 53c d£ - (2/TT) J ^ f o i ( . 0 the interfacial shear stress can be reduced to a Fourier sine transform 

X ( l - 2 J - 1 - ^ ) e - f J t s i n f y d f , (2c) 
as 

o 2, , , , / u / a f - r . , « o-i,(*,0) = o5,(*,0) - (2/x)W f " s ( € ) s i i i g x d € (13) 
2M2"J(*,y) = ( 2 M 1 ' 2 I [-A2(£) ^ 0 

X
which satisfies boundary condition (1ft) automatically. 

^ J C 2 ( f ) Imposing boundary condition (1/) and taking the inverse cosine 
transform for equations (11a) and (lift), Ci(f) and C2(f) can be ex-

X (1 - 2i/2 - fx)e~ fx sin fy df. (2d) pressed explicitly as 
The corresponding interfacial displacements and stresses are thus Ci(f) = — I |[3i?2(^,i") + ^i(£,f)]£(£) + 2K"2(£,?)-Di(£))d£, 

written as follows: 
(14a) 

2MIU](X,0) = (2/7r)V2 J^ A l ( 0 s in ^ d£ ^ = _ J^" |[3K2(£,f) + Ki(£,f)]E(0 + 2tf2(£,r)fl2(£))d£, 

+ (2/*)Wj^V1Ci(M2-2i»1 + fr)e-i*d£ (3) ( 146 ) 

where 

(15a) 

tf2(U) = (2/7r)£f2/(r2 + £2)2- (15M 

2*t1«J(*,0) = (2/ir)i/2 J ^ ° [(3 - 4„1)B1(£) + Ai(f)]cos £e d£, (4) K i ( ^ f ) = (2/^)^/(^-2 + £2)2 

2AI2U?(X,0) = (2/7r)!/2 f " A2(f) s i n £x d£ 

+ (2/ir)1/2 P™ f ^ r (0(2 —2 + f 1 -fcHt (M Summing equations (7) and (9) and using boundary condition (lc), 

Jo ' we find 

2„2u2(*,0) = (2Mm £ [ ( 3 - 4 * B t ( e - A2(«]cos « , dfc (6) ( 2 / j r ) 1 / 2 j» ^ _ ^ ^ ^ ^ 

< ,̂o) = -0*0" £ [2(1 _ „l)Sl(£) + A l ( 0 ] € cos j , di _ (2 /7 r ) i /2 ^ ^ -nmn - W.-^W 

-(2Ar)i/2 f"Ci({)(l-r*)e-«*df, (7) = - 2 P 0 , * < L. (16) 
ft/0 

ffiy(jc,0) = - ( 2 / i ) « f" [(1 - 2I/1)S1(^) + Ai(£)]$ sin £e d£, 

(8) 

<4(*,0) = (2/,i-)i/2 f " [ 2 ( i _ „2)B2(£) - A2(f)]f cos & d£ 
*Jo 

Boundary condition ( la) implies 

(2/TT)1/2 f ° [Di(f) + £>2(£)]cos £xd£ 

= (2/TT)1/2 j ^ ° ° [C2(f) - d ( f ) ] ( l - f*)e-«*df. (17) 

Substituting C\, C2 from equations (14a), (14ft) and using the defi-
- (2/TT)1 /2 I C2(f)(l - fjc)e—f* df, (9) rations of the kernels below, which are found upon taking the indi-

*^° cated inverse cosine transforms 

and 

^ b , 0 ) = - ( 2 W « r [ ( l - 2 , 2 ) B 2 « ) - A 2 ( £ ) ] £ s i n ? * d e (10) L ^ ^ s J o K ^ ) K M W 

4 7)f 

The stress components on the edge x = 0 are TT2 (£2 - r;2)2 
^ ^ i o g ^ - 1 

e-v2 
(18a) 
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Li2(i/,£)= fj Kitf&K^tfdt + j"J {(a - 2/?)L3(z) - <xL2(z)} 2Z>2(&)dz + j3£2(0, f > 0 

i r 2 ( £ 2 - i ) 2 ) 2 

£iiO?.?)s J^~JCi(r,£)ffift,0df 

4 7)3 

'-M^/lu&r 
ie - v2 

7r 2 (£ 2 -? / 2 ) 2 
£2 + 

v2 \nl 

, (18b) 

, (18c) 

(28) 
(Cont.) 

[2)2(0 ~ aSi(& - pEffl • ̂ —^ + l "2 

Ml M2 

equation (17) becomes 

Di(& + Dai& = 4 J ^ " j[3L22(u,0 + ii2(ij,t)]B(u) 

+ L22(i?,^)[fli(j;) + D2(r,)\dn. (19) 

Similarly, boundary condition (Id) leads to 

/ l — j/i I - v2\ 1 - 2J>2 1 - 2i»i 

I Ml M2 / 2JX2 2/ti 

(2/TT)1/2 j ^ 6(f) sintttffc £ > 0 (29) 

where x has been nondimensionalized with respect to the crack length 
L, and 

1 
Li(z) = zd < ^— + 

7T2 I ( 1 - Z 2 ) 3 (1_Z2)2J 
2z2 log 2 1 + 2 2 

r 2(1 ~ 02) T . ,, 1v2 • 

M2 M2 

^2(2)^ — z 
•K1 

. , 4 f(l + z ) l o g z 
ia (z) = ; 2 j — : r r - + -

(1 - 22)3 2(1 - Z2)2 

2(1 - n ) , , „ 21/, 
i i2( l . f ) L22(r)£) 

Mi Mi 
3 - 4 i / 2 3 - Av 

D2(V) 

DM 

(1 - z2)3 (1 - z2)2 

(30a) 

(306) 

(30c) 

l]JLi2(v,B 

• 3 ( ^ + ^L22^) + ( i ^ + i ^ ) L 1 1 ( ^ ) 
\M2 Ml/ \ M2 Ml / 

B(i?) 

By defining 

6(x) = (d/d*)(u];(z,0) - u2(x,0)), 

•dv- (20) 

(21) 

boundary condition (le) can be rewritten as 

We define the Fourier sine transforms of £(£), 2>i(£), 32(£) as 

e(s) = ( 2 / T T F 2 f°°.E(£) sin £sd£, (31a) 

di(s) = (2/vr)1/2 P ~ S ^ ) sin &dl (316) 

d2(s) = (2/TT)1/2 f " B 2 ( | ) sin £s df. (31c) 

In order to be consistent with equation (29), we require these 
transforms be identically zero for s > 1. Then, after some changes of 
variables, equations (26)-(28) can be rewritten as the following system 
of Fredholm integral equations: 

(1 -2J / X 1 - 2v2\ X~vi l-v9 

2M2 / Ml M2 2M1 
1 r1 1 1 r1 

- J d2{s) ds-- I d 
IT Jo S — X IT Jo 

:(2/7r)1'2 C b{rj) sin fr dri. (22) 

2(s) 

1 

'2s(s -x) 

We let 

/3 = 

>? = &> 

_ JK2(I - "1) - MI(I - m) 

M2(l - "1) + Mi(l - v2) ' 

H2(l ~ 2^l) - Mi(l - 2»2) 

(23) 

(24a) 

(246) 

i(*) = 2 j ^ e(s)-

s + x, 

,j4-)+L»E 
+ 2di(s)L3 

(s + x) 3 

= -P0, 0 < * < 1 (32) 

ds, 0 < x < 1 (33) 

e(x ) = X d e ( s ) -
2[M2<1 - "1) + Mi(l - v2)] ' 

where a and /? are Dundurs' constants [7], and further define 

232(£) =D2(&-D1(£) (25a) 

and 

22) i (£ )sD 2 (£ )+Di(£) . (256) 

The system of integral equations which needs to be solved becomes 

(2/TT)1/2 fj DS(& cos £*df - (2/TT)1/2 JJ J" 2K2(f,flfl2(f)(l 

- fx)e-frd£df = -P 0 , x < 1 (26) 

2>i(£) = 2 j ^ ° ![3L3(z) + L2(z)]E(fr) 

+ 2L3(z)2)i(£z)!dz, £ > 0 (27) 

m)= r"{[L2(2)-L3(2)]2ffl1(^2) 
Jo 

+ [2L2(z) - 3Ls(z) + Li(2)]£(?z)|dz (28) 

2L2pj-3L3P +L1F 

+ 2d 1 ( s ) - |L 2 F - L 3 g ds 

X' 2d2(s) • (a - 2/?)L3 

@ - * @ : 
ds 

+ /?d2(x), 0 < x < 1. (34) 

The remarkable feature of this system of equations is that d2(s), 
which will give the Mode-I stress-intensity factor at x = L, only de
pends upon the load and not upon the elastic constants. Equation (25) 
is immediately recognized as that associated with an edge crack per
pendicular to the surface of a homogeneous elastic half plane [8-
10]. 

S o l u t i o n 
Equation (32) is first solved independently for d2(s). After d2(s) 

is obtained, it is used in equations (33) and (34), which are then solved 
by successive approximations. Solutions to the edge crack problem 
have been given by many authors, see, e.g. [8-10], and we recalculate 
only to obtain d2(s), which is to be used later in the successive ap
proximation scheme. 

Changing the variables by 
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r = 2x -1, t = 2s - 1, 

and writing d2(t) of the form 

• d2(t) = dm/a - t2)i/2, 

(35) 

(36) 

Table 1 The values of d 2 (0 

equation (32) was solved using the Gauss-Chebyshev integration 
formula [11] with 40 integrating points. The values of dl(t) obtained 
are shown in Table 1. 

We obtain for K\ the value 

Ki = lim [2(x - l)]1'2 ffyy(x,0) = - d | ( l ) / \ / 2 = 1.1213, (37) 
* - i + 

which is in agreement with the references just cited. 
To solve equations (26) and (27) by successive approximations, 

substitute 

d2(x) = d'2(2x - 1)/2[*(1 - x)]1'2 (38) 

back into equation (27). For the first approximations of d\(x) and 
e(x), denoted by idi(x), \e(x), respectively, the contributions from 
the terms with kernels L's are assumed to be small compared to d2(x). 
Hence 

idi(x) = 0 (39a) 

ieU) = /3 • dl(2x - l)/2[x(l - x)]l/2. (396) 

From equation (13), one can write 

<rxy(x,0) = e(x)H(l - x), (40a) 

where H(x) is the Heaviside unit step function and e(x) is related to 
£(£) by 

E(&'J- Ce{p) sin {p&dp. 
V ir Jo 

The first approximation of Ku is obtained as 

(406) 

K n = lim [2(1 - x)Y'2 • axy(x,0) = Pd'2(l)/^/2 = -1.1213 ft 
x = l - x -~ 1-

Ku= lim [2*]1/2- axy(xfi) = /3dJ(-l)/V2 = -0.0932 ft 
1=0 . x — 0+ 

(41a) 

(416) 

It can be shown that higher approximations do not contribute to 
Ku. Note that at the crack tip, 

i = i -
-PKi. 

x=l+ 
(42) 

To determine the first approximation of the crack opening dis
placements 8(x), recall 

6(*) = 
'1-PI 1 •v2 

Mi M2 
[d2(x) - adi(x) 

-/Se(*)], 0 < » < 1 . (43) 

t 

0.9993 

0.9934 

0.9817 

0.9643 

0.9411 

0.9125 

0.8785 

0.8394 

0.7953 

0.7466 

0.6934 

0.6362 

0.5753 

0.5110 

0.4437 

0.3738 

0.3017 

0.2279 

0.1526 

0.0766 

d*( t ) 

-1,585 

-1 .581 

-1.572 

-1.559 

-1 .543 

-1.522 

-1.497 

-1.469 

-1.438 

-1.404 

-1.367 

-1.328 

-1.287 

-1.244 

-1 .201 

-1.157 

-1.112 

-1 .068 

-1 .023 

-0.980 

t 

0.0000 

-0.0766 

-0.1526 

-0.2279 

-0.3017 

-0.3738 

-0.4437 

-0.5110 

-0.5753 

-0.6362 

-0.6934 

-0.7466 

-0.7953 

-0.8394 

-0.8785 

-0.9125 

-0.9411 

-0.9643 

-0.9817 

-0.9934 

d*(t) 

-0.937 

-0.896 

-0.855 

-0.816 

-0.778 

-0.740 

-0.704 

-0.667 

-0.630 

-0.592 

-0.553 

-0.511 

-0.467 

-0.420 

-0.370 

-0.317 

-0.262 

-0.203 

-0.143 

-0.079 

X 

0. 

0 .5 

Table 2 

l 6 

0.5907 

0.4272 

The convergence 

36 

0.5748 

0 .4210 

56 

0.5783 

0.4220 

of 10" •« ( 

7 6 

0.5805 

0.4228 

x) af x = 

96 

0.5813 

0.4230 

0 and 1/2 

„ n 6 _ 

0.5817 

0.4232 

0.5818 

0.4232 

Substituting ie(x) and idi(x) into equation (43), the first approxi
mation i6(x) is readily obtained as 

16(*) = U-/?2) 
1 ~ "1 1 ~ "2 

d'2(2x - l)/2[x(l - x)]1/2. (44) 
Mi M2 

The corresponding crack opening displacements 5(x) can be found 
from 

iS(x) = - f ib(y)dy, 0 < * < 1. (45) 

To calculate the second approximation, \e(x) and \d\(x) were 
substituted back into the right-hand side of equations (33) and (34), 
the resultant 2e(x) and 2d\(x) obtained on the left-hand side were then 
put into equations (43) and (45) to determine 28(x). These procedures 

can be carried out successively until the maximum difference between 
iS(x) and i-id(x) is found to be less than a preset value. 

Table 2 shows the convergence of; 5 (x) at two particular locations 
of x. The interface was taken to be that between cancellous bone and 
PMMA, the material properties of which are listed in Table 3. 

One should note that the first approximation already gives a very 
good estimate of the actual crack opening displacements. If only the 
first approximation is used, one is in error by about 1.5 percent at 
maximum. The shape of the crack opening is shown in Fig. 2. 

D i s c u s s i o n and Conc lus ions 
It is interesting to note that the K\ found at the tip of this type of 
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Distance fron edge, x 

Fig. 2 The shape of the crack opened under uniform pressure; the interface 
was taken to be that between PMMA and cancellous bone with material 
properties given in Table 3 

interface crack is identical to that for an edge crack in a homogeneous 
material. This feature is implicit in equation (32), which is identical 
to the singular integral equation associated with the homogeneous 
edge crack. The same analog has been demonstrated for the interior 
crack in the full plane [3]. 

Though the relative shear displacements were prescribed to be zero 
along the whole interface, the resultant shear stresses have been shown 
to be singular at the crack tip and only zero outside the crack region. 
More interesting, Kn as x - • 1~ is equal to -|SKi, where (3 is Dundurs' 
constant. Again, this feature was also demonstrated in the case of 
interior crack [3]. 

The method of successive approximations which was used to cal
culate the crack opening displacements showed excellent convergence 
in this application. For relatively little computational effort, excellent 
estimates of the crack opening displacements can be obtained. The 
first approximation alone is within 1.5 percent of the final solution. 

The extension of this method to solve the problem with nonuniform 
pressure as a function of x is obvious. One can just replace —P0 in 
equation (32) with —P{x) and proceed accordingly in exactly the same 
manner. 

For a linear loading of the form 

P(x) = - P o d - x/L), 0<x<L, (46) 

the resultant stress-intensity factors are shown in Table 4, which also 
lists, for the sake of comparison, the corresponding stress-intensity 
factors due to uniform pressure as obtained in the foregoing. 

As a final remark, it is interesting to note that for linear pressure 
loading, Kn aix = 0 is twice as large as that for the uniform case. 
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Table 3 The elastic properties of PMMA and cancellous bone 

m a t e r i a l 

(1) PMMA 

(2) Cancellous Bone 

p r o p e r t i e s 

K ( N / m 2 ) 

2.Ox 10 8 

1 . 3 x l 0 8 

V 

0.4 

0.32 

Table 4 Comparison of the stress-intensity factors due to uniform loading 
and linear loading 

X - + 1 

x + 0 

K I I 
x + 1 

Uniform Loading 

1.1213 

- 0 . 0 9 3 2 e 

- 1 . 1 2 1 3 6 

L inea r Loading 
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-0 .8768 6 
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Elastic Moduli of Gray and Nodular 
Cast Iron 
The elastic moduli of both gray and nodular cast iron were measured by a pulse-echo elas
tic-wave technique at ambient and elevated temperatures up to 760°C. When compared 
at similar graphite contents, the elastic moduli of gray cast iron were much lower than 
those of nodular cast iron. These results are satisfactorily explained by theoretical models 
for the elastic moduli of two-phase solids which take into account not only the volume 
fraction but also the shape of the graphite particles. The temperature-dependence of the 
elastic moduli of both gray and nodular cast iron can also be correctly predicted from 
these same models. 

Introduction 
The general problem of predicting the elastic moduli of a two-phase 

solid from the elastic moduli and volume fractions of each of the two 
phases has been studied by a number of investigators [1-5]. The so
lution of the problem requires that isotropic elastic behavior be as
sumed for both phases, and that interaction effects between the 
particles can be ignored. In many polycrystalline metals that contain 
large, widely spaced particles these approximations appear to be 
reasonable. 

Hashin [1] has solved the problem for the case of spherical particles. 
Wu [2, 3] and Rossi [4] have given solutions for the case of needle or 
disk-shaped particles. Wu and Rossi have both shown that the elastic 
moduli of the two-phase solid are more strongly affected by disk-
shaped particles than by spherical particles. Budiansky and O'Connel 
[5] have solved the problem for the special case of a cracked solid 
(second phase is a disk-shaped hole). 

The elastic moduli of gray and nodular cast-iron offer an interesting 
example of the effect of particle shape. The elastic moduli of both gray 
and nodular cast iron decrease with increasing graphite content. 
However, when compared at similar graphite contents, the elastic 
moduli of gray cast iron, in which the graphite particles are disk-
shaped (flakes), are much lower than those of nodular cast iron, in 
which the graphite particles are nearly spherical [6]. In the present 
study, the elastic moduli of several gray cast irons and one nodular 
cast iron were measured at ambient and elevated temperatures. The 
theories of Hashin [1] of Wu [2,3] and of Rossi [4] were used to explain 
the large effect of graphite particle shape on the elastic moduli of cast 
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Table 1 Chemical compositions of gray and nodular cast irons—percent 

Gray Cast Iron I 
_C Graphite Mn P _E 

3.00 2.60 0.70 0.089 0.02 

Si 

1.90 0.17 0.06 

C Graphite Mn 
0 

4.30 4.1 0.53 

Gray Cast Iron II 

0.076 

Nodular Cast Iron 

S 

0.025 

Si 

1.52 

_C Graphite Mn p S si Ni Ti Mg 

3.69 2 .9 0 .67 0 .055 0 .005 2 . 3 3 0 .70 0.024 0 .043 

Experimental Procedure 
The chemical compositions of the two gray cast irons and the 

nodular cast iron are given in Table 1. Specimens of the lower carbon 
gray cast iron I were were obtained from the jamb of a coke-oven door. 
Specimens of the higher carbon gray cast iron II were obtained from 
an ingot mold. Because of variations in graphite flake size and amount 
with cooling rate during casting, specimens from two representative 
locations (designated A and B) in the casting were obtained from each 
of the gray cast irons. Specimens of the nodular cast iron were ob
tained from a test bar cast from a Mg-innoculated heat. 

Rod specimens with a diameter of 3 mm and a length of 76 mm were 
machined from gray cast iron I and from the nodular cast iron for a 
dynamic determination of the elastic moduli. For the more brittle gray 
cast iron II, 12.7-mm-thick plate specimens were surface-ground and 
used for a dynamic determination of the elastic moduli. 

Although specimens of both the gray and nodular cast irons were 
examined in the as-cast condition, several specimens of the nodular 
cast iron were also examined in the annealed and normalized-and-
tempered conditions to determine the possible effects of matrix mi-
crostructure (ferrite or pearlite) on the elastic moduli. The annealing 
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b. Spec1Jnen B.
a. Cast tORt bar

Fig. 1 Microstructure of gray cast Iron I. X100.

Fig. 3 Microstructure of nodular cast Iron. X200.

c. Normalized and telllpered

b. Spec1Jnen B.a. Spec1Jnen A.

Flg.2 Microstructure of gray cast Iron II. X100.

treatment consisted of heating the specimen to 732°C, holding for 1
hr, and furnace cooling. The normalizing and tempering treatment
consisted of heating the specimen to 898°C for 1.5 hr, followed by air
cooling and then tempering at 537°C for 1.5 hr.

The elastic moduli of both gray cast iron I and the nodular cast iron
were measured by the thin-rod, pulse-echo technique (100 kHz) de
scribed earlier [7]. For elevated-temperature measurements, the thin
rods were placed in an inert-gas atmosphere furnace and slowly heated
from ambient to temperatures of 760°C. A tungsten wire spot-welded
to the rods served as a waveguide to transmit and receive elastic pulses
from the specimen. The transit times for both dilatational and shear
waves were measured at 100°C intervals on a Tektronix 7704 oscil
loscope, previously calibrated with a time-mark generator.

The elastic moduli of gray cast iron II were measured on the plate
specimens using 1 MHz dilatational and shear waves generated by
thin quartz crystals with a pulse-echo-overlap technique [8]. These

. measurements were restricted to ambient temperature.
Because densities are required for the determination of the elastic

moduli from the elastic wave velocities, the densities of all the spec
imens were measured at ambient temperature by a standard
weight-loss technique [9]. Specimen lengths and densities were cor
rected for thermal expansion at elevated temperatures by using the
data of Nix and McNair for pure iron [10].

All the specimens were examined metallographically after polishing
and etching in 2 percent nital, and the volume fraction, mean size, and
axial ratio of the graphite flakes or nodules were determined by
quantitative met~llographictechniques [11,12].

Results
Microstructural Observations. Typical microstructures of gray

cast iron I are shown in Figs. l(a, b). Specimen A, which was taken
from a thinner section of the casting, had slightly smaller graphite
flakes than Specimen B, because of its higher cooling rate during so
lidification. The matrix phase of both specimens was pearlite.

Typical microstructures of gray cast iron II are shown in Figs. 2(a,
b). The graphite flakes in specimen A were much smaller than those
in specimen B because specimen A was located closer to a chill casting
stool. The matrix phase of both specimens was primarily ferrite.

The microstructures ofthe nodular cast iron in the as-cast condi
tion, after annealing, and after normalizing and tempering are shown
in Figs. 3(a, b, c), respectively. The as-cast specimen contained
spheroidal graphite nodules which were surrounded by a ferrite rim;
the remainder of the matrix being pearlite. The annealed specimen
had a similar microstructure but contained a larger amount of ferrite.
The normalized and tempered specimen contained a relatively small
amount of ferrite and a correspondingly larger amount of pearlite. The
smaller graphite nodules in the normalized-and-tempered specimen
are not a result of the heat treatment but are believed to result from
variations in the original as-cast specimens caused by differences in
solidification rate.

The density of the nodular and gray cast irons is given in Table 2;
The densities of both gray cast irons and of the nodular cast iron were
all considerably lower than that of iron because the density ofgraphite
(2.265 g/cm3) is much less than that of iron (7.870 g/cm3). Likewise,
the density of gray cast iron II was much less than that of gray cast
iron I because of its much higher graphite content.

The volume fractions ofgraphite in the nodular and gray cast irons
are given in Table 3. The volume fraction of graphite was slightly
different in specimens A and B for each of the gray cast irons, pre
sumably because of differences in cooling rate during solidification.
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Table 2 Density of gray and nodular cast Irons 

Type C a s t I r o n 

Gray ( I I 

Gray ( I I ) 

Nodu la r 

Specimen 

A 

B 

A 

B 

A s - c a s t 

Annea led 

Normal i zed 
and t empered 

D e n s i t y , q/cm 

7.232 

7 .224 

6 .880 

6 .938 

7 .113 

7 .056 

7.084 

Table 4 Young's modulus of gray and nodular cast Irons 

Young's Modulus, 
1 0 4 MPa ( 1 0 6 p s i ) 

1 2 . 8 ( l b . 6 ) 

1 3 . 4 ( 1 9 . 5 ) 

9 . 7 2 ( 1 4 . 1 ) 

8 . 3 4 ( 1 2 . 1 ) 

1 7 . 6 ( 2 5 . 6 ) 

1 6 . 9 ( 2 4 . 5 ) 

1 6 . 9 ( 2 4 . 6 ) 

Type C a s t I r o n 

Gray ( I ) 

Gray ( I I ) 

N o d u l a r 

Specimen 

A 

B 

A 

B 

A s - c a s t 

Annea l ed 

N o r m a l i z e d 
and t e m p e r e d 

Table 3 Volume fraction and particle size of graphite in gray and nodular 
cast irons 

Type C a s t I r o n 

Gray ( I ) 

Gray ( I I ) 

Nodu la r 

Specimen 

A 

B 

A 

B 

A s - c a s t 

Annea led 

Normal i zed 
and Tempered 

Volume 
F r a c t i o n 
G r a p h i t e 

0 .082 

0 . 0 7 1 

0 .127 

0 .108 

0 .092 

0 .105 

0 .092 

Mean 
D iame te r 

3 , mm 

0 .120 

0 .194 

0.14 

0 .44 

D, mm 

0.050 

0 .058 

0 .034 

P a r t i c l e S i z e 
, A x i a l R a t i o , 

( d / t ) 

14 .6 

1 5 . 2 

23 .9 

24 .6 

Table 5 

Type C a s t I r o n 

Gray ( I ) 

Gray ( I I ) 

N o d u l a r 

Shear modulus of gray and nodular cast Ir 

S h e a r f 
Specimen 10 4 MPa 

A 

B 

A 

B 

A s - c a s t 

Annea led 

N o r m a l i z e d 
and t empered 

5 .16 

5 .11 

3 .93 

3 .38 

6 .60 

6 .14 

6 .56 

ons 

l o d u l u s , 
( 1 0 6 p s i ) 

( 7 . 4 8 ) 

( 7 . 4 2 ) 

( 5 . 7 0 ) 

( 4 . 9 0 ) 

( 9 . 5 8 ) 

( 9 . 4 4 ) 

( 9 . 5 2 ) 

As expected from its higher carbon content, gray cast iron II contained 
a larger volume fraction of graphite than gray cast iron I. The slightly 
higher volume fraction of graphite in the nodular iron in the annealed 
condition as compared with the as-cast or normalized and tempered 
conditions was probably related to slower cooling during the annealing 
treatment. 

The mean diameter and mean axial ratio of the graphite flakes were 
calculated by the method of Fullman [12]. If the distribution of par
ticle sizes is not large, and the shapes of the graphite flakes are ap
proximated by disks, Fullman indicates that the mean diameter, d, 
the mean thickness, t, and the mean axial ratio, (d/t), can be deter
mined from measurements of the length and width of the intersections 
of the graphite flakes with a random-two-dimensional surface (the 
plane of polish). The values of d and (d/t) for the gray cast irons are 
given in Table 3. 

For nodular graphite, the mean diameter of the graphite nodules, 
D, was calculated in a manner completely analogous to that used for 
graphite flakes, assuming that the nodules have a spherical shape [12]. 
The values of D for the nodular cast iron are given in Table 3. 

Elastic Moduli Results. The elastic moduli of gray cast iron I 
and of the nodular cast iron were calculated from the formulas for 
propagation of elastic waves in thin rods [13]: 

E = pVt
2 

G = pVs
2 

(1) 

(2) 

where E is the Young's modulus, G is the shear modulus, V/ is the 
velocity of longitudinal (dilatational) waves, V„ is the velocity of shear 
waves, and p is the density. 

The elastic moduli of gray cast iron II, for which plate rather than 
rod specimens were used, were determined from the formulas for 
propagation of elastic waves in bulk solids [13]: 

G = PVS* 

_G(3X + 2G) 

(G + X) 

(3) 

(4) 

WT% GRAPHITE 
2 3 4 

0.05 

mm 
_. FLAKE SIZE 

J 2 L. 
0.10 0.15 

VOLUME FRACTION GRAPHITE 

Fig. 4 Young's modulus of nodular and gray cast iron at 25°C 

X + 2G = pVt
2 (5) 

where X is the Lame constant. 
The values of E and G for the gray and nodular cast irons at room 

temperature are given in Tables 4 and 5, respectively. These values 
are also plotted versus graphite content in Figs. 4 and 5. The curves 
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WT% GRAPHITE 

2 3 4 5 

GRAY CAST IRON 

«^k 0.4 mm FLAKE 
^ S SIZE 

0.05 0.15 

VOLUME FRACTION GRAPHITE 

Fig. 5 Shear modulus of nodular and gray cast iron at 25°C 
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Fig. 6 Temperature-dependence of elastic moduli of nodular and gray cast 
iron 

have been drawn through the data points so that they extrapolate to 
a value of Young's modulus of 20.9 X 104 MPa (30.4 X 106 psi) and a 
value of the shear modulus of 8.13 X 104 MPa (11.8 X 106 psi) typical 
of polycrystalline iron [15]. The elastic moduli of both the nodular 
and gray cast irons decreased with increasing graphite content. 
However, the rate of decrease was much greater in the gray cast irons 
than in the nodular cast iron. In addition to graphite content, graphite 
flake size also has a slight influence on the elastic moduli. Three of 
the gray iron specimens with an average flake size of 0.15 mm had 
uniformly higher elastic moduli (for a given volume fraction of 
graphite) than the fourth specimen which had a significantly larger 
flake size of 0.44 mm. 

The temperature-dependence of the elastic moduli of specimen A 
of gray cast iron I and of the as-cast specimen of the nodular cast iron 
are shown in Fig. 6 in terms of the normalized values E{T)/E(25°C) 
or G(T)/G(25°C). The elastic moduli of both nodular and gray cast 
iron decreased in a similar manner with increasing temperature. The 
same values of E and G were obtained upon heating and cooling. 

Discussion 
The effect of graphite on the elastic moduli of nodular and gray cast 

irons can be understood in terms of theoretical models for the elastic 
moduli of two-phase solids [1-4]. The required input information is 
the elastic moduli of the matrix phase, the elastic moduli of the 
graphite particles, and the volume fraction and shape of the graphite 
particles. 

The matrix phase in cast irons consists of ferrite, pearlite, or mix
tures of both phases. Because the elastic moduli of cementite are es
sentially the same as those of pure iron [14], it is not expected that 
differences in the amount of pearlite in the matrix phase can signifi
cantly affect the elastic moduli. This conclusion is supported by the 
present results because normalizing and tempering, or annealing did 
not significantly change the elastic moduli of the nodular cast iron, 
even though the pearlite contents were changed by these heat treat
ments (Fig. 3). Similar results for gray cast iron have been reported 
by Plenard [6]. 

The ferrite and pearlite phases in cast iron usually contain up to 
several percent of alloying elements, principally silicon and manga
nese. However, a few percent of substitutional alloying elements can 
alter the elastic moduli of iron by only a few percent [7], Because of 
the relatively minor effects of pearlite content and of substitutional 
alloying elements on the elastic moduli, only a small error results if 
the matrix phase of cast iron is considered to have the same values of 
Young's modulus and shear modulus as polycrystalline iron. 

The second-phase graphite particles are polycrystalline in the case 

of nodular graphite but are nearly single crystals in the case of flake 
graphite [16]. Therefore, the elastic moduli for polycrystalline 
graphite, which are applicable for nodular graphite,.would not be 
appropriate for flake graphite. However, because of the large differ
ence in the elastic moduli of iron and of graphite, it is not believed that 
a significant error is introduced if both the nodules and flakes are 
assumed to have a Young's modulus of 0.85 X 104 MPa (1.2 X 106 psi) 
and a shear modulus of 0.33 X 104 MPa (0.48 X 106 psi) typical of 
polycrystalline graphite [15]. 

Because of the much lower elastic moduli of graphite, the elastic 
moduli of both gray and nodular cast iron decrease as the graphite 
content is increased, as shown in Figs. 4 and 5. However, the decrease 
in elastic moduli of gray cast iron, in which the graphite particles are 
disk-shaped (flakes), is much greater than the corresponding decrease 
in elastic moduli of nodular cast iron, in which the graphite particles 
are nearly spherical. 

Nodular Cast Iron. Hashin [1] has given solutions for the elastic 
moduli of a two-phase solid which contains a random distribution of 
spherical particles. Hashin obtained these solutions by considering 
the changes in the strain energy in a loaded homogeneous body caused 
by the insertion of inhomogeneities. Two geometric approximations 
were made by Hashin: 

1 The particles are spherical. 
2 The action of the two-phase material on any one particle is 

transmitted through a spherical shell which lies wholly in the matrix 
phase. 

Upper and lower bounds of the bulk and shear modulus of the two-
phase solid were then calculated by Hashin using the principle of 
minimum strain energy. The upper and lower bounds of both the bulk 
and shear moduli of nodular cast iron with a low volume fraction of 
spherical graphite particles are nearly identical and can be approxi
mated by the following expressions: 

K = KF 

G - Gpe 

3(1 - vFe) (1 - KJKFe) 

2(1 - 2vFe) + (1 + vYe)KJK¥e 

1 5 ( 1 - vFe) (1 - GJG¥e) 
/ c 

(6) 

(7) 
(7 - 5i/Fe) + 2(4 - 5i/Pe)Gc/GFe 

where K and G are the bulk and shear moduli of the cast iron, re
spectively, KP e and GFe are the bulk and shear moduli of the iron 
matrix, respectively, Kc and Gc are the bulk and shear moduli of the 
graphite particles, respectively, vFe is the Poisson's ratio of the iron 
matrix, and fc is the volume fraction of the graphite particles. To 
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calculate the Young's modulus of the nodular cast iron, equations (6) 
and (7) and the standard relationship between the isotropic elastic 
constants can be used [13]: 

E--
9KG 

' (3K + G) 
(8) 

Values of E and G for nodular cast iron were calculated as a func
tion of the volume fraction of graphite from equations (6)-(8) using 
known values of the elastic moduli for pure iron and for graphite [15]. 
The values of E and G calculated from the Hashin theory were in 
excellent agreement with the observed values as shown in Figs. 4 and 
5.,Good agreement with the Hashin theory was also obtained for 
noduluar cast iron by Plenard [6]. 

Gray Cast Iron. For disk-shaped particles, the solutions must 
take into account the stress-concentration factor at the tip of the disk. 
Since the stress-concentration factor is dependent on the relative 
orientation between the stress axis and the plane of the disk, the 
problem is much more complicated than for the case of spheres, and 
solutions are only possible if some simplifying assumptions are made. 
In the theory of Wu [3], the strain field given by Eshelby [17] about 
an ellipsoidal inclusion was used, and the inclusions were assumed 
to be embedded in a matrix whose gross properties were identical to 
those of the composite. The final solution was then obtained by per
forming a spatial average over all possible disc orientations. 

The equations given by Wu are quite complex but can be simplified 
for the case where the graphite particles, the iron matrix, and the cast 
iron composite all have a value of v equal to 0.2. Although the actual 
values of v for graphite, iron, and the cast iron composite are 0.27,0.28, 
and 0.27, respectively [15], it is believed that this does not cause a 
significant error. The Wu equations then reduce to the simpler 
form 

E = EFe 
[2 - (1 - EJE¥e)fc] 

(9) 
'[2-(l-E¥JEc)fc] 

with a similar expression for G. Using the known elastic moduli for 
iron and graphite [15] the values of E and G for various volume frac
tions of graphite were calculated from equation (9) and are given in 
Figs. 4 and 5, respectively. The agreement between the calculated and 
experimental values is reasonable considering that the theory is only 
approximate. 

Rossi [4] has also derived expressions for the elastic moduli of a 
two-phase solid with small concentrations of disk-shaped particles. 
By analogy with equations (6) and (7), Rossi derives equations of the 
form 

E = EFea-Mfc. (10) 

where M is a stress-concentration factor and is determined by the 
axial ratio of the disk-shaped particle and by the ratio of the Young's 
modulus of the particle to that of the matrix. The value of M for 
randomly oriented particles is derived by assuming that the stress-
concentration factor is primarily a function of the radius of curvature 
at the point of tangency of the particle with the stress axis. For the 
special case where v has a value of 0.2 for the particle, matrix, and 
composite, Rossi derives values of M for various axial ratios of the 
particles and for various ratios of the Young's modulus of the particle 
to that of the matrix. For the case of gray cast iron where Ec/EFe has 
a value of 0.039, and where (d/t) has a value of about 20, M has a value 
of 4.8. 

The values of E calculated from equation (10) for various volume 
fractions of graphite are given in Fig. 4. The corresponding values of 
G which were calculated from the values of E by using a value of v 
equal to 0.2 and the standard relationship 

G (11) 
2(1 + v) 

are given in Fig. 5. The values of E and G from the Rossi solution are 
in slightly better agreement with the observed values of E and G for 
gray cast iron than those calculated from the Wu solution. However, 
both the Wu and Rossi solutions clearly indicate that, for a similar 
volume fraction of particles, disk-shaped graphite particles lower the 

elastic moduli of the cast iron much more than spherical graphite 
particles. 

Neither the Wu nor the Rossi solutions for disk-shaped particles 
predict an effect of particle size on the elastic moduli. Yet, several 
studies on gray cast iron have shown that larger graphite flakes pro
duce lower elastic moduli than smaller graphite flakes [6,18]. A similar 
effect was observed in this investigation. As shown in Figs. 4 and 5, 
the elastic moduli for three gray cast iron specimens having an average 
flake size of 0.15 mm fall on a curve corresponding to higher elastic 
moduli than those for gray cast iron having a flake size of 0.44 mm. 
One possible explanation of the effect of particle size is that the stress 
fields of individual particles begin to overlap and reinforce each other 
at larger particle sizes, resulting in lower elastic moduli but this 
problem has not been treated theoretically. The effect of particle size 
is small, however, compared with the large effects of particle volume 
fraction and particle shape. 

Temperature-Dependence. The temperature-dependence of 
the elastic moduli of nodular and gray cast iron can be interpreted in 
terms of the temperature-dependence of the elastic moduli of iron and 
of graphite by using equations (6) and (7) for nodular iron and either 
equation (9) or (10) for gray cast iron. Changes in fc with temperature 
that might result from decomposition of cementite or changes in (d/t) 
that might result from Ostwald ripening of the graphite particles are 
small and can be neglected. Also, the temperature dependence of !>Fe 
[19], and of Kc or Gc [20] is small and can be ignored. As a result, the 
only temperature-dependent terms in equations (6), (7), and (9) are 
K¥e, G^e, and -EW In equation (10), the value of M depends on the 
ratio Ec/EFe and therefore is temperature-dependent. 

The values of Epe at temperatures between ambient temperature 
and 1000° C have been determined by Koster [21]. From these values 
and a constant value of vpe equal to 0.28, values of Kpe and Gpe were 
calculated at various temperatures by using equations (8) and (11). 
These values were then used in equations (6)-(10) to calculate values 
of E at various temperatures for the case of spherical or disk-shaped 
graphite particles. The normalized values E(T)/E(25°C) are shown 
in Fig. 6. Because of the assumption of constant e, and the relationship 
given in equation (11), the calculated temperature dependences of 
G and E are identical. 

The calculated value ofE(T)/£(25°C) from the Hashin theory for 
spherical graphite particles and from the Rossi theory for disk-shaped 
graphite particles agree quite closely with the observed values of 
E(T)/E(25°C) for nodular and gray cast iron, respectively. However, 
the calculated values of £(T)/fi(25°C) from the Wu theory for disk-
shaped graphite particles are considerably higher than the observed 
values of E(T)/E(25°C) for gray cast iron. 

Conclusions 
The elastic moduli of both nodular and gray cast iron were mea

sured at ambient and elevated temperatures up to 760°C. These re
sults were then analyzed by using the available theories for the elastic 
moduli of two-phase solids and the measured size, shape, and volume 
fraction of graphite particles. The following conclusions were 
reached: 

1 The elastic moduli of both nodular and gray cast iron decrease 
when the graphite content is increased. However, the decrease is much 
greater for gray cast iron in which the graphite particles are disk-
shaped (flakes) than for nodular cast iron in which the graphite par
ticles are spherical. 

2 The effect of graphite on the elastic moduli of both nodular and 
gray cast irons is satisfactorily predicted by existing theories for the 
elastic moduli of two-phase solids when both the volume fraction and 
shape of the graphite particles are considered. 

3 Graphite flake size also has a small effect on the elastic moduli, 
larger graphite flakes resulting in lower elastic moduli. The size effect 
is not predicted by existing theories. 

4 The temperature-dependence of the elastic moduli of both 
nodular and gray cast iron can be correctly predicted from the existing 
theories for the elastic moduli of two-phase solids and the known 
temperature-dependence of the elastic moduli of the polycrystalline 
iron matrix and of the graphite particles. 
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Plastic Deformation of a Laminated 
Plate With a Hole 
The elastic-plastic behavior of a {0/90) symmetric FP-Al plate containing a circular hole 
is investigated using the finite-element method. Of principal concern are plastic yielding 
at the circular hole and fracture of the plate caused by failure of the fiber at the hole. The 
results illustrate the significance of plasticity in deformation of metal-matrix composites. 
The behavior of the laminated plate is compared with that of a geometrically similar plate 
made of an unreinforced matrix material, for uniaxial loading/unloading/reloading se
quences. The comparison reveals significant differences in the role of plastic deformation 
in these two materials. Specifically, plastic yielding in the matrix of the laminated plate 
at the circular hole leads to a substantial increase in the local stress concentration in the 
elastic fibers adjacent to the hole boundary. Also, it is found that the fiber reinforcement 
causes a large increase in the stiffness and strength of the composite, but only a minor ele
vation of its yield strength. Therefore, to take advantage of the mechanical properties of 
the metal matrix composite material, it is necessary to admit working loads which exceed 
its elastic limit. 

Introduction 
Metal-matrix composites reinforced by continuous fibers may ex

hibit an appreciable amount of elastic-plastic deformation depending 
on the state of stress and temperature. Since most of the practically 
used fibers, such a boron, graphite, silicon carbide, and the FP fiber, 
remain elastic until failure, the inelastic component of the overall 
deformation is caused by plastic flow of the matrix. Although the fi
bers strengthen the matrix substantially, and are the principal source of 
composite stiffness, they have a relatively small effect on the overall 
stress level which causes the onset of plastic flow. Indeed, the presence 
of the reinforcing fibers may be the very cause of plastic deformation, 
as in the case of heat-treatment of unidirectional materials [1]. In any 
event, to take advantage of the high strength of the metal-matrix 
composite materials, it is necessary to admit working loads which 
exceed its elastic limit. 

The significance of plasticity in deformation behavior of metal-
matrix composites can be illustrated by the following evaluation of 
matrix plastic strain magnitudes in typical material systems. Consider 
a unidirectional specimen loaded by simple tension in the fiber di
rection. We denote the maximum fiber strain at failure as e/*, the 
corresponding normal plastic strain in the matrix as em

p, and the 
elastic part of the total strain in the matrix as im

 e. Compatibility in 
the fiber direction requires that at fiber failure t/* = em

e + em
p. The 

Table 1 Matrix plastic strain magnitudes in alumi
num-matrix composites 
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Cairo University, Giza, Egypt. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, Feb
ruary, 1980; final revision, May, 1980. 

Fiber 

Boron 

FP 

Graphite 

Silicon 
Carbide 

Young's 
modulus 

MPa 

400 

350 

250 

428 

1 Derived from Fig. 2. 

Strength 
MPa 

3.4 

1.4 

3.4 

3.1 

Failure 
strain 

0.0085 

0.0040 

0.0136 

0.0072 

Elastic 
strain in 

Al-matrix1 

0.0010 

0.0008 

0.0012 

0.0009 

Plastic 
strain in 

Al-matrix 

0.0075 

0.0032 

0.0124 

0.0063 

magnitudes of tm
p, derived from this simple failure criterion, for a 

group of aluminum-matrix composites reinforced by different fibers 
are shown in Table 1. 

The axial loading of a unidirectional lamina is clearly the most re
strictive case, much larger plastic strains may develop in other than 
axial directions, e.g., in the case of interlaminar shear of laminated 
plates in bending, or at free edges of laminated structures. Yet, the 
plastic strain magnitudes which can be attained in the matrix prior 
to fiber failure are about one order of magnitude larger than the elastic 
strain magnitudes. This suggests that it is necessary to consider the 
existence of axial plastic strains in the development of constitutive 
equations for fibrous composites. 

These aspects of plastic deformation of fibrous composites have 
not been accounted for in the earlier formulations of elastic-plastic 
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constitutive equations which adopted the assumption of purely elastic 
or even rigid response of the material in the axial direction [2-5]. Of 
course, in applications to laminated plates and other structures this 
assumption implies elastic or rigid behavior in each fiber direction, 
and thus severely restricts practical usefulness of the theory. 

A constitutive theory for elastic-plastic deformation of unidirec
tional fibrous composites has been recently developed in a six-di
mensional stress space [6-8]. In order to analyze composites with 
complex geometries and loading regimes, the new constitutive 
equations were incorporated in a finite-element scheme [7,9]. In this 
paper, we use the finite-element code to examine the behavior of a 
FP-A1 crossply plate with a circular hole. First, we briefly describe 
the new elastic-plastic material model of the composite and the fi
nite-element routine, the details of which are discussed elsewhere 
[6-9]. Next, we present the results obtained for the laminated plate 
with a hole and illustrate the significance of the matrix plastic yielding 
in metal-matrix composites. Finally, the behavior of the laminated 
plate is compared with that of a geometrically similar plate made of 
an unreinforced matrix materials, for uniaxial loading/unloading/ 
reloading sequences. 

Material Model 

New constitutive equations for the elastic-plastic behavior of uni
directional composites have been recently derived from a composite 
model [6-8]. The material model represents the mechanical properties 
of the constituents, and the essential features of their mutual con
straint. Specifically, the composite lamina is modeled as an elastic-
plastic matrix with a unidirectional constraint imposed by the fiber, 
Any stable matrix material may be used in this model. A Mises-type 
matrix exhibiting kinematic hardening has been used for the present 
work to represent the metal matrix, and an elastic brittle fiber to 
represent the reinforcement. 

In the material model, each of the fibers is assumed to be of very 
small diameter, so that although the fibers occupy a finite volume 
fraction of the composite they do not interfere with matrix defor
mation in the transverse and longitudinal directions. As a result, the 
transverse tension and shear as well as longitudinal shear response 
of the composite are derived from that of the matrix, except when 
there is an axial prestrain which causes coupling of axial and 
transverse plastic strain components. Fig. 1 shows a schematic 
drawing of the material model. There, ovy and tij represent the stress 
and strain tensors, respectively, vf and um are the volume fractions 
of fiber and matrix such that u/ + um = 1. Stress and strain compo
nents with top bar are overall composite quantities, while superscripts 
/ and m denote fiber and matrix, respectively. The model can be 
represented by parallel fiber and matrix bars or plates with axial 
coupling and is similar to the model used for nonlinear viscoelastic 
problems in composites by Lou and Schapery [10]. 

Since the fibers are elastic up to failure, the inelastic strains of the 
lamina are caused by matrix deformation. The elastic constraint 
imposed on the matrix by the fiber affects the shape of the lamina 
yield surface, it leads to additional kinematic components in the 
hardening rule of the lamina, and it has an influence on the magnitude 
of overall plastic strains. All aspects of this behavior are examined and 
accounted for in the formulation of the lamina constitutive equations 
which are explicitly described in [7,8]. The constitutive equations are 
generated in matrix form and, therefore, can be readily incorporated 
in a numerical scheme. 

Finite-Element Analysis of Composites 
A finite-element code for elastic-plastic analysis of fibrous com

posite structures has been developed [7,9] using the new constitutive 
equations of the composite lamina. The program, named PAC78, is 
based on the finite-element procedure in conjunction with the dis
placement method of analysis. The nonlinearities caused by the 
elastic-plastic behavior of the composite are handled by a modified 
Newton-Raphson iteration procedure. 

The laminated structure of most fibrous composites makes it nec
essary to conduct a three-dimensional analysis even for in-plane loads. 

Equilibrium 

5ij = "fj = "". 

i,j = 1 , 2 , 3 

i * j # 3 

C o m p a t i b i l i t y 

«fl. Cjj = v f ey + v m ejj' 

i.j = 1, 2, 3 

Fig. 1 Material model of the elastic-plastic lamina 
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Fig. 2 Ramberg-Osgood approximations of matrix stress-strain curves 

The out-of-plane stresses, e.g., interlaminar shear and normal stresses, 
are significant in evaluating the behavior of laminates. In the present 
finite-element analysis, the eight-node hexahedral element has been 
used. The element represents a unidirectional composite material 
whose fiber is arbitrarily orientated in the structural coordinates. 
Laminated structures with layers in several directions are built up 
by joining together individual unidirectional elements. 

Each unidirectional composite element is treated as macroscopi-
cally homogeneous and anisotropic. The elastic response, initial 
yielding, and kinematic hardening and flow rules of the composite are 
derived from the elastic-plastic material model described earlier. The 
computational aspects of the PAC78 program together with its fea
tures and capabilities are described in [7, 9]. 

Laminated Plate With a Circular Hole 
The behavior of a (0/90) symmetric laminated plate containing a 

circular hole has been investigated using the PAC78 finite-element 
code. The plate is made of a 6061 aluminum matrix reinforced by 50 
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volume percent of FP fibers. The material in Fig. 2, with Ramberg-
Osgood parameters n = 5.5, K = 0.05 was used to define the properties 
of the aluminum matrix. Although the particular choice of the pa
rameters does not appear to agree well with the experimental response 
of the matrix, it provides satisfactory approximation to the behavior 
of a number of laminated plates, as indicated in references [6-8]. The 
reasons for this discrepancy are believed to be related to the effect of 
fibers on matrix hardening in the transverse plane, to in situ hard
ening characteristics of the matrix, and to other factors not accounted 
for in the material model. 

The plate is loaded in uniaxial in-plane tension. A loading/un
loading/reloading sequence is employed. The analyzed specimen is 
2 in. X 2 in. and 0.4 in. thick, and contains a 0.5 in. hole. The finite-
element mesh used in the analysis is shown in Fig. 3. Each layer of the 
plate is represented by one layer of unidirectional composite elements. 
The fiber direction in the outside layers (0-deg layers) coincides with 
the loading direction, while the fiber direction in the inside layers 
(90-deg layers) is perpendicular to the loading direction. We assume 
that the plate is free from initial stresses. This may be difficult to 
achieve in practice, because of cooling from fabrication temperatures. 
However, the effect of initial stresses will be quite small after more 
extensive plastic deformation of the plate occurs. 

First yielding is observed relatively early in the loading process at 
about 21 MPa (3 ksi). This takes place in the 90-deg layers at the edge 
of the circular hole, Fig. 3. Figs. 4 and 5 show the development of 
plastic zones as loading continues. The plastic zone in the 90-deg 
layers spreads rapidly. We note that the 90-deg layers have yielded 
almost completely at about 69 MPa (10 ksi). On the other hand, 
yielding in the 0-deg layers is somewhat delayed, and when it develops 

the plastic zone tends to remain small and contained to the immediate 
vicinity of the hole. 

We have unloaded the specimen from 69 MPa (10 ksi) to zero ap
plied load and reloaded the specimen to an overall stress of 166 MPa 
(24 ksi). Fig. 6 shows the continued development of plastic zones in 
the layers of the plate for different loading levels up to and including 
the maximum load of 166 MPa. The plastic zone in the 0-deg layers 
spreads upward, in the loading direction. At 166 MPa, Fig. 6, all layers 
of the plate have yielded almost completely. 

Fig. 7 shows the distribution of local ayy stress along the x -axis for 
different overall stress levels. We note here that by disregarding 
plastic deformation, the stress concentration at the edge of the hole 
at maximum applied load will be underestimated by about 25 percent 
for the 0-deg layers, and overestimated by over 50 percent for the 
90-deg layers. Accordingly, the overall strength of the plate will be 
overestimated. This is particularly obvious from Fig. 8 which shows 
the axial stress in the fibers of the 0-deg layers at the edge of the hole 
along the x-axis as a function of applied load ay. The curve in Fig. 8 
is quite nonlinear due to plastic deformation of the composite. Ac
cording to our analysis, failure occurs at the hole under overall stress 
of about 166 MPa (24ksi) due to failure of the fibers in the 0-deg 
layers. At this stress level, the FP fibers attain their ultimate tensile 
strength of about 1400 MPa (200 ksi). If one disregards plastic de
formation of the composite, the overall stress at failure is estimated 
as 214 MPa (31 ksi), an overestimation of about 30 percent. If the 
plates were reinforced by boron fibers, which have ultimate strength 
double that of the FP fibers, the errors encountered in an elastic 
analysis would be even larger. 

Fig. 8 indicates that plastic yielding in the matrix of the laminated 
plate at the circular hole leads to a substantial increase in the local 
stress concentration in the elastic fibers adjacent to the hole boundary. 
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This result is not unexpected; analogous conclusions will probably 
be reached in studies of other large imperfections in laminated metal 
matrix structures. However, it is in contrast with the reduction of 
stress concentration caused by localized yielding in unreinforced 
plates. 

To illustrate the differences in plastic yielding at circular holes and 
in overall behavior of reinforced and unreinforced plates, we analyzed 
a geometrically similar aluminum plate made of the matrix material 
used in the composite plate. Comparison of the development of plastic 
zones in the aluminum plate and in the (0/90)s plate is shown in Fig. 
9 at different levels of overall stress normalized with respect to the 
yield stress of the aluminum matrix. As expected, one finds that the 
unreinforced plate yields at lower loads and experiences more ex
tensive yielding. We note that the unreinforced plate yields almost 
completely at ay/Y = 1.0 (Y = 34.5 MPa (5 ksi)). At the same level of 
loading, the plastic zones in all layers of the reinforced plate are very 
small and contained. However, the yield pattern of the 90-deg layers 
in the laminated plate is somewhat similar to that in the aluminum 
plate. In fact, the initial yield stresses of the two plates are relatively 
close (21 MPa and 12.5 MPa). 

The overall stress-strain response of both the (0/90)s plate and the 
aluminum plate is shown in Fig. 10. The gain in stiffness due to the 
fiber reinforcement is obvious. The aluminum plate has lost almost 
85 percent of its elastic stiffness at about 35 MPa (5 ksi) and is ex
pected to fail at a somewhat higher load. The stiffness of the rein
forced plate, on the other hand, does not change much in the initial 
part of loading. At failure, ay = 166 MPa (24 ksi), the initial stiffness 
of the reinforced plate has been reduced by about 30 percent. It is also 
seen from Fig. 10 that plastic straining takes place in the laminated 
plate during unloading, which has been also observed in experiments 
on laminated plates [11]. 

It is of interest to note in passing the implication of the existence 
of different plastic zones in the individual laminate layers. This 
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Fig. 7 Stress distribution in a crossply FP-AI plate with a hole 
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suggests that the loading point in the local stress space does not 
coincide with the corner of the local yield surface. As shown in refer
ences [6-8], the overall yield surface of the crossply plate has two el
liptical branches which intersect at four corners. The loading point 
resides on the 90-deg layer branch at all points in the plate domain 
where the 90-deg layer has yielded before the 0-deg layer. The loading 
point coincides with the corner in the overall yield surface at all lo
cations where both layers experience plastic straining. 

Conclusions 
It is evident that plastic yielding of the matrix is the dominant mode 

of deformation in most applications of metal-matrix composites. 
Elastic behavior is of limited significance in applications which hope 
to utilize the high strength of the composite. A simple calculation 
reveals that plastic strain magnitudes in the matrix are about one 
order of magnitude larger than elastic strain magnitudes before failure 
of the fiber in unidirectional composites. 

The significance of plasticity in fibrous composites has been also 
demonstrated for laminated plates. Misleading results and predictions 
of stiffness and strength of laminated plates may occur if plastic de
formation of the composite is disregarded. It has been shown that the 
strength of a FP-AI crossply plate containing a hole can be overesti
mated by about 30 percent if one does not account for plastic defor
mation of the matrix. Since plastic deformation in aluminum matrix 
composites reinforced by the FP fiber is less pronounced than in those 
reinforced by other, stronger and/or more compliant fibers (c.f. Table 
1)', even greater errors may be experienced in composites reinforced 
by boron or SiC fibers. 

Plastic straining of the matrix has been also shown to take place 
during cyclic loading which is important in studying fatigue and local 
damage in composites [12]. 

Acknowledgments 
This work has been supported by the U.S. Army Research Of

fice. 

References 
1 Dvorak, G. J., and Rao, M. S. M., "Thermal Stresses in Heat-Treated 

Fibrous Composites," ASME JOURNAL OF APPLIED MECHANICS, Vol. 43, 
1976, pp. 619-624. 

2 Mulhern, J. F., Rogers, T. G., and Spencer, A. J. M., "A Continuum 
Model for Fiber-Reinforced Plastic Materials," Proceedings of the Royal So
ciety, London, Vol. 301,1967, pp. 473-492. 

3 Mulhern, J. F., Rogers, T. G., and Spencer, A. J. M., "A Continuum 
Theory of a Plastic-Elastic Fiber-Reinforced Material," International Journal 
of Engineering Science, Vol. 7,1969, pp. 129-152. 

4 Prager, W., "Plastic Failure of Fiber-Reinforced Materials," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 36,1969, pp. 542-544. 

5 Hashin, Z., Bagchi, D., and Rosen, B. W., "Nonlinear Behavior of Fiber 
Composite Laminates," NASA CR-2313,1974. 

Plastic Zones 1n Unrelnforced 

6061-F »l Plate 

FP-AI, (0/90)s , v f • 0.5 

Plastic Zones In 0' Ply 

Fig. 9 Comparison of the development of plastic zones around a hole in re
inforced and unrelnforced plates; numbers indicate the ratio of current load 
to matrix yield stress, a,l Y,(Y= 34.5 MPa) 

1000 1200 

Fig. 10 Stress-strain curves of a crossply FP-AI plate and an unrelnforced 
Al plate 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 831 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



6 Dvorak, G. J., and Bahei-El-Din, Y. A., "Plasticity of Composite Lam
inates," Proceedings of the Research Workshop on Mechanics of Composite 
Materials, Dvorak, G. J., ed., Duke University, Oct. 1978, pp. 32-54. 

7 Bahei-El-Din, Y. A., "Plastic Analysis of Metal Matrix Composite 
Laminates," PhD Dissertation, Duke University, 1979. 

8 Bahei-El-Din, Y. A., and Dvorak, G. J., "Plastic Yielding at a Circular 
Hole in a Laminated FP-A1 Plate," Modern Developments in Composite Ma
terials and Structures, Vinson, J. R., ed., The American Society of Mechanical 
Engineers, 1979, pp. 123-147. 

9 Bahei-El-Din, Y. A., Dvorak, G. J., and Utku, S„ "Finite-Element 
Analysis of Elastic-Plastic Fibrous Composite Structures," to be presented at 

the George Washington University and NASA Langley Research Center 
Symposium on Computational Methods in Nonlinear Structural and Solid 
Mechanics, October 6-8, 1980; to appear in Computers and Structures. 

10 Lou, Y. C , and Schapery, R. A., "Viscoelastic Characterization of 
Nonlinear Fiber-Reinforced Plastics," Journal of Composite Materials, Vol. 
5,1971, pp. 208-234. 

11 Sova, J. A., and Poe, C. C , Jr., "Tensile Stress-Strain Behavior of 
Boron/Aluminum Laminates," NASA TP-1117,1978. 

12 Dvorak, G. J., and Johnson, W. S., "Fatigue of Metal Matrix Compos
ites," to appear in a special issue on Fatigue of Composites and Nonmetals, 
International Journal of Fracture. 

CONFERENCE LISTING 
Worldwide Mechanics Meetings 

(Continued on Page 846) 

DATE : 
TITLE! 
SPONS: 

DATE • 
TITLE: 
SPONS: 

OATE I 
TITLE! 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

JULY 12-15 , 1981 LOCATION: SWANSEA, U K 
2ND INT. CONF. ON NUMERICAL NETHOOS IN LANINAR ( TURBULENT FLOW 

CONTACT: OR. C. TAYLOR 
CIVIL ENGR.t U. OF SWANSEA* SINGLETON PARK. SUANSEA SA2 8PP U K 

JULV 13-16 , 1981 LOCATION: VENICE. ITALY 
INT. CONF. ON NUMERICAL METHODS 

CONTACT: DR. C. TAYLOR 
CIVIL ENGR., UNIV. COLLEGE. SUANSEA SA2 8PP, U.K. 

JUNE 2 3 - 2 7 , 1991 LOCATION: JA8L0NNA, POLAND 
STRESS WAVES IN NON-ELASTIC SOLIDS 
EURONECH 149 CONTACT: OR. U. K. NONACKI 
POLISH ACAD. S C I . , SUIETOKP.ZVSKA 2 1 , 00-049 NARSASW. POLAND 

SEPTEMBER 2 - 4 , 1981 LOCATION: DELFT. NETHERLANDS 
FLOW AND TRANSPORT IN POROUS HEDIA 
EURONECH 143 CONTACT: PROF. DR.IR. A. VERRUUT 
CIVIL ENGINEERING OEPT., DELFT UNIVERSITY, DELFT, NETHERLANDS 

SEPTEMBER 7 - 9 , 1981 LOCATION: VIENNA, AUSTRIA 
NECHANICS OF SEDIMENTATION AND FLU10ISE0 BEDS 
EURONECH 144 CONTACT: PROF. DR. H. SCHNEIDER 
TECH. UNIV. WIEN, WIEDNER HAUPTSTRASSE 7 , A-1040 VIENNA, AUSTRIA 

SEPTEMBER 14-16 , 1981 LOCATION: JABLONNA, POLAND 
SHOCK WAVES AND RELAXATION PROCESSES IN GASES 
EUROHECH',145 CONTACT: PROF. DR.- ING. B. SCHMID 
UNIV. KARLSRUHE, KAISERSTRASSE 1 2 . D-7500 KARLSRUHE 1 , GERMANY 

SEPTEMBER 14 -18 , 1981 LOCATION: PAISLEY, SCOTLAND 
INTERNATIONAL CONF. ON COMPOSITE STRUCTURES 
PAISLEY COLLEGE CONTACT: DR. I . H. HARHSALL 
PAISLEY COL., MECH. X PROD. ENGR., HIGH ST . . PAISLEY. SCOTLAND 

SEPTEMBER 1 9 - 2 1 , 1981 LOCATION: HOUSTON, TX 
ENGINEERING IN MEDICINE AND BIOLOGY 
ASME CONTACT: AN. SOC. OF MECH. ENGR. 
UNITEO ENGR. CENTER, 343 E. 47IH ST . . NEW YORK, NY 10017 

SEPTEMBER 2 1 - 2 3 , 1981 LOCATION: BLACKSBURG, VA. 
2ND CONF. ON THE ENVIRONMENTAL DEGRADATION OF ENGR. MATERIALS 
VPI S SU CONTACT: PROF. H. R. LOUTHAN 
COLLEGE OF ENGR.. VPI t SU, BLACKSBURG, VA. 24061 

LOCATION: CACHAN/PARIS, FRANCE SEPTEMBER 2 2 - 2 9 . 1981 
DAMAGE MECHANICS 
EUROHECH 147 CONTACT: PROF. J . LAMA1TRE 
6 1 . AVE. OU PRESIDENT WILSON, 94230 CACHAN, FRANCE 

SEPTEMBER 2 3 - 2 5 , 1981 LOCATION: LYON, FRANCE 
ACOUSTICS OF TURBULENT FLOWS 
EUKROMECH 142 CONTACT: PROF. G. COHPIE-BELLOT 
ECOLE CENTRALS OE LYON, 69130 ECULLV, B.P .163 , FRANCE 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OCTOBER 1901 LOCATION: ST. LOUIS, MO. 
PRODUCIBILITY t QUALITY ASSURANCE OF COMPOSITE MATERIALS 
ASTM CONTACT: ASTN 
1916 RACE ST . . PHILADELPHIA, PA 19103 

OCTOBER 1991 LOCATION: JABLONNA, POLAND 
ANALYSIS OF STABILITY BY THE LIAPUNOV OIRECT HETHOO £ ITS APP. 
EURONECH 140 CONTACT: PROF. R. GUTOWSKI 
WARSAW TECH. UNIV. , HOWOHIEJSKA 24 . 00-665 WARSAW. PQLANO 

OATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE! 
SPONS! 

DATE ! 
TITLE! 
SPONS! 

DATE : 
TITLE! 
SPONS! 

DATE ! 
TITLE! 
SPONS: 

LOCATION: BOCHUM, GERMANY OCTOBER 13 -13 . 1981 
TWO-DIMENSIONAL SEPARATED FLOWS 
EURONECH 14B CONTACT! PROF. DR.- ING. K. GERSTE 
RUHR-UNIV. BOCHUM. UNIVERSITATSSTRASSE 150. 0-4630 BOCHUM. GERMAN 

OCTOBER 2 6 - 3 0 . 1991 LOCATION: ST. LOUIS, MO. 
M I N I - AND MICROCOMPUTERS IN EXPERIMENTAL STUDIES 
ASCE CONTACT: PROF. C. 0 . SUTTON 
CIVIL ENG. SCHOOL, PURDUE UNIV . , WEST LAFAYETTE, IN 47907 

OCOTBER 2 6 - 3 0 . 1991 LOCATION: ST. LOUIS. NO. 
ASCE ANNUAL CONVENTION, COMHITTE ON RESEARCH FOR ASCE'S STRUCURAL 
ASCE CONTACT: PROF. WILLIAM L. GAMBLE 
2209 CIVIL ENG. BLDG, UNIV. OF ILLINOIS. URBANA, I L . 61801 

OCTOBER 2 6 - 3 0 , 1981 LOCATION: ST. LOUIS. HO. 
RELIABILITY METHODS IN STRUCTURAL FATIGUE 
ASCE CONTACT: MR. W. G. BVERS 
ATCHISON, TOPEKA, t SANTA FE, 900 . POLK ST. , AHARILLO, TX. 79717 

LOCATION: WASHINGTON, 0 . C. NOVEMBER 15 -20 , 1981 
ASNE WINTER ANNUAL MEETING 
ASME CONTACT: AN. SOC. OF MECH. ENGR. 
UNITED ENGR. CENTER, 345 E. 47TH S T . . NEW YORK, NY 10017 

SPRING 1992 LOCATION: 
LONG TERM BEHAVIOR OF COMPOSITES 
ASTM CONTACT: ASTM 
1916 RACE S T . . PHILADELPHIA, PA 19103 

LOCATION: HOUSTON, TX MAY 3 - 6 , 1982 
OFFSHORE TECHNOLOGY CONFERENCE 
ASME CONTACT: AH. SOC. OF MECH. ENGR. 
UNITEO ENGR. CENTER, 345 E. 47TH ST . , NEW YORK, NY 10017 

JUNE 2 1 - 2 5 , 1982 LOCATION! ITHACA, N.V. 
9TH U.S. CONGRESS OF APPLIEO MECHANICS 
NAT1HAL ACADEMY OF SCIENCES CONTACT: PROF. Y . H. PAD 
OEPT. OF THEOR. ANO APPL. MECH..CORNELL UNIV.. ITHICA.NY 14953 

OCTOBER 9-13* 1992 LOCATION: PHILADELPHIA, PA 
ENGINEERING IN MEDICINE AND BIOLOGY 
ASME CONTACT: AN. SOC. OF NECH. ENGR. 
UNITEO EHGR. CENTER. 345 E. 47TH ST . . NEW YORK. NY 10017 

832 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



R. L. Weaver 
Research Associate. 

Yih-Hsing Pao 
Professor. 

Mem. ASME 

Department of Theoretical and Applied Mechanics, 
Cornell University, 

Ithaca, N. Y. 14853 

Multiple Scattering of Waves in 
Irregularly Laminated Composites 
The transition matrix formulation of multiple scattering is applied to the problem of wave 
propagation in a one-dimensional layered medium. The effect of geometrical irregularity 
in an otherwise periodic layered structure is investigated in detail for the case of elastic 
waves propagating normally to elastic layers embedded in elastic, or in viscoelastic matrix 
media. The irregularity is found to widen and diminish the stop bands and soften the 
sharp band features characteristic of a fully periodic structure, and to generate scattering 
losses with a consequent increase in the attenuation of the coherent wave field. 

1 Introduction 
The propagation of elastic waves normal to a laminate composite 

which is modeled by an infinite periodic array of solid layers has been 
analyzed by applying variational techniques [1, 2], and by use of the 
transfer matrix [3]. Mathematically, the problem is similar to the 
propagation of one-dimensional waves through an infinite periodic 
array of potentials [4]. It illustrates in a simple manner the phenom
enon of band structure, which in three dimensions is of great interest 
to the understanding of the physics of crystals and semiconductors. 
But the methods which have been so successful in treating the wave 
mechanics of perfect, crystalline structures are not so effective when 
applied to quasi-crystalline arrays. The problem is analogous to a 
composite of an infinite array of layers with irregularity in its other
wise periodic spacing. 

For fibers randomly and sparsely distributed in an elastic matrix 
medium, the theory of multiple scattering of elastic waves has been 
applied to analyze the dispersion of waves in such a medium [5, 6]. 
Results in [6] showed that the waves are not only dispersed but also 
attenuated, especially at higher frequencies. The attenuation is pre
sumably caused by the random scattering of waves by the fibers out 
of the average, or coherent, field. This loss mechanism is generally 
known as scattering losses, to distinguish it from losses due to viscous 
processes [7]. 

Many composite materials are made of alternating layers of dif
ferent lamina. Each layer is considered here to be effectively homo
geneous, i.e., the structure of any inhomogeneity in an individual layer 
is assumed to be much finer than the wavelengths to be treated. The 
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lamina are all nearly equal in thickness when compressed together. 
Scattering losses occur in such a structure because of the nonuniform 
thicknesses of the lamina. This will result in attenuation and dis
persion of waves propagating through such a medium. If the propa
gation vector is normal to the laminate, the problem is one-dimen
sional and it is analogous to the aforementioned problem of one-
dimensional waves in a quasi-periodic potential. 

Imperfections in such a periodic structure can be either substitu
tional (materials of the layers) or geometrical (spacing between the 
layers). Both cases have been treated previously by the method of 
transfer matrix [8, 9], but only for elastic materials, and only for an 
unusual distribution of lamina thickness [8]. In this paper, the theory 
of multiple scattering is applied to investigate the dispersion and 
attenuation of waves in a laminated composite with imperfect ge
ometry, and with viscoelastic matrix materials. 

The theory and the concept of the configurational average along 
with the method of the transition matrix as presented in reference 
[6] using the Lax quasi-crystalline assumption are summarized in the 
next section. 

Following that, we develop a one-dimensional polar coordinate 
system, and the solution of the one-dimensional Helmholtz equation 
in such a coordinate system. The purpose of this development is to 
render the method of transition matrix which was developed by 
Waterman [10] primarily for two and three-dimensional scattering 
of waves readily applicable to one-dimensional problems. A simplified 
derivation of the transition matrix was given later by Pao [11]. A 
Gaussian probability distribution function is then assumed to rep
resent a one-dimensional periodic or nearly periodic (quasi-regular) 
layered structure. Attenuation and dispersion of waves are then de
termined through the configurational average of the total field. 

Section 3 presents numerical results and compares the dispersion 
and attenuation of the field for periodic layers, and of the coherent, 
average, field for the case of nearly periodic layers. Attenuation in a 
perfectly regular periodic composite manifests in the form of stop 
bands in certain frequency intervals. True scattering losses occur only 
for layers with nonuniform properties or thicknesses. 

In the last section we assume the material for the matrix is visco-
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elastic, and then compare the scattering losses with the losses due to 
viscosity. 

2 M u l t i p l e S c a t t e r i n g in O n e D i m e n s i o n 
The problem of one-dimensional waves in periodically layered 

media can be treated by a closed-form analysis when the periodicity 
is exact. If, however, there exists slight irregularity in the periodic 
spacing or in the material properties, we find that it is necessary to 
apply the theory of multiple scattering of waves to determine the 
average wave quantities. At the beginning of this section, we briefly 
state the theory of multiple scattering using the transition matrix as 
given in reference [6]. We then develop one-dimensional wave func
tions, and apply them toward the solutions of multiple scattering of 
scalar waves in periodic layers with small irregularities. 

Transition Matrix Formulation of Multiple Scattering. 
Consider an infinite number of arbitrarily shaped and constituted 
scatterers embedded in the right-hand side of an infinitely extended 
space filled with matrix material. For a steady-state wave field at 
frequency a), the matrix is characterized by wave number k, not nec
essarily real, and the spatial part of the wave field in the matrix ma
terial satisfies the Helmholtz equation, 

V2<Mr) + fe20(r) = 0 (1) 

Under the excitation of an externally applied field <f>A(r) the total field 
at any point, r, in the matrix material may be written 

<t>(t) = <t>A(r) + £ <t>f(r) (2) 
J 

where 4>f is the wave scattered by the inclusion at r,- and the summa
tion over; is from 1 to the total number of scatterers, N. The total field 
exciting the 1'th scatterer is obtained from </>(r) by omitting the field 
scattered from itself. 

*f W = * « ~ *f tt (3) 

- * A « + £ *?M 

where the summation from j = 1 to N excludes j = i. 
The applied field can be expanded in an infinite series of basis 

functions y/n(t — r,) which are linearly independent solutions of 
equation (1), and are regular at r; [10,11], 

<!>*(*) = Zb'Jnb-Xi) (4) 
n 

The coefficients b'n can be calculated from the applied field and the 
orthogonal properties of the basis functions. Similarly, the excitation 
field 4>f (r) on the scatterer at tj can be expanded into a series with the 
same basis functions and unknown coefficients a'n, 

0f(r) = X > 0 „ ( r - r ; ) . (5) 
n 

The field scattered from the ; t h scatterer in equation (3) is ex
pressible in terms of another set of basis functions \pm(t — tj) (m = 
1, 2, . . .) 

<t>?(r) = Y.dJ
mfm(r-rj) (6) 

m 

The functions ipm (r — tj) are outgoing waves from the scatterer. They 
are singular at r = tj and satisfy the radiation condition of the Helm
holtz equation. The ym(t - tj) must be regular at r = r/; they are taken 
as the regular part of the functions \pm. 

As the \[/m and $/m serve to discreetly represent the scattered and 
exciting fields, we have a matrix representation for the transition 
operator which relates the coefficients dm to the a„ [10,11], 

dL = £ T'mnai (7) 
n 

where T'mn is an infinite matrix. The elements of T-' for homogeneous 
scatterers may be expressed in terms of integrals of the basis functions 
over the boundary of the jih scatterer. 

Furthermore, \pm in equation (6), which is the mth outgoing partial 
wave from the jth scatterer when evaluated near the £th scatterer, can 
be expressed as a linear combination of partial waves regular at r,-. 

\ M r - tj) = £ Dlm(,j - n)fyi(t - n) (8) 

D(tj — ti) is a shifting operator which shifts a field from a represen
tation in terms of outgoing waves near tj to a representation in terms 
of regular functions near r,-. This shifting matrix, which is a function 
of tj — ti, may be worked out in detail in two or three dimensions by 
using addition theorems for the Bessel functions [6, 15]. For one-
dimensional scalar waves D is given in the next section. 

Substituting equations (7) and (8) into (6), and then (4)-(6) into 
equation (3), we obtain 

£ a^nir - ti) = £ b'n^n(t - r;) 
n n 

+ I E E I Dlm(tj - ti)Tlna'J,(.' - n). (9) 
j^i n m I 

As the ypn (t — ti) form a linearly independent set of functions on the 
region near r;, we may equate term by term in equation (9) and ob
tain 

< = b'n + £ £ £ Dnm(tj - ti)T'mla\. (10) 
yVi m I 

Equation (10) represents N coupled systems of an infinite number 
of equations for the unknown coefficients a'n. The solution to equation 
(10) clearly depends on the positions of all scatterers in the configu
ration via the dependence of b'„ onr; and of D(iy - r,)onr;- — r;. These 
positions, in a realistic composite, are stochastic variables. The V may 
also be stochastic, as the quality of the scatterers may not be uniform. 
In multiple scattering calculations, attention is usually directed 
toward determining the average of all solutions to equation (10). 

Let the probability density of finding the first scatterer at ri, the 
second at r2,. . . , and the Nth at IN bep(r i , 12, t%,. . ., tj,. . ., IN). The 
probability density for finding the j'th scatterer at r; is then 

P('i) = S P('i, • • ., rjv)dn dt2 . . . ' . . . dtN. (11) 

The prime indicates the omission of dr; from the integration. The 
conditional expectations or conditional averages of a configuration 
dependent quantity a are then defined as 

p(ti)(a)i = f apdi,.. ., tN)dtidt2 .'. dtN 

By taking the conditional averages of equation (10) and applying the 
Lax quasi-crystalline assumption, which is a statistical independence 
assumption introduced to truncate a hierarchy of coupled equations 
on conditional averages of all orders, we obtain a closed set of integral 
equations for the (a n),-, 

(a'^i = t>'„ + £ £ £ J dtjp(tj\ti)Dmn(tj - n)Tml(a\)j (12) 

In these equations, the shifting operator D is presumably known, and 
the transition matrix T can be determined by the nature of the scat
terer. The conditional probability density p(r,-1 tj) is defined as 

p(tj)p(ti\tj) = f pin tN)dn . . . ' . . ' . . . dtN. 

It describes the probability of finding a scatterer at r;, given another 
scatterer at tj. We assume identical scatterers in (12) and t' = T. 

The application of the Lax approximation, first introduced by Lax 
[13], has been a point of prolonged discussion in the literature [5,12, 
14], and is discussed critically in the article by Frisch [16]. The ap
proximation is exact if the configuration is nonstochastic, hence if it 
has no random irregularity. It was an implicit assumption of Lax [13] 
that under nearly crystalline circumstances, the assumption is rea
sonable. We shall refrain from making any further justification of its 
application here and accept it as an assumption. 

One-Dimensional Wave Functions. As the discussion of scat-
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tering requires the concepts of incident and outgoing waves, which 
in turn are best expressed in polar coordinates, we here present a 
system of one dimensional polar coordinates and discuss the corre
sponding solutions to the Helmholtz equation. These solutions will 
then be used to construct the transition matrix and the D operator in 
one dimension. Equation (12) will then be rendered into a form 
amenable to numerical solution. 

One-dimensional space is usually designated by a Cartesian coor
dinate JC (—<*> <x < o").The polar coordinates of any point along the 
x-axis are (r, 0) or (r, 7r). They are more conveniently expressed by 
(r, a) where r takes on any value from zero to infinity and a takes on 
the discreet values+1 (cosO) a n d - 1 (cos IT). In terms of the Cartesian 
coordinate x, one dimensional polar coordinates are defined by 

a — sgn (x) (13) 

There are two linearly independent solutions to the equation 
d2(j)/dx2 = —k2tl>. The following regular solutions are chosen as the 
basis functions (even or odd) for exciting wave fields: 

\pe(t) = cos kr = cos kx 

yo(t) = a sin kr = sin kx (14) 

For outgoing waves, the basis functions are 

.\M') = e''*r 

fo(t) = -iaeihr (15) 

Note that \f/n is the regular part of \pn> as \pn has a discontinuous de
rivative at r = 0. 

Consider a one-dimensional scatterer, a layer of thickness 2h, which 
is confined to the region r < h (Fig. 1). Any exciting or incident wave, 
impinging from the right, the left or from both directions, can be ex
panded in a series of regular basis functions as in equation (5) 

bE(t) = OefB(r) +Oo^oW (16) 

In particular, for an incident rightward plane wave of unit ampli
tude 

$>e(r) + i^o(r). (17) 

The infinite series expansion is reduced to a sum of two terms in the 
one-dimensional case. The wave scattered by the layer is, according 
to equation (6), 

0 s(r) = flkiMr) + do^o(0, r>h 

The total wave outside the layer is 

<l> = <t>E + (l>s, r > h 

(18) 

(19) 

The transition matrix as defined by equation (7) is thus a 2 X 2 ma
trix, 

(20) 
* ee * eO Qe 

Toe Toot [ao. 

Reciprocal properties of scattering insure the symmetry of the T 
matrix 

T = T', or Te0 = TOe. 
Energy considerations, valid in the absence of loss mechanisms in the 
scatterer or embedding medium, insure the additional property of the 
T matrix 

T*T = -Re T. 

u = d(/>/dx 

T = ;8 du/dx = /? d2</>/d:c2 = -po>2 

In the case of longitudinal waves, u in the foregoing represents dis
placement in the direction of wave propagation and ;6 represents X 
+ Ip. = K. + 4|t/3 where X and p. are the Lame constants, p the shear 
modulus and K the bulk modulus of the material. In this ease, the wave 
speed is c = [(X + 2p)/p]1/2. For a fluid medium we set p = 0 and note 
that u now represents longitudinal velocity. In the case of transverse 
waves (shear waves), u represents displacement in they or z-direction 
and /3 = p. The corresponding wave speed is c = [p/p]112. 

For either longitudinal or transverse waves the boundary conditions 
in terms of one dimensional polar coordinates are continuity of dis
placements 

d<l>(r, a) d<pf{r, a) 

dr dr 
at o-= ±1 (22) 

and continuity of stresses 

p<t>(r, a) = Pf<pf(r, a) at r = h, a = ±1 (23) 

The super or subscript / refers to the inclusion material. The regular 
basis functions for waves inside the inclusion are 

ye(t) = cos k/r, yf
0(r) = a sin k/r (24) 

in terms of which the wave refracted in the scattering layer may be 
expressed 

tf'(r) = feUi') + foU('), r<h (25) 

Substituting equations (16) and (18) into (19), and equation (19) and 
(25) into the boundary conditions, one may solve algebraically for the 
unknown coefficients de, do, fe, /o in terms of the known ae and ao. The 
elements of the transition matrix in equation (20) thus found are 

_ (pc/pfC/) cos kh sin kfh — sin kh cos kfh 

— (pc/pfCf)e'kh sin kfh — ie'kh cos kfh 

(pelpfCf) sin kh cos kfh — cos kh sin kfh 
rp 

(pc/pfCf)ie'kh cos kfh + elhh sin kfh 

Teo = Toe = 0 

(26) 

where k = oi/c, c2 = 0/p, kf = ahf, cf = /S//p/. Note that the foregoing 
results can be expressed compactly as 

-&. 
(pc/pfCf)\[>3\p

fq - \l/'s\p
f
q 

(27) 

where a prime indicates a derivative with respect to argument. 
Substitution of the aforementioned results into equation (20) and 

then equation (18) completes the calculation of the scattered wave 
<t>s exterior to the layer -h < x < h. Note that for an incident wave 
moving in the +x -direction and impinging the layer from the left, we 
take a0 = i and ae = 1 for 4>E in equation (16). Thus <j>s in the region 
x < — h is the wave reflected by the layer, cj>f is the standing wave in
side the layer, and (f>s + 4>E in the region x > h is the wave transmitted 
through the layer. The conventional amplitude transmission and 
reflection coefficients T and "R are thus given by 

(28) 
T = 1 + Tee + Too + iTeo ~ iToe 

31 = Tee- Too + iTeO + iT0e 

The shifting operator D, defined in equation (8) is given by in
spection of the identities, valid for \x\ < |£ | , 

eik\x-e) = e'i>\(\[coskx — i sgn (£) sin kx], 

-I sgn (x - £)eih\x~t\ = e'*lfl[£ sgn (Q cos kx + sin Ax] 

Furthermore, if the scatterer is symmetric about r = 0, then its a s 

transition matrix must be diagonal. 
Transition Matrix for One Homogeneous Layer. For plane 

elastic waves propagating in the x -direction, the displacement u and 
stress T can be calculated from the wave potential <t> by 

Deed) De0(£Y 

Poe(& Doo(&, 

iM0 -iM0 (29) 

Multiple Scattering by Nearly Periodic Layers. To apply the 
transition matrix for a single layer as given by equation (26) to mul
tiple scattering by N identical layers (Fig. 1), we first suppress the 

(21) subscripts I, m, n in equation (12) and rewrite it compactly as 
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p<p p.e p,p P,fi p<e 

|-2h-| )—2h-| |^2h-| j~2h-j 

Fig. 1 Geometry of a laminated composite 

<a'>; b' + E J d r / p O v k O D G v - r i W a J ) ; (30) 

where a and b are vectors in a two-dimensional vector space. We will 
refer to them as "excitors." DT is an excitor operator, a matrix in the 
same space. In the case of a two or three-dimensional composite this 
vector space becomes infinite dimensional. However, the sums which 
ran to infinity in Section 2 here run from 1 to 2, that is, the addition 
of the even (e) and odd (0) parts. Care must be taken to distinguish 
vectors such as r; from excitors such as a'. 

If the medium is statistically homogeneous one is permitted to seek 
an average total wave field which is an eigenfunction of translation 
and therefore of the form 

(4>(t)) =<foeL (31) 

where K may be complex, and exp (I'K • t) is the eigenvalue of a trans
lation of coordinates by a vector t. One is also permitted to seek an 
average excitor field which has the same eigenvalue, thus 

< a ' h •• (32) 

where a is an unknown two component constant excitor. For <pA(t), 
we choose a plane wave of given wave length 2ir/k incident from the 
left so that b' = b exp (ik-r;). Substituting equation (32) and the as
sumed b' into equation (30), we obtain 

a eiK-ti = b eik-(i + (jv _ i ) [ J d r p ( r | r . )D(r - r;)TeiK'']a (33) 

From equation (17), the excitor b is given by be = 1, bo = i. Equation 
(33) can be rewritten as 

[I - f drp(r|r,-)D(r - r;)Te'K-('-'''>]a = e'<k-K)-"b (34) 

where p(r|r;) = (N — l)p(r|r,) is a conditional number density equal 
to the average number density as |r — r; | —• °> in the absence of long 
range order, and I is the 2 X 2 identity matrix. 

In a parallel configuration of planar scatterers confined to a half 
space equation (34) becomes after a change of variables £ = x - xi for 
one-dimensional r and r; 

I ' f" d£p(£|O)D(0TeiK* 
%J — Xi 

a = b ei(k~K)xi (35) 

In equation (35), the integrand is another 2 X 2 matrix; a is an un
known two component excitor and b is given. The range of the inte
gration is overall £ consistent with £ = x — xi where x is restricted to 
the half space occupied by the scatterers. As the edge of the scatterer 
distribution is taken to be at x = 0, the integral runs from —*,- to 
+ <=. 

We now assume p(£|0) to be a two-point correlation function de
scribing a quasi-regular array of layers at distance d apart with a 
spread in positions which grows with distance, 

p(£ |0)= £ e-«-«rf)2/<2l"l • (36) 
( « 2 | n | ) 1 / 2 

where n; = integer (xi/d) and n ^ 0. Thus nearest neighbors are at 
a separation d i e ; second nearest neighbors are at 2d ± -y/26, and so 
on. There is no long range order. Equation (36) would describe a 
laminar composite constructed of alternating layers of a uniform 
thickness of one material and a matrix thickness with an error of ±€. 
Such a distribution would result from a construction process 
employing many identical scattering layers sequentially and alter-
natingly stacked with another type of material layer of slightly varying 
thicknesses. Alternatively one could omit the occurrences of | n | in 
equation (36) and have a conditional density distribution which ad
mits of long range order. Such a distribution would result from a 
construction process which placed many identical scattering layers 
on predetermined regular positions, each to a tolerance of ±6, and then 
poured in a filler material between the layers. 

Either choice for p(e\0), or another different one, could be used in 
equation (35). Our choice of equation (36) for purposes of illustration 
is arbitrary. Note that equation (36) allows some unphysical scatterer 
overlap, as the probability for |£| < 1h is nonzero. But for small values 
of e/d the error is small of order 1 — erf j(d - 2/j)/e), a quantity of order 
10 - 5 or smaller in the composites which will be considered. 

In using this conditional density one will encounter integrals like 

-«-n<W£ z | n | 
bre^nl)1'2*9 lM$)e*«, 

q = e, 0 (37) 

For e/d ;$ V2 we obtain by substituting equation (15) into the fore
going, 

HK-k)r, 

isr 

So = 
[1 ] 
—i 

+ 

UJ 

n = \ 
kndp 

T, e. 
n = l 

Knd 

n\de 

iK+k)nd e 

J -
Knd 

, e 
dl] 1 1 (7T62 

L dv 

-(K*+A)2<V4 

re)1'2 

e-i 

(7T62 

eUK+k)ri 

V^\n\ 

n\)U^ 

£ eHk-K)nd e(ff-*)Vn/4 
n=l 

These sums converge for suitable k and K. 

se 
[Sol 

_ i 
—1 

T,+ 
1 
1 

M-
T 

j . 

(38) 

(39) 

with 

l = ei(k+K)d-(k+K)WH fi _ ei(k+K)d~(k+K)^M-l 

M = eHk-K)d-lk-K)WH [1 _ e i ( f e - K ) d - ( k - J W / 4 ] - l 

P = e[i(fe-K)d-(ft-K)W4]xi/d h - eHk-K)d-(.k-K)^/4\-l 

Making use of all previous results we find that equation (35) be

comes 

1 0' 

0 1 

L + M-P iM - iL - iP 

-iM +1L + 1P L + M-P 

Tee 0 

0 1 00. 

„Hk-K)xi (40) 

If e = 0 the terms in P on the left-hand side of equation (40) have 
the same x; dependence as the right-hand side. Their equality follows 
from the validity of equation (40) for all x; and from the extinction 
theorem that the applied field (the right-hand side) is extinguished 
by waves induced at the boundary of the composite. Note that P is 
due to the boundary (x = 0, £ = —Xi) of the composite. Though we are 
aware of no published proofs of the extinction theorem in one di
mension, this use of that theorem differs in no way from that em
ployed in references [6, 12]. The interested reader may construct a 
proof of the extinction theorem in one dimension along the standard 
lines; see, for example, Born and Wolf [17]. 
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When the Xi dependencies are dropped we are left with a homoge
neous equation for a. 

1 0' 

0 1 

L + M iM-iL 

-iM + iL L + M . 

Tee 0 

0 Too ) 
ae 

ao. 
= 

0' 

.0. 
(41) 

•o 

The inhomogeneous (dropped) part would serve to fix the complex 
magnitude of a as proportional to the applied field. 

If e ^ 0 then the x{ dependencies in equation (40) are not identical. 
This is due to the error in having given distant scatterers a wide spread 
in position whereas in reality they are confined to the region to the 
right of the distribution boundary at r = 0. For e / O w e also drop the 
terms in P and the right-hand side, again obtaining equation (41). 
This is justified, in spite of the discrepancy in form, by the extinction 
theorem. 

Equation (41) has nontrivial solution only if the determinant of the 
matrix multiplying a is zero; this requirement results in a transcen
dental equation for K. 

[1 - Tee(L + M)][l - Too(L + M)} - TeeT00(L - M) 2 = 0 (42) 

Its roots can be found numerically. 

3 Results for Elastic Composites 
The solutions of Kd in equation (42) as a function of kd = cod/co 

were obtained interactively on a PDP 11/60 computer. Newton's 
method rather than Muller's method was chosen because the latter 
does not easily locate multiple roots. 

We consider two models of laminated composites. For Model 1, the 
density of the scattering layer (inclusion) is twice that of the matrix, 
PI = 2p, and the shear modulus is eight times larger, #/ = 8#. The 
spacing between the center lines of two inclusions is five times the half 
width of the inclusion, d = 5h. The Model 2 with softer scattering 
layers will be discussed in the next section, c§ = nip in both cases. 

The real and imaginary parts of Kd are listed in Table 1 for two 
cases: (A) When the periodicity is exact (e = 0). (B) When the 
periodic spacing is slightly irregular (e = 0.2d). The real part of the 
roots of both cases are shown in Fig. 3 with solid line for (A) and 
dashed lines for (B). They define the dispersion relation of the "av
erage wave" in the composite medium. The normalized attenuation 
coefficient which is defined as Im (Kd)/kd where d = co/co is shown 
in Fig. 4, again solid line for (A) and dashed lines for (B). Note that 

S 2 

_ 

-

f 1 i i 

y 

i i 

O I 2 3 4 5 6 

Frequency tud/c0 

Fig. 4 Dispersion relation of Model 1 composite with viscoelastic matrix; 
(C) Solid line, exactly periodic layers; (D) Dashed lines, periodic layers with 
20 percent irregularity In spacing; (E) Dotted lines, homogeneous Voigt 
solid 

for perfectly periodic layers, the exact dispersion equation is available 

[18], 

cos Kd = cos [k (d • 2h) + 2kfh] 

( 1 - p ) 2 

2p 
sin [k(d - 2/i)] sin (2kfh) (43) 

where p 2 = pf/Hf/p^. The roots in Table 1, Case (A), agree with those 
obtained from the exact equation. 

The solid curve in Fig. 2 clearly exhibits the stop band, 2.55 < o>d/c0 

< 4.85, for the exactly periodic structure. Within the stop band, the 
attenuation as shown by the solid curve in Fig. 3 is very large. The 
attenuation is caused by the blocking of propagation of waves through 
the periodic layers, rather than by a dissipation of energy or mode 
conversion (S-wave to P-wave, or vice versa) in the medium. The 
situation is analogous to the forcing of an oscillator or a system of 
oscillators at an unnatural frequency, i.e., at a frequency at which the 
system does not oscillate in the absence of external forces. There is 
no net transfer of energy from the forcing mechanism to the oscillator. 
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Table 1 
8/io) 

A Krl 

C \ 
o \ 

0 . 5 

1.0 

2 . 0 

2 .2 

2 . 4 

2 . 6 

2 . 8 

3 .0 

3 .2 

3 .4 

3 .6 

3 . 8 

4 . 0 

4 . 2 

4 . 4 

4 . 6 

4 . 8 

5 .0 

5 . 2 

5 .4 

5 .6 

5 . 8 

6 .0 

6 .2 

6 .4 

Real and imaginary wave numbers of the average 

(A) 

R e g u l a r 

0 . 4 7 8 

0 .964 

2 . 0 2 4 

2 . 2 8 1 

2 . 6 0 1 

3 .142 

3 .142 

3 .142 

3 .142 

3 .142 

3 .142 

3 .142 

3 .142 

3 .142 

3 .142 

3 . 1 4 2 

3 .142 

3 .806 

4 . 1 3 5 

4 . 4 2 3 

4 . 7 0 1 

4 .986 

5 .296 

5 .686 

6 .283 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 

E l a s t i c 

0 . 3 0 4 1 

0 . 6 4 4 1 

0 . 8 2 1 1 

0 . 9 3 2 1 

1 .0001 

1 .0331 

1 .0331 

1.00.01 

0 . 9 3 0 1 

0 . 8 1 0 1 

0 . 6 1 0 1 

0 . 0 9 2 1 

0 . 4 2 0 1 

(B) 

I r r e g u l a r E l a s t i c 

0 . 4 7 8 

0 .964 

2 .022 

2 .276 

2 .567 

2 . 8 5 1 

2 .992 

3 .066 

3 .120 

3 .167 

3 .214 

3 .265 

3 .324 

3 .397 

3 .496 

3 . 6 3 2 

3 ,812 

4 , 0 2 4 

4 .249 

4 . 4 7 3 

+ 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

0 . 0 0 0 1 

0 . 0 0 2 1 

0 . 0 2 3 1 

0 . 0 4 4 1 

0 . 1 0 3 1 

0 . 2 8 2 1 

0 . 4 9 6 1 

0 . 6 4 6 1 

0 . 7 4 6 1 

0 . 8 0 8 1 

0 . 8 3 9 1 

0 . 8 4 1 1 

0 . 8 1 5 1 

0 . 7 6 2 1 

0 . 0 8 3 1 

0 . 5 8 9 1 

0 . 5 0 0 1 

0 . 4 3 9 1 

0 . 4 0 9 1 

0 . 4 0 5 1 

4 , 6 9 1 + 0 . 4 2 1 1 

4 . 9 0 1 + 0 . 4 5 5 1 

5 . 0 9 8 + 0 , 5 0 4 1 

5 .280 

5 .445 

+ 0 . 5 6 1 1 

+ 0 , 6 2 3 1 

wave In laminated composite, Model No. 1 (d = 

(C) 

R e g u l a r V i s c o u s 

0 . 4 7 3 

0 . 9 6 0 

1.979 

2 . 2 0 2 

2 . 4 2 5 

2 .617 

2 .743 

2 .823 

2 . 8 8 3 

2 .937 

2 . 9 9 3 

3 .055 

3 .125 

3 . 2 0 8 

3 .309 

3 . 4 1 2 

3 . 5 3 8 

3 .673 

3 .814 

3 .956 

4 . 0 9 7 

4 .232 

4 . 3 6 2 

4 . 4 8 5 

+ 0 . 0 1 1 1 

•1- 0 ,0451 

-!- 0 . 2 1 9 1 

+ 0 . 2 9 3 1 

+ 0 . 4 0 4 1 

+ 0 , 5 6 4 1 

+ 0 . 7 3 5 1 

+ 0 . 8 7 6 1 

+ 0 . 9 8 4 1 

+ 1 .0631 

+ 1 .1201 

+ 1 .1571 

+ 1 .1791 

+ 1 .1901 

+ 1 .1941 

+ 1 .1971 

+ 1 .2031 

+ 1 .2171 

+ 1 .2431 

+ 1 ,2791 

+ 1 ,3251 

+ 1 .3801 

+ 1 .4401 

+ 1 .5041 

4 . 6 0 1 + 1 .5711 

(D) 

I r r e g u l a i 

0 .478 + 

0 .960 + 

1.968 + 

2 .177 + 

2 .376 + 

2 .547 + 

2 .680 + 

2 .785 + 

2 . 8 7 3 + 

2 .956 + 

3 . 0 3 8 + 

3 .123 + 

3 .213 + 

3 .310 + 

3 .413 + 

3 . 5 2 3 + 

3 . 6 3 8 + 

3 .755 + 

3 .875 + 

3 .993 + 

4 . 1 1 1 + 

4 ,226 + 

4 . 3 8 3 + 

4 . 4 4 6 + 

4 . 5 5 2 + 

r V i s c o u s 

0 . 0 1 1 1 

0 . 0 4 7 1 

0 . 2 3 5 1 

0 . 3 1 4 1 

0 . 4 2 0 1 

0 . 5 4 9 1 

0 . 6 8 1 1 

0 . 7 9 8 1 

0 . 8 9 5 1 

0 . 9 7 3 1 

1 .0351 

1 .0841 

1 .1241 

1 .1591 

1 .1901 

1 .2221 

1 .2551 

1 .2921 

1 .3331 

1 .3771 

1 .4261 

1 .4761 

1 .5291 

1 .5831 

1 .6371 

5h, pi = 2p , fit = 

(ID! i 
Homogeneous 
Voig t M a t r i x 

0 . 5 0 0 + 

0 .996 + 

1 .971 + 

2 . 1 6 1 + 

2 .350 + 

2 .537 + 

2 .722 + 

2 . 9 0 5 + 

3 .086 + 

3 .264 + 

3 .440 + 

3 .614 + 

3 .785 + 

3 .953 + 

4 .119 + 

4 . 2 8 3 + 

4 . 4 4 4 + 

4 .602 + 

4 . 7 5 8 + 

4 . 9 1 1 + 

5 . 0 6 1 + 

5 .209 + 

5 . 3 5 3 + 

5 .497 + 

5 .637 + 

0 . 0 1 2 1 

0 . 0 5 0 1 

0 . 1 9 5 i 

0 . 2 3 5 1 

0 . 2 7 8 1 

0 . 3 2 4 1 

0 . 3 7 4 1 

0 . 4 2 6 1 

0 . 4 8 2 1 

0 . 5 4 0 1 

0 . 6 0 0 i 

0 . 6 6 3 i 

0 . 7 2 9 1 

0 . 7 9 7 i 

0 . 8 6 6 1 

0 . 9 3 8 1 

1 .0111 

1 .0861 

1 .1631 

1 .2411 

1 .3211 

1 .4011 

1 .4831 

1 .5661 

1 .6491 

Table 2 
Mo/8) 

?\" 
0 . 5 0 

1.00 

1.20 

1.35 

1.37 

1.38 

1.39 

1.40 

1.50 

1.65 

1.80 

2 .00 

2 .40 

2 .70 

3 .00 

3 .30 

3 . 3 3 

Real and imaginary wave numbers for the average wave in laminated composite, Model No. 2 (d = 

0 . 8 4 3 

1.763 

2 . 2 2 1 

2 . 7 2 3 

2 .844 

2 .914 

3 .019 

3 .142 

3 .142 

3 .142 

3 . 1 4 2 

3 .142 

3 .142 

3 .142 

3 .142 

3 .142 

3 .332 

(A) 

+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

0 . 1 7 9 1 

0 . 6 3 5 1 

0 . 9 4 2 1 

1 .1311 

1 .2871 

1 .3831 

1 .2941 

1 .0331 

0 . 2 9 9 1 

0 . 8 4 3 

1.762 

2 .212 

2 .632 

2 ,692 

2 .716 

2 , 7 4 0 

2 .769 

2 . 2 9 5 

3 .023 

3 ,075 

3 .122 

3 .195 

3 .255 

3 .350 

3 . 6 4 3 

3 .702 

(B) 

+ 
+ 
+ 
+ 
+ 
+ 

+ 

+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 

0 .0041 

0 . 0 2 8 1 

0 . 0 7 0 1 

0 . 1 9 6 1 

0 . 2 3 5 1 

0 . 2 5 4 1 

0 . 2 7 4 1 

0 . 3 0 1 1 

0 . 5 3 8 1 

0 . 8 0 6 i 

0 , 9 8 5 i 

1 .1401 

1 .2421 

1 .1631 

0 . 9 2 5 1 

0 . 4 6 9 1 

0 . 4 2 2 1 

0 . 8 4 3 

1 ,761 

2 ,218 

2 .718 

2 . 8 3 5 

2 . 9 0 1 

2 . 9 8 3 

3 .073 

3 . 1 3 1 

3 .148 

3 .164 

3 .188 

3 .260 

3 .353 

3 .512 

3 .804 

3 .844 

(C) 

-1-

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 

0 . 0 0 4 1 

0 . 0 1 5 1 

0 . 0 2 1 1 

0 , 0 3 6 1 

0 . 0 4 6 i 

0 . 0 5 7 1 

0 . 0 8 4 1 

0 . 1 8 5 1 

0 . 8 3 5 1 

0 , 9 4 4 1 

1 .1351 

1 ,2981 

1 .4171 

1 .3711 

1 ,2171 

0 . 9 8 5 1 

0 . 9 6 2 1 

0 . 8 4 3 

1.762 

2 . 2 1 3 

2 .628 

2 .687 

2 . 7 1 1 

2 .734 

2 .762 

2 . 9 2 1 

3 .030 

3 .095 

3 .165 

3 .305 

3 . 4 4 1 

3 .637 

3 . 4 2 8 

3 . 9 6 3 

(D) 

+ 

+ 

+ 
'+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 

0 . 0 0 8 1 

0 . 0 4 3 i 

0 . 0 9 U 

0 . 2 2 5 1 

0 . 2 6 3 1 

0 . 2 8 2 1 

0 . 3 0 H 

0 . 3 2 8 1 

0 . 5 5 8 1 

0 . 8 2 4 1 

1 . 0 0 6 i 

1 .1691 

1 .3061 

1 .2871 

1 .1851 

1 .0351 

1 .0201 

6/1, pi = 

0 .050 

0 . 9 9 6 

1.194 

1 .341 

1.360 

1.370 

1.380 

1.390 

1.488 

1.633 

1.779 

1 .971 

2 .350 

2 .630 

2 . 9 0 5 

3 .175 

3 .202 

= pl2,p.,= 

(E) 

+ 
+ 
+ 

+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

0 . 0 1 2 1 

0 . 0 5 0 i 

0 . 0 7 1 1 

0 . 0 9 0 i 

0 . 0 9 3 1 

0 . 0 9 4 1 

0 . 0 9 5 1 

0 . 0 9 7 1 

0 . 1 1 1 1 

0 . 1 3 4 1 

0 . 1 5 9 1 

0 . 1 9 5 1 

0 . 2 7 8 1 

0 . 3 4 9 1 

0 . 4 2 6 1 

0 . 5 1 0 1 

0 . 5 1 9 1 
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The existence of the stop band has been confirmed experimentally 
for a precisely constructed layered model [19]. 

As can be seen from the dashed curves in both figures, the effect 
of the 20 percent irregularity in spacing has been to soften the sharp 
band features present in the perfectly regular case. The dispersion 
Curve B in Fig. 2 is now continuous. A small amount of attenuation 
has appeared at moderate frequencies kd < 2.5. This is attributed to 
the "scattering loss" which represents the part of energy not carried 
by the coherent average wave. Attenuation within the stop band has 
fallen. This is because the irregularity has hindered the ability of the 
periodic structure to exclude certain frequencies. 

Note also that this 20 percent irregularity has essentially destroyed 
the higher pass bands. The Curve (B) in Fig. 3 shows a local minimum 
in attenuation of about 0.4 nepers per periodicity d at kd c~ 5.2. The 
pass band still exists but for practical purposes cannot carry coherent 
information. 

The group velocity ug for the average wave is defined as Re (dKI 
dci))-1 when o> is a real variable. Thus, at kd = 2.55 and 4.85, the group 
velocity for the average wave in Case (A) is zero. Within the stop band, 
2.55 < tod/co < 4.85, the group velocity is also zero because dK/dw is 
pure imaginary, and the waves at these frequencies are standing 
waves. However, in Case (B), waves at the same frequencies are of 
propagating mode. The group velocity at kd = 2.55 is about one half 
of that at low frequencies. 

In Fig. 2 are shown two branches; the first one runs from the origin 
to upper right with positive group velocities, and the second one runs 
from upper left to lower right with negative group velocities. In Case 
(A), the negative branch is associated with waves moving toward 
negative direction of the x -axis. The interpretation for the negative 
branch in Case (B) is not clear because the calculated K's are such that 
the analytic sum performed in equation (38) did not converge as n -* 
<». We therefore suspect this branch of being unphysical. In any case, 
negative group velocity modes are ruled out by most ultrasonic ex
periments. 

Of a more problematic nature are branches not included in Fig. 3. 
These are solutions for Re (Kd) > 2ic, 0 < kd < 7 with positive group 
velocity. In Case (A), these solutions are merely duplicates of the first 
branch, and there is no physical distinction between a solution Kd 
and a solution Kd + 2ir [20]. In Case (B), each solution still exists 
though its exact location has shifted. The difficulty is in that each 
solution shifts a different amount, hence they are now distinguish
able. 

4 Results for Viscoelastic Composites 
The formalism developed in Sections 2 and 3 applies also in the case 

of a viscoelastic matrix material, a viscoelastic inclusion, or both, when 
k and (i, kf and tif, or both are complex quantities. One need not as
sume any particular model for viscoelastic behavior, but rather merely 
insert observed complex values for k and fi as functions of real OJ and 
material type. Nevertheless, for purposes of comparison in this paper, 
we assume a Voigt model for the matrix material. 

Viscoelastic Model 1. Consider again a laminated composite as 
in the previous section and assume the inclusion material remains 
unchanged but the matrix material be modified in that k and p. are 
now complex functions of real frequency co, 

H = Ml~ir<o] 

k = 0>/{c0(l - iru)1'2] 

The po and c0 = (po/p)m are the low frequency modulus and wave 
speed, respectively. We choose the same geometry and elastic prop
erties as those for Model 1, and choose T, the relaxation time, to equal 
d/10co. This value ensures that the viscous effects are not dominant 
in the domain of interest, nor are they negligible. 

The complex wave number Kd of the average wave as calculated 
from equation (42) are shown again in Table 1 for three more cases: 
(C) An exactly periodic array of elastic layers sandwiching the Voigt 
matrix, (D) 20 percent irregularity in the spacing of the Voigt ma
trix. Thus (C) is the viscoelastic counterpart of (A) in the previous 
section, and (£>) that of (B). In the table, we include the case (E) for 
a homogeneous Voigt solid. The real parts of Kd are shown in Fig. 4 

Fig. 5 Attenuation of waves in Model 1 composite with viscoelastic matrix 
(C), (D) , (£) ; same as in Fig. 4 

with solid line for (C), dashed lines for (D), and dotted lines for (E). 
The corresponding imaginary parts, divided by cod/co, are shown in 
Fig. 5. 

From the dispersion Curve (C) in Fig. 4, we see that the addition 
of viscosity in exactly periodic matrix layers has eliminated completely 
the standing wave mode within the stop band. Comparing Curve (C) 
with Curve (B) in Fig. 2, we find the effect of adding viscosity is similar 
to that of having irregularity in spacing. The addition of either ir
regularity or viscosity increases the group velocity in this frequency 
range. 

The Curve (D) in Fig. 4 shows the combined effect of viscosity and 
irregular spacing. The addition of variations in periodicity changes 
only slightly the dispersion relation. 

The effect of viscosity on the attenuation is pronounced. Outside 
the stop band, the attenuation has been greatly increased in Case (C) 
as shown in Fig. 5. Making the composite spacing irregular, thereby 
adding scattering losses, increases the attenuation more (Curve D in 
Fig. 6). Within the stop band (o>d/co > 2.55), the attenuation is more 
severe for the regular composite, rather than for the irregularly spaced 
layers. This is the same as in the elastic case treated in the preceding 
section. These results indicate that the attenuation in this region is 
due primarily to periodicity rather than either viscosity or irregu
larity. 

Viscoelastic Model 2. For purposes of ascertaining the effects 
of viscosity and irregularity in a laminar composite independent of 
the choice of geometry and material parameters, we investigated 
another model for which the elastic inclusions have lighter density, 
Pf = p/2, and softer rigidity, pf = po/8. The spacing between the center 
lines of two elastic layers is slightly increased, d = 6h. The viscoelastic 
matrix (Voigt body) has a complex modulus p = po(l — iroi) where 
rco = d/10 and c§ = fio/p-

As was done for Model 1, we assume all four cases: (A), (B), (C), and 
(D). The calculated complex wave numbers for the average wave are 
listed in Table 2. Again, the Case (E) is for a homogeneous Voigt solid 
where Kd = kd. Note that the values for Case (E) in Table 2 are the 
same as those in Table 1. The dispersion relations, Re (Kd), for all 
cases are shown in Fig. 6; and the attenuations, Im (Kd)/(<i)d/co), in 
Fig. 7. 

As can be seen from Fig. 6, the sharpness of the band structure 
(Curve A) is again destroyed by the irregularity in spacing (Curve B). 
However, the viscosity has little effect on the band structure (Curve 
C, Fig. 6). Its significance is only in the increasing of attenuation in 
the pass band (Fig. 7). 

One striking contrast between Model 1 and Model 2 is that in the 
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0.7 

1.0 2.0 
Frequency ojd/c„ 

Fig. 6 Dispersion relation of Model 2 Composite; (.4) Solid line, exactly 
periodic layers, all elastic; (S) Dashed line, irregularly periodic layers, all 
elastic; (C) Dash-dot line, exactly periodic layers, elastic-viscoelastic; (0 ) 
Dotted line, irregularly period layers, elastic-viscoelastic; (E) Long dashed 
lines, homogeneous Voigt solid 

former, the viscosity as well as irregular spacing destroys sharp band 
structure, whereas in Model 2, the viscosity is relatively ineffective. 
Furthermore, the low frequency attenuation of Model 1 is dominated 
by viscosity, and that of Model 2 by irregularity. 

Conclusion. Based on the results for Model 1 (Table 1, Figs. 2-5) 
and those for Model 2 (Table 2, Figs. 6,7), we conclude that for lam
inated composites, there exists a sharp stop band for exactly periodic, 
elastic layers. The values for the lower and upper limits of the stop 
band can easily be calculated from equation (43). Outside the stop 
band, the attenuation is zero; inside it, very large. The high attenua
tion within the stop band is attributed to the blocking of the trans
mission of waves through the layers. The waves are in standing mode 
and the group velocity is zero. There is, however, no dissipation of 
energy associated with the stop band. 

The sharp band structure is destroyed by irregularity in the spacing 
of elastic layers, viscosity in the matrix material, or both. Within the 
stop band, the irregularity breaks up the symmetry responsible for 
standing waves, resulting in a propagating mode with reduced at
tenuation. Outside the stop band, the irregularity gives rise to a 
scattering loss in the form of small attenuation at low frequencies. 
This scattering loss is attributed to the incoherent scattering of waves 
out of the coherent average field. 

Outside the stop band, the attenuation due to viscosity in a regular 
composite increases with frequency, and is much larger than the at
tenuation due to irregularity. It is approximately equal to the atten
uation in a homogeneous body made of the same viscoelastic material 
when the viscosity is introduced in the less stiff and lighter material 
(Model 1), but it is smaller otherwise (Model 2). Inside the stop band, 
the addition of viscosity increases the attenuation. 

Finally, we note from Tables 1 and 2 that at frequencies below the 
stop band the attenuation due to the combined effect of viscosity and 
irregularity is roughly equal to the sum of that due to each part. 
Within the stop band, the value for total attenuation is about equal 
to that for the regular viscoelastic composite. 
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Fig. 7 Attenuation of waves in Model 2 composite; (A), (S), (C), (D), (E); 
same as in Fig. 6 
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On the Unbonded Contact Between 
Plates and Layered Cylinders 
An approximate solution is presented for the deflection of a thin plate and for the stresses 
and deformation of a layered circular cylinder in which the plate is pressed against the 
layered soft cylinder by a hard cylinder. The contact is considered as frictionless, and the 
plate has an initial curvature. Since the load on the plate is radial and the initial curva
ture is arbitrary, nonlinear beam theory is used. The state of the layered circular cylinder 
is described by a general stress function. The collocation method is used to relate loading 
and displacements between the contact surface of the plate and the soft substrate of the 
cylinder. 

Introduction 
For bodies in contact without bond, the region of contact is an im

portant unknown which distinguishes it from some hard, punch-
contact-type problems where stresses are sought. Among recent pa
pers on unbonded contact which involve thin-walled members, Wu 
and Plunkett [1] studied thin, circular rings compressed between two 
rigid anvils of constant curvature, and Callegari and Keller [2] solved 
the contact of inflated membranes with rigid surfaces, fhese analyses 
used existing equations, but the solutions were new. Weitsman [3] 
presented an approximate solution for the radius of contact between 
a plate and a semi-infinite elastic half space. Hogg [4] solved the same 
problem but with the interface bonded. He found that tension existed 
in some regions of the bonded interface. 

In the present paper, we solve a class of problems in which a plate, 
either initially curled or straight, is pressed between two circular 
cylinders. One cylinder is hard and the other has elastic layers bonded 
to a hard core. Because of the arbitrary curvature of the plate, the arc 
length of the contact zone between the plate and the soft cylinder 
could be quite large compared with the small indentation prescribed 
between the two. 

For the contact of the layered soft roll, we use the same stress 
function approach as used by Hahn and Levinson [5, 6]. However, the 
numerical solution is made simpler—but of comparable accuracy—by 
using the collocation method instead of the Schmidt method of or
thogonal function. 

Contributed by the Applied Mechanics Division and presented at the Winter 
Annual Meeting, Chicago, 111., November 16-21, 1980, of THE AMERICAN 
SOCIETY OP MECHANICAL ENGINEERS. 
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cember, 1978; final revision, April, 1980. Paper No. 80-WA/APM-ll. 

Fig. 1 Notations; equation derivation is only for a single-layer cylinder, but 
numerical results include a two-layer cylinder 

F o r m u l a t i o n of the S o l u t i o n 
Large Deflection of a Beam Under Distributed Loads. Fig. 

1 shows a hard roll (circular cylinder) pressed on a hard-cored soft roll 
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(layered cylinder) with a thin beam (plate) pressed in the nip. Assume 
the deflection is symmetric to the y-axis. The circular arc, a'c', on the 
undeformed surface of the soft roll is now displaced to the contact 
interface, ac, where arc a b follows the contour of the hard roll and arc 
be is the contact between the soft roll and the cantilevered part of the 
beam. The hard roll does not contact the beam between b and c. 

Let s be the nondimensional curvilinear coordinate of the beam 
measured along its axis from a. It is the true length divided by the 
outer radius, Ro, of the soft roll. Let 8 be the coordinate of a point 
originally on the undeformed arc of the soft roll. If the surface strain 
is not negligible compared with unity, then 

d£ 

ds 
= (1 + t0)-

1 3= 1 - 60, (1) 

where f « is the tangential surface strain of the soft roll. 
Let <j> be the slope of the deflected center line of the beam measured 

counterclockwise from the x-axis and ar, positive inward, be the radial 
stress acting on the beam from the soft roll. Then, the Euler-Bernoulli 
beam theory yields 

- ^ = o>* cos(</, + ( 
ds2- Js ds, (2) 

where 5>* = orRo3/EI, E is the Young's modulus, and I the sectional 
moment of inertia of the beam. 

Using equation (1) to change coordinates from s to 6 and dropping 
terms with e«2, equation (2) becomes 

(1 
dig dtj> 

~e°}M'd8 

•• f or* cos (<t> + 0)(1 + ee)dd, Bp < 8 < Q 
Jo 

(3) 

We shall assume that the tangential surface strain eg and the rate 
of change deo/dd are both negligible and can be dropped in equation 
(3). Then we have 

d2,t> 

dB2 

ra _ 
• = 1 o>* cos (<£ + 

Jo 

To solve equation (4), let 

\h(8),h(8)\ = f" 5V* (cos 0, sin 
J op 

Then, equation (4) becomes 

d2d> fa 

—-- = I or* cos (4> + B)d6 - cos <j>fi(6) + sin <t>f2(6), 
dB2 Jo„ 

(4) 

(6a,b) 

6P<8 <Q. (6) 

Equation (6) may be decomposed into the following first-order set: 

— = o>* cos B, 
dd 

< ^ 2 - * • fl = or* sin a, 
dB 

— = M, 
dB 

(la-d) 

and 

dM ra 

dB 
C or* cos (4> + 6)d6 - cos 0/i(0) + sin 0/2(0). 

JeD 

The starting values of/i, f% M, and <j> ai'e their corresponding values 
at 8 = 8P, which are 

and 

h = h = 0, 

M = Rh, 

< = 6P' = 6P/Rh, 

(8) 

where Bp' is the subtended angle to the hard roll of 8P as shown in Fig. 
1. Rh is the hard roll cylinder radius, Rh, divided by Ro- The effect of 
the beam's thickness on the contact geometry may be approximated 
by adding its thickness to the hard roll radius Rh-

When Or of the soft roll is prescribed, there are only two unknowns, 
Q and 6P, in the beam solution. With a given indentation, UQ, which 
is defined as the interference between the two rolls, o> can be deter
mined from the contact problem. The correct values of 6P and fl 
should be such that, 

0><0=Q) 
:0, 

and 

7<»=n> 
• = Ro/Rb, 

(9) 

(10) 

where Rb is the initial radius of curvature of the beam, positive up
ward. 

G e n e r a l S t r e s s and S t r a i n E x p r e s s i o n s of the L a y e r e d 
Sof t R o l l 

The radial surface stress, o>, required to produce a prescribed radial 
displacement at the surface of the cored soft roll and other strain and 
displacement expressions can be found from existing papers (reference 
[5]). Simple derivations and equations to be used for the present 
analysis are given as follows. 

The well-known stress function (in cylindrical coordinates) which 
is symmetric to 6 is used for the soft layer of the roll under external 
loads: 

U = ao In r + - b0r
2 + (bir3 + c i r - 1 + di'r In r) cos 8 

+ - dxrd sin 6 + £ (anr
n + bnr

n+2 

2 n = 2 
+ cnr~n + dnr~n+2) cos riB, (11) 

where a term, r2 In r, has been omitted so that displacements will be 
single-valued with respect to 8. 

Let or, oo, rro be the radial, tangential, and shear stresses, u and 
v be the radial and tangential displacements, and E* and v be the 
Young's modulus and Poisson's ratio, respectively, of the outer layer 
of the soft roll. The quantities are nondimensionalized as shown in 
the following: 

\or, oo, Tro\ '• 
E* 

\Or, OO, Tro\ (12a) 

\u, v,r,Ri) = — \u, v, r, Ri], di = Ro-1 di'/E* (126) 
/to 

an = Ron'2 aJE*, bn = RonbJE*, n = 0 ,1 , 2 , . . 

= P „ - n - 2 Cn = R cJE*. dn = Ro~ndJE*, n=l,2, 

The stress and strain expressions are well known, they are 

°T ~ E* \r dr r2 dd 

d2U 

%• 

oo = 
E*Z>r2' 

o 
Tr0= -

er = — -
dr 

E*dr 

KOr 

.rdBJ' 

P5,, 

and 

u 1 dv _ 

r r Z>8 

1 bu di) v 
yrO = -— + - = 2(1 + v)Tro-

r da dr r 

(12c) 

(12d) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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where K and /? are functions of the Poisson's ratio, v; and K = 1 — v2, 
/3 = v(l + v) in the case of plane strain, and K = 1, /3 = v in the case of 
plane stress. 

The displacements u and u can be found by integration of equations 
(16) and (17), and the integration constants may be determined by 
substitution into equation (18). 

Some relevant expressions, o>, eg, u, etc, are given in Appendix A, 
which are also shown in reference [5], but a few typographic errors in 
the reference are corrected. 

Boundary Conditions. The boundary conditions at the inner 
and outer radii, Ri and Ro, of the hard-cored soft roll with the radial 
stress at the outer radius expressed by a Fourier cosine series are 

u = v = 0, on r = Ri, 

Tro = 0, on r = 1, 

and 

ay = £ A„ cos nB, on r •• 
n=0 

1; 0 < 0 < -K 

(19a) 

(19b) 

(19c) 

Substitution of stresses and displacements expressions into the 
boundary equations will relate the undefined stress function coeffi
cients in equation (11) to the Fourier series coefficients, An, which 
are prescribed or related to the plate deflection. These equations are 
given in Appendix B. 

Solution Equations. Assume that the radial stress at the contact 
zone is expressed by a Fourier series with M + 1 terms: 

0><r=l> = L — hm COS-—-,0 < 6 < il. 
m=0 il il 

= 0, n < e < v. (20) 

Since the Fourier series of equation (19c) covers the entire range of 
0, coefficients An can be related to hm by the the following equa
tions: 

and 

Ao = ho, 

*£ , /sin (mir — nil) sin (mir + nii 
An= E hm\ — + — — 

m=o \ mw — nil mir + nil 

n •• 1,2, 

(21a) 

(216) 

The radial stress at the contact zone will produce a radial dis
placement, u(8), within the contact zone. Thus, for prescribed u(8), 
we have 

£ anAn cos nB = u(8), 0 < 6 < il, 
n=0 

(22) 

where the a's are obtained from the u(8) expression of equation (35), 
together with equations (38)-(41). The a's are given in Appendix 
C. 

Differentiation of equation (22) yields 

X n«nA„ sin nB = , 0 < 6 < Q. 
n=i dB 

(23) 

For the part of the contact arc which is circular, the displacement 

is, 

ui s u0 + - (1 + Rh) 82/Rh, 0<e<8p, (24) 

where «o is the indentation, Uo, divided by flo-
For the part in contact with the beam, the radial displacement is 

"2 = a + « i ( , . , p , ) c o s ( 0 - 0 p ) + f sin (8 + <p(0)dZ - 1, 
•J On 

<8 < S2, (25) 

where <j> is the solution of equation (6). 
Substitution of equations (24), (25), and (21) into equation (23) and 

dropping u\ term, yield 

H ° , . sin (mir — rafi) sin {mir + nil)) 
X, L. nhmctnsmn8\ — + — 

m=0n=i \ mir — nil mir + nil I 

= -(l + Rh)8/Rh for 0<8<8P, 

= (1 + U(,=»p)) sin (8 - dp) - sin (8 + 0(0)) 

f cos (0 + 0(f))d£ for 8P < 8 < Q. (26) 

Note that equation (26) does not contain the indentation, UQ. 
Equation (26) may be further simplified by using equation (9), 

which yields 

M 
ho= E ( - D m + 1 ^ 

Substitution into equation (26) yields 

(27) 

E Z nhman sin nB 
m=\ n=l 

(-l)m+i 2 sin nU/nQ 

sin (mir — nil) sin (mir + nil) 

mir — nil • + - mit + nil 

= - ( 1 + Rh)8IRh for 0 < 0 < Bp, 

= sin (1 + 7J(8=9p)) W - #/>) ~ s i n ^ + <t>^ 

- C" cos (0 + 0(£))df for BP<B < il. (28) 

This is the final simultaneous equation set to solve for the hm which 
defines the radial deflection pattern of the elastic-layered cylinder 
for a given indentation, UQ/RQ. Since u0 does not appear in equation 
(28), the two unknown angles, 8P and il, will determine the deflection 
pattern. We could assume a value for one of the unknowns, say il, and 
solve for 0P iteratively. In each iteration, the load ay on the beam is 
found by inserting the hm into equation (20). The correct Bp for the 
assumed il must satisfy the remaining constraining equation, equation 
(10). The corresponding UQ which produces the assumed il is obtained 
from equation (24) 

«o = "i<9=0p> - - (1 + R),)BP
2/Rh (29) 

Problem With Multilayers. By assuming a different stress 
function for each layer and using the additional stress-function 
coefficients to satisfy the stress and displacement requirements at 
the interfaces, the muttilayered soft roll can be reduced to an equiv
alent single layer roll. Formulas will not be presented here, but some 
results pertaining to a two-layer roll with a hard core will be given. 

T h e Col loca t ion M e t h o d 
To solve for hm in the simultaneous equation (28), the Schmidt 

orthogonal function method could be used (reference [5]). However, 
it will require a large number of integrations and tedious numerical 
manipulations. Instead, we choose a simpler collocation method for 
the solution of equation (28). We simply divide the angle il into M 
segments which, for convenience, may be of equal arc length. By 
consecutively letting i = 1, 2 , . . . , M in 

0 = 0; = iil/M 

and substitution into equation (28), M linear equations with constant 
coefficients and with constant right-hand sides are obtained. Then 
M values of hm can be solved directly. 

That the collocation method is much simpler is obvious. Take a 
7-term solution as an example. The orthogonal function method will 
require 6 matrix inversions, 6 summations, and 28 integrations to get 
the values of the seven hm's, whereas the collocation method needs 
only a single matrix inversion. Fig. 2 is a numerical example, based 
on the geometry of reference [5], of the contact pressure o> at the 
crown obtained by the two methods with the same number of hm 

coefficients. A crown stress of 0.182 is obtained in reference [5]. 
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Fig. 2 Comparison between the orthogonal function method and the colo-
cation method of equal number of terms for a problem in reference [5] 

Compared with Fig. 2, the collocation method approaches this value 
quicker and in a steadier manner than the orthogonal coefficient 
method, and for equal number of terms, the collocation method is 
closer to the final value than the orthogonal coefficient method. 

S o m e N u m e r i c a l R e s u l t s 
Fig. 3 shows indentation versus contact angle for a curved beam and 

a straight beam in the nip. Fig. 4 shows effect of beam curvature and 
stiffness on contact angle for a given indentation. Fig. 5 shows the 
shear stresses at the interfaces of a two-layered cylinder with the 
presence of a curved beam in the nip. 

C o n c l u s i o n s 
An iterative procedure is suggested to solve the problems of an 

elastic plate with an initial curvature compressed between two cyl
inders, one is hard and the other has soft layers with a hard core. The 
method can be adopted easily to the same problem with the hard roll 
replaced by another elastic layered soft roll. 
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Fig. 3 Indentation versus contact angles for a curved beam and a straight 
beam; stiffness value E'R0

3/EI = 5670 
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Fig. 4 Beam stiffness effect on contact angles for a fixed indentation u0 '• 
-0.0185 

APPENDIX A 

Based on the stress function, equations (13)-(18) yield 

5> = 50r~2 + b0 + cos 6 [2rbi - 2T--3 ci + r'1 W + d{)] 

+ E cos n8 [(re - re2) rn-2an + (2 + n - re2) fnbn 
re='2 

- (n + n2) r-"'2cn + (2 - n - n2) r~ndn\ (30) 

770 = sin d(2rb1 - 2r~-3 ci + r " 1 dx') 

+ £; sin nd [(n2 - n)rn~2an + (re2 + n)fnbn 
n=2 

- (n2 + n)r-n-2cn +(n-n2)r-"dn (31) 
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40 

U(8) = -(K + (3)f~l a0 + (K - P)rb0 

+ cos 8 [ar + (K - 3/3)r2&i + (K + /3)f-2ci 

+ ((K - /3)di' + Kdi) In r] + £ cos nB [-(« + ftnr"-1 an 

+ (K(2 - re) - f3(2 + n))r"+1bn + (K + $)m-n-^n 

+ (K(2 + n) + /3 ( re -2) )P-"+ 1 d , l ] , (35) 

and 

v(8) = sin 6 [-Si + (5K + /3)r2bi + (K + P)r~2ci 

+ (K - /3)di' - j8di - In r ((K - $W + K2"I)] 

+ £ sin n8 [(K + P)nr'>-1an + (x(n + 4) + (3n)rn+lbn 
n=2 

+ (K + $)rif-n~l cn + (n(n - 4) + /3re)r-"+1 dn], (36) 

where o"i is an integration constant, and 

• K -

di ' = 
4« 

: d x (37) 

Fig. 5 Shear stress distribution at the two interfaces for a two-layered soft is obtained by requirements for compat ibi l i ty. 
cylinder; indentation S0 = 0.0185, beam stiffness El = 0.25 Kg-cm per unit 
width and curvature Rb = 3.0 

ee = -(K + /3 ) r - 2 a 0 +(K- /3 )bo 

+ cos 8 [2(3K - P)rb~i + 2r~3 (K + 0)ci + r " 1 

X ((K - /3)di' - /3di)] + £ cos re0 [re(n - 1)(K + /3)f " - 2 a„ 

+ ( K ( « 2 + 3n + 2) - 0(2 + re - n2))rnbn 

+ (K + 0 ) ( » + W 2 ) ? - " - 2 C „ 

+ (K(2 - 3re + re2) + /3(n2 + re - 2))f-"dn] (32) 

e r = ( K + 0 ) r - 2 a o + ( K - / 3 ) i Q 

+ cos 8 [2(/c - 3/3)f%! - (K + /3)2r-3 ci + r " 1 ((K - /S)dV + xdi)} 

+ £ cos n0 [a„r n- 2 (re - re2)(K + /3) + 6„r" (K(2 + re - re2) 

APPENDIX B 
Relationships between stress function coefficients and the surface 

load coefficients of equation (19c) 

!<Jo, &ol = I(K - 0 R , (K + PWr1) ((K + ^ f l r 1 + U - (S)fl;)-1 A0 

(38) 

al= - (K - mR^Bu-1 + (K + Wr2B23-
1 

(K - m 
+ K 

4K 
In i?;S3 Ai (39) 

(40) \bi, ci, dii = \B13-\ B23-\ B33-1) Ai, 

[an, b~n, Cn, dn\ = [ c„ i4 _ 1 > C n 2 4 _ 1 , C„34 _ 1 , C„44 _ 1 ) A „ , 

re = 2 , 3 , . . . , » , (41) 

• 13(2 + 3n + re2)) - c ^ " " - 2 (re2 + n)(n + /3) where Bij l and cn/y * denote the (t/)th elements of the matrices 
[S]" 1 and [C,,] -1 , respectively. Matrices [ S ] - 1 and [C„]_1 are given 

+ dnr-n (K(2 - re - re2) - ,8(2 - 3re + re2))] (33) as follows: 

5* = - r - 2 Q 0 + i o + cos/? (6F61 + 2r-3ci + f - W ) '" " m " " " ' ' m " - " " M 

+ £ cos nd [n(n - l)rn-2an + (re2 + 3re + 2)fnbn 
n = 2 

+ (re2 + re)r~"-2 cn + (2 - 3n + re2)r~"dn]. (34) 

[ B ] " l ! 

(6* - 2 /3R 2 2(K+/3)i?r2 

2 - 2 

4K 

4K 

1 + L 
4K J 

(42) 

[Cn] 

- ( K + /3)refl;"-i 

( K + ^ n f l ; " - 1 

re(re — 1) 

-n(n - 1) 

- [ K ( r e - 2 ) + l 3 ( n + 2)]fl i '
1+1 

[K(re + 4) + /3re]fli"+1 

re(re+ 1) 

-(re - 2)(re+ 1) 

re = 2, 3 , . . . , » 

(K + fflre 

(K + /3)re 

Rin+1 

-n(n+ 1) 

-re(re+ 1) 

K(re + 2) + /3(n-

fii"-1 

K(re - 4) + fin 

-2)" 

Hi11-1 

- ( n - 1 ) 

- ( r e + 2) ( re - 1) 

J 

(43) 
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APPENDIX C _ ,L_ i^ 2 ' + « - ^ lnf i r 'Bas- 1 (45) 
The coefficients of equation (22) are * 4K ' (Cont.) 

^ = (K2-f l*)(-ff , .+g r^ ( 4 4 ) Q,re = _(K + / 3 ) „ C n l 4 - i _ [ K ( „ _ 2 ) + /3( r t+2)]c„24-1 

(K + ftRr1 + (K - P)Ri + U + (3)rac„34_1 + Wn + 2) + (3(« - 2)]e„44-1 

ai = (K-3/3)(l-fl ;2)Si3-1 + (/c + ^ ) ( l - f l r 2 )523- 1 (45) n = 2,3 » (46) 
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Resolution of a Core Problem in 
Wound Rolls 
Previous misunderstandings about the behavior of stresses in the vicinity of the core of 
wound rolls are resolved through the development of an explicit closed-form analytical 
solution for the radial and circumferential stresses which are generated during winding; 
the solution holds in the general case of variable winding tension. Asymptotic series are 
derived and then employed to compute profiles of stresses within the wound material for 
several cases of practical interest. A parametric analysis of the influence of core elasticity 
on structural integrity of the roll underscores the indispensable support provided by the 
core at the inner boundary of the roll. Results show that the circumferential stress in the 
vicinity of the core strongly depends on core stiffness. A relation that is derived between 
interlayer pressure and circumferential stress at the core boundary may be useful as a 
guide in core design and in preventing roll collapse. 

1 Introduction 
Proper winding of flexible sheetlike materials into rolls is an area 

in the field of mechanics which has broad utility in a number of diverse 
and important industries and which, therefore, has been of consid
erable interest over the past few decades. For example, the winding 
process fulfills vital functions in the flexible packaging film industry 
[3], the magnetic tape industry [4, 5], the paper industry [6-9], and 
more recently, the tire retreading industry [10, 11]. 

Thus a central consideration of a number of analytical and exper
imental investigations has been the determination of stresses within 
a roll, e.g., [3,6-9]. Nonetheless, the markedly sharp variations of the 
radial and circumferential stresses, which are shown in this paper to 
occur in the vicinity of the core, have been either overlooked or in
correctly calculated in these earlier investigations, e.g., [6, Fig. 1; 3, 
Fig. 5; 9, Fig. 4]. Experimental measurement has also failed to detect 
these sharp stress variations at the core, e.g., [7,12], As a consequence, 
apparently, the contribution by the core to structural cohesiveness 
of the roll has not been fully recognized. Indeed, it is shown in Section 
6 herein, through a parametric analysis of core elasticity, that an in
adequately designed core, i.e., one that is too soft to resist the com
pression of the material wound on it, will shift this intended function 
to the roll; thus high compressive hoop stress will develop in the sur
rounding material and the roll will be prone to buckling, with the likely 
formation of defects in the wound material. 

Contributed by the Applied Mechanics Division and presented at the 
Winter Annual Meeting, Chicago, 111., November 16-21,1980, of THE AMERI
CAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, De
cember 1979; final revision, May, 1980. Paper No. 80-WA/APM-23. 

A series solution is developed in this paper for the general case when 
winding tension may vary with roll growth, specifically as arbitrary 
non-negative real powers of the radius. The series converges rapidly; 
thus it provides an efficient method of evaluation that is less sensitive 
than the numerical integration employed in earlier theoretical in
vestigations, e.g., [3, 4, 6], especially in the vicinity of the core. 

2 The Altmann Integral Solution 
Structural cohesiveness of wound rolls is developed through the 

building up of stressed layers within the wound material. A general 
incremental method of analysis of accreted bodies is given by Brown 
and Goodman [13]. By employing this incremental method, Altmann 
[6] derived integral expressions for the internal stresses in a center-
wound roll1 in the general case when the circumferential stress, OTW, 
applied to the instantaneous outermost layer (the web) of the roll, may 
vary during winding. The initial radial pressure applied to the web, 
opw, is zero for center-wound rolls, e.g., Fig. 1(a). Nevertheless, apm 

is introduced in the following reformulation of Altmann's integrals 
for the radial pressure op and the circumferential stress OT to facili
tate generalization of the formulas to other winding configura
tions: 

Op-

OT ~ OTw -

(1) 

(2) 

The reader is referred to [6] for the notation used here. Briefly, R, c, 
r, s are the dimensional radii (barred) of the finished roll, of the core, 
of a point within the finished roll, and of the web during winding (r 

1 A center-wound roll is supported and driven entirely by the core against 
the tension in the web, e.g., Fig. 1(a). 
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Fig. 1(6) Initial stresses at radial location r in a center-wound roll 

Fig. 1(a) Stresses applied to and generated within a center-wound roll during 
winding 

<s< R), respectively. The corresponding nondimensional geometric 
quantities are defined as 

fl = R/c, r = r/c, s = s/c (3) 

Anisotropic elasticity parameters of the toll and web, and core elas
ticity are represented by Er, Et, fir, fit, and Ec. Based on these pa
rameters, secondary dimensionless elasticity parameters are defined, 
respectively, for plane stress (unprimed) and plane strain (primed) 
as follows: 

\h 
l^-
V 6 2 

7 — 5, 

7 + 5, 

Et 

E/ 

Et 

"ft" 

Er 

- ( a - 1 ) . 
7 - fi - -

% 

u 

/*' 
S' 

y 
a' 

0' 
b' 

n ' 

7 + fx + — 
Ec 

= fi/(l - fit) 

= 5/(1 - nt) 

= W8'*+{l-ixrfit)Et/(l-

= y'-S' 

= 7 ' + 5' 

= - ( « ' - 1) 

( l - M t 2)(7' - (x ' ) -J 

-Ht2)Er 

(l - tit2)(y' + n') + 
Ec 

Fig. 1(c) Incremental stresses at radial location f which are induced when 
a layer Is wound on at radial location s of a center-wound roll 

solution for the final state of stress may be formulated as an integral 
of infinitesimal increments, specifically, 

op = <rpw + 
rK dap ,_ 

•Jr ds 
0T = &TW "1" r ds 

- ds (5) 

(4) 

Fig. 1(6) shows the initial stresses, opw and <JTW, acting on and in the 
layer at radial location r, before additional plies are wound on. An 
incremental pressure, dq, is exerted on the underlying roll surface as 
each infinitesimal layer is added to the instantaneously outermost 
layer of the roll, which is shown at radial location s in Fig. 1(c). The 
loading dq will incrementally alter the radial and circumferential 
stresses at radial location r within the roll, thus 

The derivation of equations (1) and (2) given in [6] is briefly re
viewed here expressly to indicate how these equations can be extended 
to include general winding configurations. As mentioned earlier, the 

dap • 
1 + ar-^ 

dq, 

d&T — <T$ 

l + as- 2T 

l + as~2->, 
dq (6) 
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u = 0 
o 

Fig. 1(d) Stress in the first layer before additional wraps are wound on 
Fig. 1(e) Stress and deformation of the first layer after the last wrap is wound 
on 

Equations (6),2 which give the stresses in the anisotropic cylindrical 
continuum of Fig. 1(c), were derived in [6] through a displacement 
formulation of the following boundary-value problem: 
The differential Equation of Stress Equilibrium 

r —— + <rr - af
ar 

0 (7a) 

The Anisotropic Stress-Strain and Strain-Displacement Relations 

_du _ Or Oo 
Br ~ Tr ~ ~Er ~ M' E~, 

(76) 

.21 
' Et' "'£ (7c) 

where u = u/c is the nondimensional displacement in the radial di
rection (positive if outward), and the boundary conditions, 

or=Ecu, a t r = l 

ar = —dq at r = s 

If equations (5) are first transformed to nondimensional form and 
equations (6) then substituted therein, expressions for the stresses 
within the finished roll are obtained in terms of the incremental 
loading dq, i.e., 

op = opw i [1 + ar-2A " * ' °b 

0To oTo I rb j 

or OTW Ia-af3r-2y\ r-R I sb )(dq/ds\ 

O"T0 

Jr \l + as-2yj\ OT0 I 

=*A" 

(8) 

(9) 
OT0 \ r" I •Jr U + as *>i\ OT0 I 

where OT0 is introduced here to render the stresses nondimensional 
and it is arbitrarily defined as the initial circumferential stress in the 
web at the start of winding, i.e., OT0 ~ "TW at r = 1. The center-wound 

2 Plane stress conditions were employed to derive equations (6) in [6]; these 
conditions are justified in the case of rolls of tape, e.g., [4, 5], or in the case of 
isotropic cylinders, e.g., [14, p. 70]. Plane strain conditions may be more ap
propriate in the case of anisotropic cylinders if Poisson's ratios are not small 
compared to unity. The stresses (60 are obtained for plane strain conditions 
by a procedure similar to that used in the case of plane stress: 

/l + aV_2T'\/ sb'dq 
1 + a's-2y 

sb' dq 
1 + a's-zy' 

(60 

Equations (60 almost are identical to the corresponding stresses (6) for plane 
stress, except that the secondary elasticity parameters \x!, &', y', a', /3', b', a', 
defined in (4), replace the corresponding parameters in equation (6). Thus the 
formulas derived in this work for the radial and circumferential stresses hold 
either for plane stress or plane strain conditions, provided that the appropriate 
secondary elasticity parameters (4) are selected. It is noted that the solutions 
(6) and (60 become identical as \ir -* 0 and nt -» 0. 

rolls, Fig. 1(c), equilibrium of the forces acting on the web requires 
that 

dq •• 
0T„ 

ds • 
OTU 

ds (10) 

If the average tension rate in the dislocating outer layers of the roll 
is restricted, equation (10) will also hold for other winding configu
ration, e.g., [9], for a description of two-drum winding. A derivation 
of the restriction on average tension rate will be given in a later paper. 
It is noted that the values of OTW should now correspond to the loca: 

tion where slip between the outer layers and the roll ceases, and not 
at the outermost layer as described earlier. Thus a more general form 
of Altmann's integral solutions for the interlayer pressure op and the 
circumferential stress or within a wound roll is obtained by substi
tuting equation (10) into equation (8) and equation (9): 

\l(r,R) (11) 
°T0 OTo 

op 2J^ + 

where 

Of 

Kr, R) •• 

"To 

( 1 + 

1 
(« -

• ar 

rb 

a/3r 

• W 

) 

- 2 7 \ 

Kr,R) (12) 

(13) 

The integral (13) is transformed in Section 4 to a closed-form an
alytical expression in terms of hypergeometric functions. Before 
proceeding to the work in Section 4 however, a relation is first derived 
in Section 3 between the interlayer pressure and circumferential stress 
precisely at the core boundary. It is then demonstrated how this 
relation may be used to evaluate core design. 

3 A Relation Between Pressure and Circumferential 
Stress at the Core 

A condition may be derived, which holds precisely at the core in
terface, between the radial pressure Opc and the circumferential stress 
OTC- It is convenient, however, to first define the nondimensional ra
dial displacement of the outer core surface, that is 

: ujc (14) 

where the corresponding dimensional quantity uc is positive if inward. 
The inward radial displacement uc and in-roll stresses at the core, i.e., 
for r = 1, are shown in Fig. 1(d) and Fig. 1(e) after the first and last 
ply have been wound on, respectively. We may express the compres
sion of the outer core surface in terms of the core elasticity, thus 

opJEc (15) 

The circumferential strain of the core can be expressed by combining 
the strain displacement equation (7c) and equation (15), thus 
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Ae fljcore — U-c ~ 
Ec 

(16) 

Employing the stress-strain equation (7c), the relieved strain in the 
first layer of material may be written as 

A 1 T c ~ "To , apc (17) 
Et Er 

Equality of expressions (16) and (17) assures geometric compatibility 
of core and roll deformations. After some mathematical manipulation, 
the following relation between internal stresses at the core is ob
tained: 

0TO \ Er EJ <TT0 

(18) 

It is interesting to observe, from equation (18), that relaxation of the 
initially generated circumferential stress at the core, OT0, evolves by 
interaction of the radial pressure with the circumferential strain 
through two different elastic effects. One of these effects stems from 
the decrease in circumferential strain which is directly attributable 
to core compliance (Ec). The other effect stems from the resisting 
radial pressure which would be induced by a decrease in circumfer
ential strain, through Poisson's ratio ixr- Thus some relaxation of 
circumferential stress at the core should be expected even in the ex
treme case of an absolutely rigid core, i.e., Ec —- °°, except if fir = 
0. 

Relation (18) may be employed to develop guides for core design. 
We can, for example, deduce a condition from equation (18) which 
provides that the circumferential stress will not become compressive 
(negative tension) at the core. This condition on the core pressure is 
obtained by setting or c a 0 in equation (18), i.e., 

°Pc 

T 0 Et Et 
ixr 1 

Er Ec 

(19) 

Condition (19) may be used to assess whether the elastic stiffness of 
the core is adequate in cases when opc can be estimated by measure
ment or is approximately known a priori, as in the case of Fig. 3(6). 
Upper limits (19) on the core pressure correspond to the intersections 
on the abscissa of the lines of constant core elasticity in Fig. 2, which 
was constructed by employing equation (18) for the specific case of 
a cellophane film whose properties are described subsequently. Elastic 
properties of the 140V5 saran-coated cellophane film are given in [3], 
namely, 

Et = 168,000 psi = 1158 MPa 

Er 5,000 psi = 34.47 MPa 

fir = iit = 0.10 (20) 

For convenience, the corresponding secondary nondimensional 
elasticity parameters defined for plane stress conditions in [6] and 
(4) are listed in Table 1. Fig. 2 shows the effect of core elasticity Ec 

on the relation between circumferential stress and interface pressure 
at the core. A solution is taken apriori from Section 6 herein and 
plotted in Fig. 2 for the cellophane roll, which has been center-wound 
at constant web tension to a diameter of 9.5 in. (24.13 cm) on a 3.4 in. 
(8.64 cm) diameter core. It can be seen that the circumferential stress 
becomes compressive at the core for values of Ec < 64,000 psi (441.3 
MPa) approximately. The solution to be developed subsequently in 
Section 4 and Fig. 4(a) shows, in fact, that the minimum roll cir
cumferential stress will shift from within the roll to the core interface 
for values of Ec < 40,000 psi (275.8 MPa), approximately. Of course, 
a core that is too soft will lead to collapse of the roll. 

4 A n E x p l i c i t C l o s e d - F o r m So lu t ion 
The integral I(r, R) defined by equation (13) can be evaluated an

alytically in closed form in those cases when the applied winding stress 
OTW is, or may be, expressed in powers of the dimensionless radius s, 
i.e., 

100,000 ps i 
(689.5 HPa) 

+ . 5 -

,000 pel 
(275.6 MP&) 

20,000 pel 
(137.9 MPa) 

Fig. 2 Core elasticity Influence on the relation between stresses at the core 
for 140 V cellophane film, e.g., equation (20) 

Table 1 Nondimensional secondary elasticity parameters of equation (4) 
for the 33-lb newsprint roll of [6, 7], e.g., equation (43), and the 140V5 
saran-coated cellophane roll of [3], e.g., equation (20) 

Non-Dlrcensional 
Secondary 

Elast ici ty 
Parameters 

(Plane Stress) 

A 

S 
Y 
ot 

fi 
b 

a 

33-lb 
Newsprint 

Roll 

4,0050 

-3.9950 

28.5650 

32.560 

24.570 

-31.560 

.'(0818 

100,000 psi-

(689.5 KPa) 

.27688 

î OVJ Cellophane Roll 

E , Core Elast ici ty 

£0,000 psi 

(551-6 KPa) 

60,000 psi 

(413.7 HPa) 

1,7300 

-1.6300 

6.0214 

7.6514 

4.3914 

-6.6514 

40,000 psi 

(275.8 KPa) 

,22244 .14134 .0076452 

20,000 psi 

(137.9 MPa) 

- . 25^38 

Reference £ 3 ^ assumed this value of core e las t ic i ty 

(Jrp M 

"To 7=0 
(21) 

where 4>j = 0 and C;- are arbitrary constants. If equation (21) is sub
stituted into equation (13) and the orders of integration and sum
mation are interchanged, I(r, R) may be written as a summation of 
M + 1 integrals, namely, 

I(r,R)= ZIj(r,R,4>j) 
j=o 

(22) 

where the integrals Ij(r, R, 4>j) are of the following general form: 

Ij(r,R,4>}) = Cj f* ' *y„ ds (23) 
Jr 1 + as ^ 

and 

& = 1 - b - 0; (24) 

The integrals (23) can be transformed by the change of variable 

7) = (s/R)2y (25) 

to 

Ij(r,R,<fi) 
CjRZy-Si+i- p i 

27a J(r/R)2y 1 + 

ttj-l)/27 

(R2-</a)r, 
dy (26) 
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Ij(r,R,<t>j) 
CjRiy-a+1 

2ya 

f r i , - « ; - D / 2 T n. 

X J o 1 + (R2y/a)v V~ Jo 

(r/fl)2r y-tj-my 

1 + (R2y/a)r) 

Ij(r, R, 4>j) 
C.R2y-ij+l 

( 2 7 - & + 1) a 
2F1 1,1 & - ; 2 -

2 7 ' a 

/ r\27-fc+l 
2^1 U 

fc - 1. 
a 

2T 
(28) 

2 7 

€ / - ! 
27 ' " 27 ' 

which holds for (£,• - D/27 < 1. Equations (11), (12), (22), (23), and 
(28) comprise the closed-form analytical solution for the interlayer 
pressure and circumferential stresses within a roll wound with a 
general applied web tension (21). In the special case of constant web 
tension, for which M = 0, 4>o = 0, Co = 1, £0 = 1 — b, OT„ = OT0, the 
internal stresses reduce to the following expressions: 

where 

loir, R,0) = 

Qp _ o± 

OT0 <!• 

D " i \l + ar \u> rm 1 \l0\l, H, U) 

r0 \ rb 1 
= 1 - z / o ( r j Ri 0 ) 

ffTo \ rb 1 

R2y+b 

(27 + 6 )a 

-tr 
U(l,l-^2-^;-q 

I 27' 27 ' a j 
b „ t ~b -b R*y 
2^1 1,1 ;2 ; 

I 27 27 a 

r 

R 1 

(29) 

(30) 

(31) 

5 A s y m p t o t i c S o l u t i o n s 
Values of the secondary elasticity constants (e.g., Table 1) for the 

cellophane film and newspaper rolls which are considered in this work 
typically lead to hypergeometric functions in equation (28) with large 
negative arguments. The behavior of 2Fi(a,b;c;z) for large \z | is de
scribed by the transformation formulas for hypergeometric functions, 
e.g., [16]. One of these formulas [16,15.3.7] is employed in [1] to obtain 
a useful series representation for these functions, namely, 

2 iMl,b;6 + 1; -2) r(b + uru-6)-
zb 

1 - ( - ! ) " ( ! - 6 ) j _ 

,b-llzN% (1-b + N) zN ' 

Equation (32) is central to an orderly derivation of an asymptotic 
expansion of Ij(r, R, </>j), equation (28). For the practical cases con
sidered in the next Section 6, 

| f l 2 V a | » l and I-)*7 £ 1; 

it will be found, however, that 

R2y lr\zy 

a \R 
> 1 , 

(33a) 

(336) 

even at the core where its minimum value \/a > 2.44. Thus we can 
employ equation (32) to write the following two expressions: 

\ 27 27 a , 

r | 2 _ S t n i ) r ( ! i ^ 
27 I \ 27 

i?27\[l-({>-l)/27 

«T 
27 

(-D* [Hi ~ 1 
27 

kzl 
27 

RZyXN 

a \ 27 j \ a ) 

(34c) 

HWV1[l,l-^2-^i;-^ 
\RI I 27 27 a 

27 

di) 

(27) 
We can now employ the formula given in [15, 3.194(1)] to integrate 
Ij(r, R, <f>j) in terms of hypergeometric functions, specifically, 

I 27 M 27 I \ 2 \\R) 
r 2 - -

7?2j\[l-(Sj-l)/27] 

a 

fr-1 I R2y 
27 ' a 

(-

N=0 

\ 2y j 1 

JV + 
27 

R2y lr_\2y 

a \RJ 

(346) 

The leading order terms will cancel on taking the difference of 
equations (34). Therefore, if the first terms are extracted from both 
summations in equations (34) in expectation of the cancellation, the 
series for Ij(r, R, <fij) is obtained by substituting equation (34) into 
equation (28), specifically, 

ri>~lIj(r,ifR,^j) = Cr 

27a „=2 

fc-1 
1 -

r 6-1 

( -1 )" 

l 27 j [ a \R, 

27 

R2y-(j+l ~ 

27or-<«<-1» hzl r 
(-D" 

27 / 

1 

(TH 
(35) 

where the summation variable has been changed to n = N + 1 and iy 
=£ 1. The last summation in equation (35) typically will be of higher 
order for the practical cases considered in Section 6 and thus can be 
neglected. The abbreviated notation £y, introduced earlier for the sake 
of convenience, is now eliminated from equation (35) by equation (24), 
thus 

-Ij(r,R,<t,j) = Cjr*J' 
-(6 + 1 1 H A 

r2y 

2yan=2l 
In 

( -1 ) " 

2 7 j 

1 

R2ylr\2y 

a \RJ 

n 
(36) 

where higher-order terms are omitted. By combining equations (11), 
(12), (22), (23), (24), and (36), the following asymptotic series solution 
is obtained, which provides a convenient and accurate method to 
compute the internal stresses generated in rolls wound under a general 
web tension (21): 

£P_ = ££» + ( 1 + a r - 2 T ) Y, S(r, R, </>;) Cj r*i (37) 
<TT 0 "To j=0 

<JT <TTW — = - ^ - (a - apr-iy) £ S(r, R, <Pj) Cj r*J 
"To "To ;'=o 

where 

S(r, R, 4>j) ' 
-(6 + 4>j) L 

1 -
r\-(b+^j) 

(38) 

(39) 
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1 .12 .14 .16 .18 .2 .3 •'' -5 .6 .? 

Fig. 3(a) Circumferential stress profile for the 33-lb newsprint roll, e.g., 
equation (43) 

102 .104 .106 .12 .14 .16 .18 .2 • 3 .4 . } .6 .7 .9 1 

t /H 

Fig. 3(6) Pressure profile for the 33-lb newsprint roll, e.g., equation (43) 

r 2 7 

270 n=2 

( -1 )" 1 

1 - -
b + , 

27 

R2TM2' 

a U, 
(39) 

(Cont.) 

and 6 + <fy 5̂  0. It may be appropriate to indicate here that the major 
effect of core elasticity stems from the summation indicated in 
equation (39). The first term of (39) is independent of core elasticity 
and typically is the leading order term outside the vicinity of the core 
region; it may be of interest to note that this first term may be ob
tained by elementary integration [1] if the denominator of integral 
(23) is assumed to be unity.3 The form of the foregoing asymptotic 
solution may be simplified in two special cases of particular interest. 
In the case of constant web tension, i.e., M = 0, <f>a = 0, Co = 1, <7rro = 
CTO. the summations in equations (37) and (38) reduce to a single 
term, i.e., 

lP- = ^ + ( l + ar-^)S(r,R,0), 
T o T o 

where 

^ - = 1 - (a - a/3/-2T) S(r, R, 0) (40) 
T o 

3 This assumption does not hold at the core, i.e., when s = 1 and 1 + as-2-' 
= 1 + a. 

S(r, R, 0) = 
-b 

1 -

27a „=2 

-1)» 

1 + 
-6 ' 

27 

R*y r Ur 

Rj 

(41) 

The asymptotic solution again simplifies if \<t>jlb\ « 1; under these 
conditions, the function S(r, R, <t>j) will not significantly depend on 
(j>j, which may be relevant in cases with the typical values of | b | given 
in Table 1. In this case, Sir, R, (j>j) may be extracted from the sum
mations in equations (37) and (38), which then sum to the applied web 
stress (21); consequently, the form of the solution reduces, namely, 
to4 

—C- « -£JS + (l + ar-2y) Sir, R, 0), 
T „ T „ 

— « l - ( a - a j 8 r - 2 T > S ( r , . R , 0) (42) 
T„, 

Results for several cases of cellophane film and newsprint rolls 
wound at constant web tension are discussed in the next section. 

6 Internal Stress Profiles 
Employing the asymptotic series derived in Section 5, circumfer

ential and radial stress profiles are constructed6 under plane stress 
conditions in Figs. 3(a, b), respectively, for the 33-lb newsprint roll 
of 0.003 in. (0.00762 cm) caliper (layer thickness) in [6,7], which was 
center-wound at constant web tension to a diameter of 39 in. (99.06 
cm) on a 4 in. (10.16 cm) diameter core. Elastic properties of the roll 
and core are given in [6] and listed here for convenience: 

Et = 800,000 psi = 5516 MPa Er 

Ec = 100,000 psi = 689.5 MPa, 

1000 psi = 6.895 MPa 

fir = Ht = 0.01 

(43) 
Note that the abscissae of Figs. 3 have been discontinuously scaled 
to illustrate the extremely narrow region of tension bands which 
surround the core in the particular case of this newspaper roll. Despite 
the diminutive size of this region, the core provides, notwithstanding, 
indispensable support at the inneT boundary of the roll. It resists the 
inward crush and simultaneously prevents buckling of the innermost 
plies. Fig. 3(o) shows, in fact, that the newsprint core is sufficiently 
stiff to retain nearly 40 percent of the initial tension of the innermost 
ply. Indeed, a core that is too soft would burden the roll with this 
function of the core, leading to high circumferential compression and, 
thereby, to instability of the inner layers of material. 

The preceding remarks are effectively demonstrated through a 
parametric analysis of the effect of core elasticity on stresses within 
the roll. The dependence on core elasticity of stresses in the vicinity 
of the core is constructed under plane stress conditions in Fig. 4 for 
the roll of 140V5 saran-coated cellophane film, e.g., equation (20) and 
[3]. In particular, Figs. 4(a, b) show that as core elasticity decreases, 
a relatively modest decrease in core pressure is compensated by the 
development of significant circumferential compression of the inner 
plies. For example, the negative tension reaches nearly half of the 

4 The equations for the interlayer pressure and circumferential stress given 
in [9] may be derived from case (42) if the effect of core elasticity is arbitrarily 
neglected (by omitting the summation) in equation (41) and ar-2"» and a/SV-2'' 
in equation (42) are assumed small compared to unity and a, respectively; 
thus 

ffp 

<TTW '"'A -b ^«-4 
Note that the nomenclature used here is different from that of [9] and that the 
foregoing equations become identical to [9, equations (4) and (5)] if the symbols 
are properly reconciled and if it is further assumed that 1 - b « y/Et/Er . Note 
however that this solution does not hold in the vicinity of the core. 

5 Approximately 11 terms of the summation in equation (41) are required 
at the core (r/R = 0.10256) to secure four significant figures; three significant 
figures are obtained after 8 terms. 
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w 

Fig. 4(a) Core elasticity Influence on circumferential stress in the vicinity Fig. 4(b) Core elasticity Influence on pressure in the vicinity of the core for 
of the core for 140 V cellophane film, e.g., equation (20) 1 4 n vcellophane film, e.g., equation (20) 

initial wound-on tension in the case when Ec = 20,000 psi (137.9 
MPa). The comparative insensitivity of the core pressure and, con
versely, the pronounced dependence of the circumferential stress on 
core elasticity may be observed by inspection of Fig. 4(c). As men
tioned previously, the behavior described here, in conjunction with 
relation (18) and Fig. 2, provide a guide for core design; specifically, 
an appropriate value of Ec may be estimated from Fig. 2 if core 
pressure is known a priori, or can be estimated either by measurement 
or an approximate analysis, i.e., the leading order term of equation 
(36). 

Before concluding this section, it is noted that the stress profiles 
computed in the parametric study of Fig. 4 progressively converge 
with increasing radial distance from the core. No appreciable differ
ences in the curves are discernible at r = r/c = 1.7, which corresponds 
to a location approximately 39 percent within the thickness of wound 
material, i.e., 0.39(i?-c). 

7 Summary 
An explicit closed-form analytical solution is derived in terms of 

hypergeometric functions for the radial and circumferential stresses 
within rolls which may be wound under variable winding tension. 
With appropriately selected parameters, the solution holds for plane 
stress or plane strain conditions and for general winding configura
tions, i.e., center or surface-wound rolls. Employing well-known 
relations and series for the hypergeometric function, an asymptotic 
series solution is developed for the general case when winding tension 
may vary with roll growth, specifically as arbitrary non-negative real 
powers of the radial location. The series converges rapidly and thus 
facilitates computation of internal stress profiles that previously were 
obtained by numerical integration. 

A parametric analysis of the influence of core elasticity on structural 
integrity of the roll underscores the indispensable support provided 

<rT 
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.20 
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60,000y 

/T551.6) 
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Fig. 4(c) Dependence on core elasticity of stresses at the core for 140 V 
cellophane film, e.g., equation (20) 
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by the core at the inner boundary of the roll. It is seen that the cir

cumferential Stress in the vicinity of the core markedly depends on 

core elasticity; for example, high compressive hoop stresses are gen

erated in the material surrounding an excessively compliant core. A 

relation is derived between interlayer pressure and circumferential 

stress precisely at the core, which may be used as a guide to core de

sign. 
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On Torsion and Transverse Flexure 
of Orthotopic Elastic Plates1 

The equations of transverse bending of shear--deformable plates are used for the deriva
tion of a system of one-dimensional equations for beams with unsymmetrical cross sec
tion, with account for warping stiffness, in addition to bending, shearing, and twisting 
stiffness. Significant results of the analysis include the observation that the rate of 
change of differential bending moment is given by the difference between torque contribu
tion due to plate twisting moments and torque contribution due to plate shear stress re
sultants; a formula for shear center location which generalizes a result by Griffith and 
Taylor so as to account for transverse shear deformability and end-section warping re
straint; a second-order compatibility equation for the differential bending moment; a con
tracted boundary condition of support for unsymmetrical cross-section beam theory in 
place of an explicit consideration of the warping deformation boundary layer; and con
struction of a problem where the effect of the conditions of support of the beam is such as 
to give noncoincident shear center and twist center locations. 

Introduction 
The following considerations are intended as a contribution to the 

understanding of the foundations of the theory of beams of unsym
metrical cross section and of the extent to which the concept of 
warping stiffness, in addition to the concepts of bending, shearing, 
and twisting stiffness, is an essential element of such an under
standing. The starting point of our considerations are the basic 
equations of the linear theory of thin elastic plates including the effect 
of transverse shear deformation. The principal result of the analysis 
is the establishment of a system of one-dimensional beam equations 
with contents going in a simple manner beyond the contents of "ele
mentary" beam theory, with this extension of elementary theory being 
both necessary and sufficient for the solution of the problem of torsion 
and flexure of narrow cross-section beams with a widthwise axis of 
symmetry. 

Plate Equations 
We take the differential equations of linear plate theory, including 

the effect of transverse shear deformation, in the form of three equi
librium equations, 

1 A report on work supported by the Office of Naval Research. 
Contributed by the Applied Mechanics Division and presented at the 

Winter Annual Meeting, Chicago, III, November 16-21,1980, of THE AMERI
CAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, No
vember, 1979; final revision, April, 1980. Paper No. 80-WA/APM-16. 

Mxx,x + Mx • Qx + mx = 0, 

MXy,X + Myyy ~ Qy + my = 0, 

: 0, Qx,x + Qy.y + Qz 

and of five constitutive equations, 

Mxx = Dx 4>x%x, Mxy = Dy{4>Xiy + <t>y,x), 

•• C ( 0 X + WjX), 4>y,y : + W, = 0. 

(1) 

(2) 

The foregoing constitutive equations incorporate a limiting-type 
orthotropy assumption, which causes Myy and Qy to be reactive 
quantities, with this making a relatively simple transition from plate 
theory to beam theory, in a physically reasonable way, possible. 

We assume that the plate is rectangular, with spanwise edges y = 
y i. y = y 2. and widthwise edges x = 0 and x = L, and we assume that 
the spanwise edges are free of load. The boundary conditions for these 
edges are then, 

y = yi, y% Qy = 0. (3) 

The formulation of conditions for the edges x = 0, L will follow the 
step from two-dimensional plate theory to one-dimensional beam 
theory. 

Derivation of Beam Equations 
The constitutive rigidity conditions in (2) imply the representa

tions 

4>y = 6(x), w = v(x) - y8(x), 

with 6 and v being twisting and bending deflections. 

(4a) 
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Considering the form of the expression for Qx in (2) it is consistent 
with (4a) to stipulate the supplementary representation 

4>x = <j>{x) + yip(x), (46) 

with <p and ip being bending and warping rotational displacements, 
respectively. 

The equilibrium equations (1) and (3) imply the four integrated 
relations 

(SMxxdy)' - SQxdy + J"m*dy = 0, 

(SMxydyY - SQydy + fmydy = 0, 

(SQxdyY + Jqzdy = 0, (5) 

(SyQxdyY ~ SQydy + Jyqzdy = 0. 

In these, primes indicate differentiation with respect to x, and the 
integrals extend from y\ to y2-

The form of equations (5) suggests introduction of the defini
tions 

SMxxdy = M, JMxydy = TM, 

SQxdy = Q, fyQxdy=-TQ, 
(6) 

with corresponding definitions of load ternls m, q, tM, and £Q, and the 
elimination of SQydy in (5), so as to have the three beam equilibrium 
equations 

M' - Q + m = 0, Q' + q - 0, 

TV + TQ' + tM + tQ = 0. 
(7) 

Equations (7) are associated with constitutive equations which 
follow from (2), (4) and (6) in the form 

M = D0<}>' + Dvl/, Q = Co(i>' + 0) +' dty - 8'), 

TM = DT(i + 8'), -TQ = d ( i / + 0) + C2(^ - &'), 

where 

D„ SymDxdy, DT = SDydy, Cm = JymC dy. 

(8) 

(9) 

Equations (8) involve the four displacement variables <j>, t/s 8, and 
v and, evidently, the three equilibrium equations (7) are too few in 
number for their determination. 

The way out of this difficulty is suggested by the appearance of the 
system (8) which asks for a companion to the expression for M, in the 
same way that the expression for — TQ is a companion to the expres
sion for Q. Accordingly, we introduce an additional beam stress 
measure R, defined by the relation 

R = SyMxxdy. (6') 

We note the equivalence of R, which we shall call differential bending 
moment, to what, in a more general context, has been designated as 
bimoment by Vlasov [5]. 

With R as in (6') we now have the additional constitutive rela
tion 

R = Drf + D2\l/, (80 

and it remains to obtain a fourth equilibrium equation involving R, 
so as to have as many equilibrium equations as displacement variables. 
We obtain this additional equation from the first relation in (1), with 
(6'), (6), and (3), in the form 

R' - TM + TQ + r = 0. m 
Equations (7) and (7'), in conjunction with (8) and (8') are now in fact 
equivalent to a system of four differential equations for the four dis
placement variables <t>, i>, 8, and v. 

Beam Equations Without Transverse Shear 
Deformation 

The assumption of absent transverse shear deformation consists 
in stipulating the limiting relations 

in conjunction with the constraint conditions 

u' + <j> = 0, 8' - ip = 0, 

(10) 

(11) 

which result in the one-dimensional stress measures Q and TQ now 
being reactive quantities. 

The remaining constitutive relations are then 

M = Do*' + Drf, TM = 2DT$, R = Dtf' + D^', (12) 

with the four equilibrium equations (7) and (7') now serving to de
termine the four dependent variables <ji, \p, Q, and TQ and with v and 
8 then following from (11). 

Sequential Determination of Statical and Geometrical 
Quantities 

Given that the four equilibrium equations (7) contain statical 
quantities only (for the case that the load intensity quantities m, q, 
t, and r are prescribed rather than displacement-dependent) it will 
often be useful to use constitutive equations giving displacements in 
terms of statical quantities, rather than statical quantities in terms 
of displacements, as in (8). The inverted equations (8) may be written 
in the form 

M R R M 

where 

DM DMR DR DMR DT 

v' + 4> = 1 —, 8 — y - -\ , 
CQ CQT CT CQT 

L _ i _ 1 | (J>2, Pi, Do) 

1 1 1 \ ( C ^ d , Co) 

(13)2 

(14) 

\CQ CQT CTI C2C0 - C12 

Equations (13) contain four relations for the determination of the 
four quantities 4>', \p, 8', and 0', in terms of the five quantities M, R, 
TM, Q, and TQ. Since there are only four equilibrium equations for 
these five statical quantities it is necessary to derive a fifth equation, 
which will have to be of the nature of a compatibility equation. Such 
a compatibility equation follows from a consideration of the three 
relations in (13) which involve the warping displacement ip, in the 
form 

(15) 
R M _1ITM TQ < 

DR DMR 2\DT CT CQTI 

For the case that the constitutive coefficients are independent of x 
equation (15) may be transformed usefully, with the help of (7), so as 
to read 

R 

DR \DT
 + ~Ct 

IT 

4 

M 

DMR 

, 1 1 \ r' 
•+ — + — - . 

\DT CT 4 (16) 

CQT 2 

1 U tM + tQ 

DT CT) 4 

The form of this relation makes evident the possibility of localized 
portions of R as a quantitative measure of the contents of Saint-
Venant's principle. 

Cantilever Torsion and Flexure 
The classical problem of torsion and flexure of end-loaded canti

lever beams of span L is given upon assuming that the load terms m, 
q, tM, tQ, and r are absent, and upon stipulating as boundary condi
tions the loading conditions 

2 We may note the resemblance of equations (13) and (7) to the contents of 
equations (12), (5), and (3) for a related problem on the subject of box beams 
[4]. 
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* = 0; Q = Q0, TM+TQ = T0, M = R = 0, (17) 

and the support conditions 

x: = L; v = 6 = t=<l> = 0. (18) 

The equilibrium differential equations (7) in conjunction with the 
first three boundary conditions in (17) now give as expressions for 
forces and moments 

Q = Qo, M = Q0x, 1TM = To + A', 2TQ = T0 - R', (19) 

and the constitutive equations (13) may be written in the form 

u ' = -d> + -
lo + n-fl' Qox fl 

£*M Z>Afij CQ 2CQT 

T0 + R> T0- R' QQ 

4Cr 
* = 

4DT 4CT 2CQT ' 

g, Tp + R' | TQ-R' | QQ 

4DT 4CT 2CQ T ' 

In this fl is determined by the differential equation 

DR \PT CTj 4 DMR' 

in conjunction with the boundary conditions 

R(0) = 0, $(L) = 0. 

Equations (22) and (23) give as expression for R, 

(20) 

(21) 

(22) 

(23) 

R 

L 

2DTCT sinh Xx DR IX sinh Xx 

DRM \L XL cosh XL/ CQT(DT + CT) XL cosh XL. 

+ T, 
Dy - CT sinh Xx 

DT + CT XL cosh XL ! 
X2> 

4 L» rCT 
(24) 

Having i?, as in (24), we obtain from the second relation in (21), in 
conjunction with the condition 0(L) = 0. 

To CT + DT QO 

4 DTCT 2CQT. 2CQrj \L I 
CT - DTR(x) - R(L) 

DTCT 4L 
(25) 

Expressions for 0 and i> may be determined in an analogous way 
(where it is convenient to use (22) in order to write R in the first 
relation in (20) in terms of Qo and R")-

With equation (25) we may further write 

do = C«QQO + COTTO, (26) 

where 80 is the value of 6 for x = 0, and where the flexibility coeffi
cients C«Q and COT come out to be 

CSQ _ DR CT-DTL tanhXL\ 

L DRM 4CTDT \ XL ) 

1 / . . Cr - LV tanh XL) 
+ • 

2CQT 
1+-

CT + DT XL 

COT _ 

L 

CT + DT 

4CTDT 

CT - DT\2 tanh XL 

XL 

(27) 

(28) 
\CT + DTI 

Equations (26)-(28) imply as expression for the coordinate ys of 
the center of shear, defined by the stipulation that To = -Qoys for 
00 = 0, 

ys-
DR _DI 

DRM DO 
(29a) 

It does not seem well known that this result has first been given by 
Griffith and Taylor [1]. It has been rederived in [2], as a special case 
of a general shear center formula for open and closed cross-section 
(simply connected) cylindrical shell beams. 

We also note that when XL is large enough for end section warping 
restraint to be negligible, independent of the values of DT/CT and 
DT/CTQ, then equation (29) reduces to the form 

ys 
DR CT ~~ DT CT 2DT 

(29b) 
DRM CT + DT CTQ CT + DT 

with (296) containing (29a) as a special case. 
In the range of significant transverse shear deformation effects 

(296) implies the simple particular results 

and 

1 « ^ 
CT 

DT t 

£T1 ; ys" 

ys = 2 — 

= CT = Ci 

CTQ CO 

-2!Lm29l. 
DRM CO 

L>I 

~D0 

(29c) 

(29d) 
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APPENDIX A 

Asymptotic Solution for Cantilever Torsion and 
Flexure 

We are led to an asymptotic solution of the problem, for 1 « XL, 
upon writing the solution of the differential bending moment equation 
(22) in the form 

where 

and 

R = Ri + Re, 

Ri=-^-Qox, 
DRM 

Re" ~ \2Re = 0, 

(30) 

(3D 

(32) 

with X as in (24). 

ys 
_ CQQ 

COT 

DR CT — DT 

DRM CT + DT 

I tanh XL) 2D7 
1 + 

CT-DT tanh XL\ 

CTQ CT + DT \ CT + DT XL 

1-
CT - DT\ 

CT + DTj 
2 tanh XL 

XL 

(29) 

In this result the values of XL determine the effect of warping restraint 
at the fixed end of the beam, and the values of DT/CT and DT/CTQ 
determine the effect of transverse shear deformation. We note that 
when DT/CT = DT/CTQ = 0 the effects of end section warping re
straint cancel out and equation (29) reduces to the simple form 

Having (30)-(32), we rewrite equations (20) and (21) in the form 

Re 

DRM\2 
V' = Vi' + 

Re Re 

DRM\2 2CQT 

(33) 
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l/> = l/-,- + — + • — 
\DT CT, 

(34) 
4 \DT CT) 4 

where the solution of (32)-(34) is to be determined in such a way that 
the five boundary conditions in (18) and (23) are satisfied. As they 
must, equations of (32)-(34) imply just the right number of constants 
of integration to make possible the satisfaction of these five condi
tions. 

In order to see the possibility of an asymptotic solution of the 
problem, with separate determination of interior and edge-zone so
lution contributions, for the case of sufficiently large values of XL, we 
reintroduce in (33) the defining relation for X2 from equation (24) and 
then integrate in (33) and (34) with respect to x, so as to obtain in 
addition to the expression for ^i in (34) 

V = Vi + 

1 DRM\DT CT) 4 

' Da / 1 | 1 \ 2 ' 

PRM \PT CT) CQT\ 4 

1 l_\Re 

He 

DT CT) 4 

(35) 

(36) 

Having (34)-(36) we now consider the boundary conditions (18), 
in conjunction with the boundary condition Re (0) = 0 which is implied 
by equation (30), (31), and (23). We will be using these conditions in 
an asymptotic sense, for large XL, if we take account of the fact that 
for large XL the terms with Re in (34)-(36) will be small of relative 
order 1/XL compared to the terms with Re', in such a way that the two 
boundary conditions in (18) which involve Re itself rather than Re' 
may be replaced by the simpler conditions 

Vi(L) = 0, 0;(L) = O. (37) 

There now remain the two conditions for \p and fi, for the determi
nation of ij>i and Re in terms of the known expression for \pj. The 
possibility of a determination of 0; without reference to the deter
mination of Re is given upon observing the existence of a contracted 
condition involving 0; and 1/7 in the form 

DRM<t>i(L) + DR$i(L) = 0. (38) 

At the same time we retain as boundary condition for the separate 
determination of the edge zone contribution Re the one condition 

4DTCT Re'(L) -ti(L). (39) 
DT + CT 

Having equation (38), in conjunction with (37), for the determi
nation of the interior state, we now find from (33) and (34), in con
junction with (20) and (21), as expressions for di, fa, and i>;, 

„ ( M 1 \ IDR I 1 1) 2 1 ]x-L 
0 =. — + —\T0+—!L\ + Qo , 40) 

\\DT CT [DRM\DT CT CQT\ J 4 

1 -

- 1 -

DMDR\ Q O * 2 - L 2 DR U 1 l \ T o 

DMR2)DM 2 DRM\\DT CT) 4 

DRM \DT CT) CQT. 

DMDR\ QO X3-3L2X + 2L3 

(41) 

DMR2) DM 

4 { DR 

CQ DRM 

6 

DRM \DT CT) I 

+ 

4_" 

PRM \DT CTI CQT. 

DR M 1 \ + _2_ 

DRM WT CT) CQT. 
To 

- L 

4 

x-L 
(42) 

We note that equations (40)-(42) assume a somewhat simpler form 
with (1 - DMDR/DMR2)/DM = 1/Do and DB/DRM = Dx/D0, which 
relations are implied by equations (14). A comparison of (40) with,(25) 
shows agreement insofar as the expression for di is concerned. As 0 

and v had not earlier been determined we will not here carry out a 
complementary verification of the expressions for <j>i and u;. 

It remains to determine Re and the edge zone displacement con
tributions de and i v We find from (32), (30), (31), (23), and (39) as 
expression for Re 

RP = ICT^DT^JDJL. 

CT + DT \DRM 

DTCT 

CQT CT + DT 

sinh \x 

X cosh XL 

(43) 

while, in accordance with (36) and (37), 

CT ~ DT 
Re 

v ^IDR CT + DT 1 J 
Ve \PRM iCTDT 2CQT) 

Re, (44) 

QTl 

and v w vi except 

4CTDT "" " \DRM iCTD 

with (43) and (44) making it apparent that 6 
for terms of relative order 1/XL. 

Having now an expression for 6 = 8i + 0e, we may once again de
termine the values of flexibility coefficients CST and CgQ including 
the effect of warping restraint. The results obtained in this way are 
in complete agreement with the results in (27) and (28), which means 
that the simple asymptotic analysis in this section leads not just to 
an asymptotic solution but to the actual exact solution, by the simple 
device of retaining the factor tanh XL in the analysis, instead of re
placing it by a factor " 1 , " as would be asymptotically consistent. 

We conclude this section by a consideration of those aspects of the 
force and moment distribution which are of a nonelementary nature. 
These are the differential bending moment distribution R = Ri+ Re 

with Ri and Re as in (31) and (43), and expressions for the torque 
components TM and TQ which follow from (19) in conjunction with 
(31) and (43) in the form 

(45) 

APPENDIX B 

A p p r o x i m a t e D e t e r m i n a t i o n of F l e x i b i l i t y Coef f i c i en t s 
by a V a r i a t i o n a l P r o c e d u r e 

It follows from general principles that an appropriate statement 
of the theorem of minimum complementary energy for the cantilever 
torsion-bending problem, as considered in the foregoing, consists in 
the variational equation 

TM 

TQ 

c 

l2±Q 
2 2 

osh Xx 

cosh XL 

o DR 

DRM 

\T0 CT-DT ( Qo / DR 

2 CT + DT 2 \DRM 

CT 2DT \ | 

CTQ CT + DTI] 

8 T0do + Qovo + 
1 rLIM2 

2 Jo [DM' 

„ MR fl2 T M
2 

2 + — + —— 
DMR DR DT 

.TQ^+2QTQ+Q^ 

CT CTQ CQ. 
dx •• 0 . ( 4 6 ) 

In this M, R, TM, TQ, and Q must satisfy the four homogeneous 
equilibrium equations (7) and in addition the stress boundary con
ditions M(0) = R(0) = 0, with the other two stress boundary condi
tions in (17) replaced by displacement boundary conditions 6(0) = 
do and u(0) = vo-

While earlier considerations [3] had indicated that for the purpose 
of obtaining bound-relations, equation (46) should be used for the 
determination of stiffness coefficient approximations we will here once 
again, as in [2], consider the use of (48) for the determination of 
flexibility coefficient approximations. 

The first two equilibrium relations in (7), in conjunction with the 
stipulation M(0) = 0, make it apparent that we have no choice other 
than to use Q = Qo and M = Qo% as expressions for Q and M. As re
gards R, TM, and TQ we are free to choose approximative expressions 
restricted in no other way than by the relations 

TM = ^ (To + R') and TQ = ^(T0-R'), 

in conjunction with the boundary condition R(0) = 0. 
It remains then to make a suitable choice of a function which ap-
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proximates the function R. We will consider two specific possibilities, 
both of them leading to results of interest. 

As a first possibility we chose R in such a way that the state of stress 
is in accordance with Saint-Venant's theory of torsion and flexure, 
in which there is no reference to the condition of warping restraint 
as a part of the conditions of support. We obtain a Saint-Venant stress 
distribution by assuming that the warping displacement measure \p 
does not vary along the span, that is, by setting \p' = 0 in the consti
tutive equations (13). Setting \p' = 0 we find immediately that now 
R = DRQ0x/DMR and therewith 2TM = T0 + DRQ0/DMR and 2TQ = 
To ~ DRQO/DMR, with equation (46) now reducing to the form 

8{To0o + Qovo + /(T0,Qo)i = 0, 

where / is a simple quadratic expression. 
The evaluation of (47) gives 

•?5= | - ! - + -
l\T0 

PT CTI 4 - + J M J M + J 
PRM \DT CT) CQT\ 4 

(47) 

(48) 

vo 

L ' 

4 L 2 / DMDR\ I 4 

[3 DM \ DMR2I CQ 

DR 

DRM 
\°!L{± + ± 

To 

4 ' 
(49) 

_4_ 

PRM \PT CTI CQT\) 

+ L2s_[J_._J_) + _2 
PRM \DT CTI CQT\ 

with these formulas being in agreement with the results of the de
termination of do and t>o through solution of the boundary value 
problem, for the limiting case l/XL = 0. 

A second possibility to choose R, of comparable simplicity, is to 
assume that R = Rax, with Ro being determined from a variational 
equation 

5{To6o + Qovo + f(T0,Qo,Ro)} = 0, (50) 

with this procedure being equivalent to what has previously been 
proposed in a more general context in [3]. Remarkably, equation (50) 
gives an expression for R0 of the form fl0 = PRQO/PMR + 0(1/X2L2), 
and the substitution of this in the associated equations for 8Q and vo 
gives expressions for do and VQ which differ from those in (48) and (49) 
by no more than terms of relative order of magnitude 1/X2L2, con
sistent with a more general statement in [3]. While this result and the 
statement in [3] are meaningful insofar as upper and lower bound 
calculations are concerned, the differential equation solution de
scribed earlier indicates a warping effect on flexibility coefficients of 
relative order 1/XL, rather than of order 1/X2L2, and, evidently, to 
obtain the correct order of magnitude by the variational procedure, 
an approximation for R must account for the boundary layer aspects 
of this function in the parameter value range 1 « XL. 

APPENDIX C 

On S a i n t - V e n a n t T o r s i o n and F l e x u r e 
The results for Saint-Venant torsion are obtained by setting, in a 

semi-inverse sense, M = R = Q = 0 and therewith 6' = i// = 0. Equa
tions (13) then give as expressions for 8' and \j/ 

DT CT &T CT 
(51) 

with TM + TQ = T0. In order to express 8' in terms of T0 it is essential 
to make use of the fourth equilibrium equation, (7'). This equation 
reduces here to the form TM — TQ = 0, and with this we now have that 
TM = TQ = \TO and therewith 49' = T0(1/PT + HCT). 

The results for Saint-Venant flexure are obtained by now setting 
a priori, in a semi-inverse sense, \f/' = 0. With this we have then M = 
Po<j>' and R = D\4>' and this in turn implies the crucial relation R = 
DiM/Po = DiQox/Po- In order to evaluate the constitutive rela
tion 

TM TQ Q 

PT CT CQT 
(52) 

it is again essential to utilize the equilibrium equation R' - TM — TQ. 
Therewith and with TM + TQ = T0, it is then possible to express 8' 
in terms of To and Qo, in such a way that the result coincides with the 
expression for 8' in equation (34). It follows from this and from the 
boundary condition 8(L) = 0 that the Saint-Venant rotation 8 is the 
same as the 8t in equation (40). 

It remains to determine <j> and v with the help of the relations <p' = 
Qox/Po and v'= -</> + QO/CQ + i(T0- P\QO/PO)/CQT, in conjunc
tion with suitable boundary conditions. The important point here is 
that Saint-Venant's theory makes no reference to the subject of 
boundary conditions of support. In order to bridge this gap one may 
use a variational condition, as in the preceding section, in place of 
explicitly stated conditions of support. Alternately, our earlier con
siderations show how the derivation of appropriate boundary con
ditions, involving the contraction of two conditions for 8 and \p into 
one condition, as in (38), is in fact a problem of asymptotic anal
ysis. 

APPENDIX D 

On the Relation Between Shear Center and Twist 
Center 

The present formulation of the problems of torsion and flexure of 
a class of narrow-cross-section beams makes possible an explicit 
demonstration of the significance of earlier formulas [2, 3] for the 
location y T of the center of twist and the location ys of the center of 
shear in terms of flexibility coefficients. One aspect of these formulas 
was the observation that symmetry of the flexibility coefficient matrix 
is a necessary and sufficient condition for the coincidence of the two 
centers. As far as is known, no cases have yet been considered for 
which this symmetry does not hold. In what follows we construct an 
example of such a case by modifying the boundary conditions (17) and 
(18) for the problem of the end-loaded cantilever in such a way that 
we replace the two conditions 8(L) = <j>(L) = 0 in (18) by conditions 
of flexible support of the form 

-8(L) = COTT(L) + ceMM(L), - 0 ( L ) = c^TiL) + c0 MM(L). 

(53) 

In order for this modified beam problem to be such as to allow a 
variational formulation, the coefficients in (53) must satisfy the 
symmetry condition CSM = C<I>T- We will show that the same condition 
is necessary and sufficient to ensure validity of the relation yr = 

ys-
In connection with the foregoing problem we assume here, for 

simplicity's sake, that transverse shear deformation is negligible, by 
setting Cn = oo ] and that the beam cross section is doubly symmetric, 
by setting D\ = 0. Evidently, for the original problem, with the 
boundary conditions (18), we will now, by symmetry, have t h a t y r = 
ys = 0. For the present more general case, equations (19) remain 
unchanged, equations (20) and (21) assume the form 

, Qo* 

Do ' 
i-

TQ + R' 

4DT ' 

T0+R' 

ADT ' 

and the differential equation (22) becomes 

D2R" - WTR = 0, 

(54) 

(55) 

with the remaining boundary conditions being equations (53), to
gether with the conditions R(0) = 0 and u(L) = ipiL) = 0. 

Equation (55), together with the boundary conditions for R and \p 
now gives as expression for R, 

R = 
T0 sinh Xx 

X cosh XL 
(56) 

where X = 2\JDTIDI. 
In order to obtain the values of Do and ̂ o which are needed for the 

determination of yy and ys, we find, from (54), 

Tpx + R 

APT 
+ CI, 

:Qo*2 

2£»0 
+ c2 (57) 
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where, in accordance with (53), Ci and c% must be such that 

ToL I tanh XL\ n T 
1 — — + ci - -COTI o - ceM<°loL, 

ADT\ XL J 

and 

2D0 

+ c2 = -C^TTQ — C,I,MQOL. 

+ c2x + c3, 

Having <j>, the second relation in (54) gives 

IQ0x
s 

v = -
UA> 

and the condition v(L) = 0 gives as expression for C3 

QoLs 
ca = 6DQ 

+ C2L. 

(58) 

(61) 

Therewith, and with the abbreviation COT = L/4DT, we have now 

»o = ci = - + C„ C0T+ <^0T 
tanh XL 

XL 
T0-ceMLQ0 (62) 

and, with L/3Do = C^M, 

(59) Uo ^ c3 
—C^TTO - [CifrM + C#M]LQO- (63) 

Equations (62) and (63) give, with To = —ysQo for d0 = 0, and with 
(60) vQ = doyr for Qo = 0, 

(ys, yT) (CflM, C * T ) 

CUT + CeT[l - (XL)"1 tanh XL]' 
(64) 

so that, in fact, ys ^ y r in the event that COM ̂  c^r. 
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Nonlinear Corrections for Edge 
Bending of Shells1 

Asymptotic expansions for self-equilibrating edge loading are derived in terms of expo
nential functions, from which formulas for the stiffness and flexibility edge influence 
coefficients are obtained, which include the quadratic nonlinear terms. The flexibility 
coefficients agree with those previously obtained by Van Dyke for the pressurized spheri
cal shell and provide the generalization to general geometry and loading. In addition, the 
axial displacement is obtained. The nonlinear terms in the differential equations can be 
identified as "prestress" and "quadratic rotation." To assess the importance of the latter, 
the problem of a pressurized spherical cap with roller supported edges is considered. Re
sults show that whether the rotation at the edge is constrained or not, the quadratic rota
tion terms do not have a large effect on the axial displacement. The effect will be large for 
problems with small membrane stresses. 

Introduction 
Reissner [1] formulated the nonlinear equations for the finite axi-

symmetric deformations of thin elastic shells of revolution, which are 
acted upon by surface loads as well as edge forces and moments. He 
showed that the change in the meridional slope during deformation 
is an important geometric nonlinearity. This nonlinearity alters the 
moment equilibrium equation and is frequently referred to as the 
nonlinear prestress effect. The other nonlinearity introduced by 
moderately large rotation alters the compatibility equation. In the 
analyses of many problems, it is enough to include the nonlinear 
prestress effect alone. However in certain problems, particularly 
stability, the nonlinearity due to moderately large rotation is signif
icant. So, the objective of the present investigation is to develop as
ymptotic expansion solutions to Reissner's nonlinear equations. In 
particular, nonlinear corrections to the results of linear theory for edge 
force, moment, and axial displacement in terms of edge radial dis
placement and rotation are desired. 

Reissner [2] developed an asymptotic expansion for the nonlinear 
"edge effect" solution of a steep, smooth shell acted upon only by 
self-equilibrating edge forces and moments. Van Dyke [3] included 
the membrane prestress term and obtained the correct expansion for 
the spherical shell. In the present investigation, we extend his ap
proach to the general shell of revolution. The nonlinear expressions 
for meridional edge moment and radial edge force in terms of edge 

1 This study was supported by a grant from the National Science Foundation 
to Stanford University. 
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Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, May, 
1980. Paper No. 80-WA/APM-15. 

rotation and radial edge displacement are useful in solving shells with, 
for example, clamped edge conditions. These are inverted to facilitate 
analysis of shells with either meridional slope discontinuity or 
roller-supported or simply supported edges. As illustrations, linear 
and nonlinear solutions for shells used in pressure gauges and for 
domes with roller-supported edges are compared to show the effects 
of the two nonlinearities. A further application of the present results 
is in the analysis by Ranjan [4], reported in Ranjan and Steele [5], of 
the large displacement dimpling of a spherical shell. 

Nonlinear Equations for Moderate Rotation 
The linear part of the field equations formulated by Reissner [1] 

for shells with prescribed surface and edge loadings are written in 
matrix form in [4,6]. The dependent variable vector is 

y = 

Mv/(Etc)e 

H\ sin <pe/{Et)e 

x/x 
h/re 

y i r 
y(2) 

y(3) 

..y(4). 

(1) 

in which Mv, H, x, and h axe the physical quantities which can be 
prescribed on the shell edges: meridional bending moment resultant, 
radial force resultant, rotation, and radial displacement, respectively. 
Young's modulus is E and the thickness is t, with 

c = t/[12 (1 - v2)]1'2 

in which v is Poisson's ratio. The radius is r and the angle between axis 
and normal to the shell midsurface is <p. The subscript e denotes a 
reference point at which the quantities are evaluated. The large pa
rameter of the problem is 

X= [rl(c sin <p)\T 

All the elements of y are the same order of magnitude for the linear 
bending solution. The linear equations [1] are used in [4,6] in the 
form 
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- -f- + XAy = 
dx 

(2) 

Ao : 

in which the independent variable is the dimensionless arclength 

x = (s sin <pe)/re 

The matrix A and the vector a have the forms 

1 1 
A = Ao + - Ai + — A2 

A A* 

1 1 
a = a0 + - ai + — a2 (3) 

A Xz 

where Ai and ai are given in [4, 6]. The leading terms are 

0 (sin<p)* 0 0 

0 0 0 (Et/r2)* 

l/(J5tc2)* 0 0 0 

0 0 - (sin <p)* 0 

„ COS <h , .„ 

sin 4>e 

in which the star denotes that the quantity is divided by its value at 
the reference point (pe, and the load magnitude is assumed to be such 
that 

y = VX2 sin 4>JiEt)e = 0(1) 

The equations for moderate rotation [1] are obtained by adding to 
the meridional strain t$ the nonlinear term 

€*-*£* + X2/2, 

where x is the rotation. The matrix equation becomes 

dy 
-+ XAy+ N = a 

dx 

in which the vector on nonlinear terms is 

X 2 c o s %(2) y ( 3) + ^ s ; " % 

(4) 

N = 

(3) 

sm tpe 
(Et)e 

0 

X2 COS ifi 

2 sin (pe 

[y(3)]2 

In the majority of problems, the axial resultant V is statically deter
minant. Furthermore, for many problems the membrane approxi
mation H ca V cot 4> is valid, since edge bending effects provide a 
correction to H of higher order (0(X - 1)) . In this situation the first 
element of N is a linear term, with a known coefficient multiplying y(3). 
This is, of course, the well-known "prestress" term which provides 
classical stability limits and a significant correction to edge bending 
effects [2,4-6]. In this communication, we demonstrate a formal ex
pansion procedure which is valid when the bending contribution to 
H is as large or larger than the membrane contribution. 

A s y m p t o t i c E x p a n s i o n S o l u t i o n 
A formal solution to the nonlinear matrix formulation (4) can be 

obtained in the form of the asymptotic expansion 

X X̂  A6 

+ 3te exp (X£) 

+ 3ie exp (2X£) 

+ exp (2 3ie jX£|) (5) 

in which the a;, /?;, yi, and ,̂- are vector functions and £ is a scalar 
function of x, all independent of the large parameter X. Substitution 
of (5) into (4) and equating the coefficient of each power of X to zero 
in the usual procedure gives a system of equations for the unknown 
functions. The leading equation for the ,̂- is 

#o3) 

A0*o + 

Sin <pe 

0 

0 

[^0
2) c o s <p + ysm f] 

COSlp 
M ,3)12 

a0 (6) 

2 sin ipe 

Because of the simple structure of Ao, the solution of (6) is just 

* o = S> cot 0[O 1 0 0 ] T (7) 

which gives the membrane result 

H=Vcot<p (8) 

where V can be determined from axial equilibrium equations when 
the surface loads are known. Using (7), we find that 

where 

1 r T l 2 ) - • 1 „ lEtC\ 
[*o cos ip + y sm <p] = 2p 

sin <pe \ r<i \ 

p = Vr/(2 Etc s inV) 

(9) 

(10) 

is a quantity 0(1). Thus the nonlinear surface load or prestress effect 
introduces an additional term 

A P = 2p (Etc/r2)* (11) 

into the matrix A0. Vectors ^ i and ty2 are determined from the 
equations 

A0*i = a i + — - y -
dx 

Ai*o 

d * i 
Ao*2 = a2 + Ax*! - A2¥0 

dx 

(12) 

(13) 

It can be observed that the nonlinear prestress term A0
I,3) does not 

affect ¥ 1 , but modifies ¥2 . Therefore, the solution to (12) is 

*'=(-)sl-p--—L-+-
\rel Et { sm tp v"i 

(14) 

in which Pz is the normal component of surface loading. 
Now the coefficients of the exponential terms in (5) will be con

sidered. The vector ao is obtained from the equation 

• -f I + A0 
dx 

a0 = 0 (15) 

For a nontrivial solution of (15), dtydx must be an eigenvalue and ao 
the corresponding eigenvector of Ao. For \p\ < 1, an angle of i] is in
troduced by the relation 

: cos i) (16) 

It is seen that for the solution which decreases when s < 0, and thus 
is significant at the lower edge of a smooth shell, one obtains the ei
genvalue 

d | | U^ 

dx) L\sin <p, 

which establishes the relation 

1/2 
: exp (177/2) 

X£: X « exp (ITJ/2) 

(17) 

(18) 

The corresponding eigenvector is 
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a0 = d0{x) 

"If (_Etc2/sin <p)* 

S1{m/r2)* 
-J/(sin,)* 

(19) 

The function do(x) in (19) is assumed to be a smooth function. The 
proper eigenvalue and eigenvector should be considered for the so
lution that decreases exponentially for s > 0 and hence is significant 
at the upper edge of a smooth shell. For simplicity, only the lower edge 
of the shell will be considered. On the basis of known linear results, 
it is assumed that significant changes of stress and deformation due 
to the self-equilibrating edge forces and moments are limited to a 
relatively narrow region adjacent to the edge s = 0 of the shell. In this 
region the variation of geometric and material properties may be 
neglected. Hence, throughout this narrow edge zone, the function 
do(x) in (19) would assume the value d0(0) = D,- a complex con
stant. 

Equations to determine the vectors ft> and 70 are now provided. 

• 2 - ^ 1 + ^ 
dx 

• 2 cos -1 + Ao 7o = 

( co t , e D 2 ) / 2 

0 

0 

[cot ipeD
2 exp (i?j)]/4 

"(cot,pe |D|2cos7))/2 

0 

0 

(co t , e |Z ) | 2 ) /4 

(20) 

(21) 

The solutions of (20) and (21) are 

cot <peD
2 

ft> 4(5 + 4p)(5 - 4p) 

6[exp (J3j)/2) - 4 exp ( - J J J /2 ) ] 

[exp (i2t)) — 5 + 4 exp (—I2TJ)] 

3[exp (iij) - 4 exp (—ir\)] 

2[exp (i5»j/2) - 5 exp (ij;/2) + 4 exp (-£3ij/2)] 

(22) 

7o = - (23) 

(4p2 + 4p + l)[2(l + p)]1/2" 
coty e | £> | 2 2(1 - p) 

4(5 + Ap) (4p2 + 4 p + i) 

2(1 - p)[2(l + /))]i/2 

Higher-order terms need to be evaluated only when the edge of the 
shell is not too steep. It can be observed that the vectors ^fi, given by 
(7), (13), and (14), provide the solution due to surface loads while the 
vectors at, ft, and 7; in (5) determine the solution due to edge forces 
and moments. 

E d g e I n f l u e n c e Coef f i c i ent s 
From the results (19), (22), (23) the first nonlinear corrections to 

the relations for edge forces y ( 1 ) and y(2> in terms of edge displace
ments y (3 ) and y (4) can be obtained 

ym = (2 + 2/j)1''2 y<3> + y<4> + 
X COt <pe 

2(5 + 4p) 

X (3(2 + 2p)x '2 [y<3>]2 + 2(1 + 2p)y<3>y<4>j (24) 

„ < 2 > : : y<3> + (2 + 2p)1/2y<4> + 
X COt (fe 

2(5 + 4p) 

X {(1 + 2p)[y<3>]2 + 2(1 + 2p)[y<4>]2} (25) 

where p, defined by (10), introduces the prestress or surface load ef
fect. The terms multiplied by X cot ipe in (24) and (25) provide the 
nonlinear correction to the known linear result. 

An increment in the nondimensional work performed by the edge 
loads is given by 

d{/=y(l>dy(3)+ y(2)c;y(4) (26) 

To be independent of load path, this must be an exact derivative, so 
that 

. ( 1 ) : 
dU 

j (2) = 
d l / 

d y < 3 ) ' J dy<4> 

from which the following condition is obtained: 

dy<l) fly (2) 

dyW ~ dy<3> 

(27) 

(28) 

The expressions (24) and (25) do satisfy this criterion. 
Equations (24) and (25) are useful in analyzing shells with edges 

where the displacements are prescribed, as in the case of clamped 
edges. To facilitate the analyses of shells with either roller-supported 
edges where y ( 1 ) and y (2 ) are prescribed or simply supported edges 
where y (1) and y (4) are specified or edges at slope discontinuity where 
y ( 2 ) and y (3 ) are prescribed, (24) and (25) are inverted to obtain the 
following relations. The expressions for edge displacements y(3) and 
y (4 ) in terms of edge forces y (1) and y (2) are 

v<3) = . 
(1 + 2p) 

(2 + 2p) 1 / 2y< 1> - y ( 2> • 
X COt <pe 

2(5 + 4p)(l + 2p)2 

M) = • 
l + 2p 

X ((4 + 2p)[y(D]2 - (3 + 20p + 16p2)[y(2>]2 

+ (16p + 8p2)(2 + 2p)1/2yWy<2)| 

- -y<» + (2 + 2p)i<V2> ^ ^ 
2(5 + 4p)(l + 2p)2 

X ((8p + 4p2)(2 + 2p)1/2[y(l)]2 

+ (4 + 18p + 8p2)(2 + 2p)1/2[y(2"2 

- (6 + 40p + 32p2)y<1>y<2)) 

Equations (29) and (30) satisfy the criterion 

dy(3) dy<4) 

(29) 

dy (2) dy (l) 

(30) 

(31) 

which is the condition for the complementary strain energy to be in
dependent of path. The results (29) and (30) for the sphere reduce to 
those of Van Dyke [3]. The relations for y (2) and y (3) in terms of y (1) 

andy ( 4 ) are 

M>: (2 + 2p)-1/2y<1> + (1 + 2p)(2 + 2p)-1/2y<4> 

X COt <pe 
-X( (2p-2 ) [yW] 2 

4(5 + 4p)(l + p) 

+ (4 + 18p + 8p2)[y<4>]2 + (2 - 8p)y(»y(4>) (32) 

y<3> = (2 + 2p)-i/2y<» - (2 + 2p)~^y^ - *™\'f'' . 
4(5 + 4p)(l + p) 

X |3[y(1)P + (1 - 4p)[y«)]2 - (4 - ip)y^y^\ (33) 

and the expressions for y(1> and y(4> in terms of y (2) and y (3) are 

X cottp,. 
y<D = (2 + 2p) -1/2 y<2> + (1 + 2p)y<3> + • 

2(5 + 4p)(l + p) 

X | - ( l + 2p)[y(2)]2 + (2 + p)[y(3)]2 

+ 2(2 + p)(l + 2p)y(2)y(3»i (34) 
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y4> = (2 + 2P)-1'2 ,<2) . .y(8) + . 
X COt ipe 

2(5 + 4p)(l + p) 

X {-(1 + 2p)\yW]' - (1 + 2p)(2 + p)[y<3>]2 

+ 2(1 + 2/o)y<2>y3)l (35) 

A x i a l E d g e D i s p l a c e m e n t 
We now proceed to develop an expression for the axial displacement 

when the shell undergoes finite edge deformation due to self-equili
brating edge loads. The effect of surface load, which introduces a 
nonzero value for the term A^,3) in A0, is included. 

The compatibility condition which is written in terms of nonlinear 
meridional midsurface strain measure gives the following expression 
for axial displacement: 

f is to 

v = —h cot <p + I — ; ds — ( 
•J sin ip J 

For the edge bending, the first approximation is 

£«, « -Vtg 

2sin<p 
- ds (36) 

(37) 

Substituting this into (36) and assuming that E, v, r, r\, t, and $ re
main essentially constant within the narrow boundary layer, we ob
tain 

fas. —V v 

v=-h cot <pe -—. i yW>ds j \yW]2ds 
sin tpe J 2 sin tpe J 

(38) 
As the edge effect solution decays rapidly as we go away from the edge 
s = 0, the axial displacement at the edge is 

ve = —(h cot<^)e — 

where 

2 + » (crdi* 
n h 

sin ipe SL y<4>da 

\2(crz)\' 

2 sin <pe 
J _ ° [y<3>]2da> (39) 

to = s/(cr2)\
n (40) 

In (39), the first term on the right side is the main contribution from 
the linear solution for a steep shell; the second term gives the shallow 
shell correction, whereas the third provides the nonlinear effect. 

£ y<4»do = y<3> + [2(1 + p)]V*y 1/2V(4) 

2(5 + Ap) 

£ ° [y(3)]2dco = |[y (3 )]2 + b (4 )]2 |e/[2(2 + 2p)i/2]e 

(41) 

(42) 

Substituting these in (39) gives the nondimensional axial displace
ment at the edge s = 0 

a- -X2COS lf>e {y^ + 
JH 
X sin 2<p 

y<3> + (2 + 2p)1/2y 1/2V(4) 

+ X ^ £ t £ ( l ± 2 £ ) l b ( 3 ) ] 2 + 2 b ( 4 ) ] 2 ) 

2(5 + 4p) 

X |[y<3)]2 + [y<4>]2 

2 sin 2<p (2 + 2p) 1/2 
(43) 

Fig. 1 Spherical caps joined with slope discontinuity as in pressure 
gauges 

For a steep shell edge, the second term in square bracket in (43) is 
negligible. Hence, the ratio between the nonlinear and linear results 
for axial displacement at the shell edge is 

^nonlinear 

V linear le 

2 sin 2<pe 

(2 + 2p)71/2|[y<3>]2 + [y<4>]2) 

h, (4)1 

(44) 

This relation will now be used to show the effect of nonlinearities in 
two specific problems. 

E x a m p l e s 
A shell often used in pressure gauges is shown in Fig. 1. The two 

spherical caps intersect with a slope discontinuity. Then, for internal 
pressure the prestress term p given by (10) becomes, 

p = PR21'(4 Etc) (45) 

At the edge with slope discontinuity, the membrane solution provides 
the following boundary conditions for the edge effect solution. 

y 
(2) _ _ (p sin 2a)/X 

yl.3) = 0 

Using (35), y (4 ) becomes 

L y ( 4 ) ] l i n a a r = - ( p s i n 2 a ) / ( X ( 2 ) l / 2 ) 

[y(4>] nonlinear " 
b (4)1 

linear 

(1 + p)1 '2 

Substituting these in (44), we obtain 

p(l + p ) - 3 / 2 

1 + 
p(l + 2p) cos2 a 

(5 + 4p)(l + p) 

(46) 

(47) 

(48) 

^nonlinear 

'-'linear 
= (i + p)-1'2 - '- l -

4(1 + 2p) cos2 a 

(5 + 4p) 

2p(l + 2p) cos2 a 
(49) 

(5 + 4p)(l + p) 

The first term in (49) provides the nonlinear prestress effect while the 
second term within the set of braces gives the effect of the quadratic 
rotation term. These effects are computed for specific situations and 
are tabulated in Table 1. For this case the edge rotation is constrained 
so the dominant nonlinear effect is due to the prestress term, even 
though the total radial stress resultant is zero at the boundary. 

A second example of a spherical dome resting on roller supports 
with hinged edges is shown in Fig. 2. As in the previous example, the 
radial stress resultants due to bending and membrane solutions 
are of the same magnitude and opposite sign. The prestress parameter 
p remains the same as (45). At the edge with roller supports, the 
membrane solution provides the following boundary conditions for 
the bending solution: 

/(» = 0 
(50) r „(2) : -(p sin 2a)/X 
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Table 1 Nonlinear effects in pressure gauge 

p 

^nonlinear 

^linear 

P 

^nonlinear 

^linear 

Only prestress 
term included 

-0.25 1.0 

1.1547 0.7071 

T a b l e 2 

only prestress 
term included 

-0.25 1.0 

1.732 0.4714 

cos2a *» 1 

-0.25 1.0 

1.1948 0.7071 

N o n l i n e a r e f f ec t s on 

cos2a « 1 

-0.25 1.0 

2.598 0.4707 

Both nonlinearities considered 
a = 30° 

-0 .25 1.0 

1.2088 0.6850 

the p r e s s u r i z e d dome 

Both nonlinearities considered 
a = 30° 

-0.25 1.0 

2.562 0.4463 

a = 60° 

-0.25 1.0 

1.2369 0.6408 

a = 60° 

-0.25 1.0 

2.490 0.3976 

^ x r T T r T \ 
nTTrTTW Jttrnvn 

Fig. 2 Spherical dome on roller supports 

Using (29) and (30) gives the linear solution 

b(4)]li„ear = (2)l/2y<2) 

and the nonlinear solution becomes 

(51) 

b<3)]„ 

b ( 4 ) ] n 

y(2) 

(1 + 1p) 

(2 + 2p)1/2y<2> 

(1 + 2p) 

X cot a (3 + 20p + 16p2) 

2(5 + 4/>)(l + 2p)2 -y (2) 

X cot a(4 + 18p + 8/>2) 

2(5 + 4p)(l + 2p)2 

Substituting these in (44), we obtain 

-y (2) 

(52) 

(53) 

^nonlinear (1 + P) 
1/2 p(3 + 2/>) 

"l i i (1 + 2p) 4(1 + p)!/2(l + 2p)2 

8(1 + p)(2 + p)(l + 4p) cos2 a 

+ 

(3 + 2p)(5 + 4p)(l + 2p) 

2p( l l + 64p + 68p2 + 16p3) cos2 a 

(3 + 2p)(5 + 4p)(l + 2p)2 (54) 

The first term in (54) provides the effect of the first geometric non-
linearity, namely, the prestress effect, while the second term within 
the set of brackets gives the effect of quadratic rotation terms. These 
effects are tabulated for specific cases in Table 2. 
It is somewhat surprising that even in this case, when the dome is 
internally pressurized so that p is positive, the prestress term provides 
the main portion of the nonlinear effect. When the dome is externally 
pressurized so that p is negative, the effects of both the nonlinearities 
are significant. Hence, it is important to include both the nonlinear
ities in stability problems. In [4, 5] for the spherical shell dimpling 
under a point load, it is found that the prestress term is virtually 
negligible but the quadratic rotation terms have a significant ef
fect. 
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Effects of Elastic Supports on the 
Buckling of Circular Cylindrical 
Shells Under Bending 
This paper presents the effects of elastic supports on the buckling of circular cylindrical 
shells under bending. Stability was investigated using Donnell's equation and the Galerk-
in method, including the spring constant of the elastic support. The results of this investi
gation indicate that the effects are similar in the cases of bending and axial compres
sion. 

1 I n t r o d u c t i o n 
A submarine coaxial cable (cross-sectional view is shown in Fig. 1) 

used for international communications has bending stress applied 
when it is laid by ship. When a submarine coaxial cable is bent, 
buckling occurs in the outer conductor (shown as the cylindrical shell 
in Fig. 1). Cable bending characteristics become worse, if the Young's 
modulus for both sheath and dielectric become low [1]. 

This paper reports results of an investigation on the buckling of the 
elastically supported cylindrical shell, under bending, as the first step 
in clarifying the buckling of the outer conductor, assuming that both 
sheath and dielectric act as elastic supports for the outer con
ductor. 

This analysis is an extension of the work done by Seide [2,3], Bat-
dorf s modified Donnell's equation for buckling is used, in conjunction 
with the Galerkin method [4], to obtain the critical bending stress for 
a cylinder from the small deflection theory, introducing the spring 
constant of the elastic support obtained by Seide [2]. Critical bending 
stresses are calculated for a cylinder with both inner and outer elastic 
support. 

Experimental results are shown and compared with numerical re
sults. On the whole, the experimental results are qualitatively in 
agreement with the theoretical results. 

2 Theory 
Notations for the problem under consideration are shown in Fig. 

1. An equation for the buckling stress is provided by Batdorf's mod
ification of Donnell's equation [4], which may be written as 
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ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, July, 
1979; final revision, April, 1980. 

Outer elastic cushion 
( sheath ) 

Circular cylindricarSshell 
( outer conductor ) 

• -•+Z 
Inner elastic cushion 

( dielectric ) 

Fig. 1 Notation for problem under consideration 

Q(w) = DVio + — V- 4 — - - t o - , — - + 2tT2S — 
R2 Ida4/ \ dz2 Rdzd6 

£>2w 
+ tffg -\+P(z, 0) = O (1) 

R2d02) 
Stresses prior to buckling are given by the following equation, using 

both o"b (maximum stress due to bending) and o-c (stress due to 
compression), when considering a cylinder under combined bending 
and compression. 

o-2 = — (o-c + o"i cos d) 

o"9 = rze = 0 

Radial deflection is assumed to be in the form 

. mirz ~ 
w = sin —-— Y. on cos (no) 

L „=o 

which satisfies the end conditions of simple support. 

(2) 

(3) 
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Pressure by the elastic support is assumed to be in the form 

rmrz 
P(z, 6) •• Y. kn*(\, n,R) an sin •:z^1 cos (nd) (4) 

where kn*(\, n, R) is the equivalent spring constant, discussed in 
Section 3. 

If the Galerkin method is employed to satisfy equation (1) in order 
to derive the stability criterion, the following equation is obtained: 

| Q(w) sin*-— cos (q6)Rdzdd = 0; 
o Jo L 

P = 1, 2, 3 . q = 0, 1, 2 . . . (5) 

The following system of homogenous equation is obtained after 
integrating equation (5): 

(R+nVTi)'2 

+ -=r-
S ' (R + n2IR)2 

-hb[(l + Sin - f>on)an-i + an+i 

-=^-2hc + 2Kn*/R2 

0; n = 0 ,1 , 2 . (6) 

where 

1 if n=j 

.0 if n ^ j 

The stability criterion is determined by the condition that the 
coefficient determinant of equation (6) vanishes. The critical bending 
stress is obtained by minimizing the value h/, with respect to wave
length parameter R. 

3 Spring Constant 
The spring constant was obtained by Seide [2] for the elastic sup

port, when shear stress between the elastic support and cylinder is 
neglected. According to Seide [2], the spring constant is expressed as 
a function of the longitudinal wavelength parameter R, circumfer
ential wave number n, and thickness parameter A, as follows: 

kn(\, re, R) : Ec 
:fn(\n,R) (7) 

l + ucR 

where fn(\,n,R) is a nondimensional spring constant described in 
the Appendix. 

When a cylindrical shell has different spring constants between 
inner and outer elastic cushion, and is fastened to the inner and outer 
elastic cushions, the equivalent spring constant is given by 

fc„*(A, n, R) = fei(Ai, re, R) + k2{\2, n, R) (8) 

where Ai and A2 are the ratios of the inner and outer cushion radii to 
the cylinder radius. 

Consider the problem in Pig. 1. As the inner elastic cushion has no 
hole, Ai is equal to zero and only A2 varies. Therefore equation (8) is 
written as follows: 

kn*(\,n,R) =ki(Q,n,R)+k2(\,n,R) (9) 

By introducing equation (9) into equation (4), effects of elastic 
cushion on the buckling of the cylindrical shell can be calculated. 

S2 

. .0 

n 
JZ 

Ec/E= 6.5X10 r4 

Ec/E= 6.5X10"5 

_i_ 

0 0.1 0.2 
L/ITR 

Fig. 2 Relation between buckling stress and cylinder length 

4 N u m e r i c a l R e s u l t s and D i s c u s s i o n 
For given values of radius-thickness parameter 5*, spring constant 

parameter Kn* and axial compression parameter hc, critical bending 
stresses are obtained as hb values minimized with respect to wave
length parameter R from a suitable truncated coefficient determinant 
in equation (6). The size of the determinant is increased until three 
significant critical stress figures are assured. For example, 14 terms 
are used in deflection function for R/t = 100, EJE = 6.5 X 10~4. 

Numerical results are shown in Figs. 2-8. Results shown in Figs. 
2-7 are calculated for the cylinder with only an inner elastic cushion 
core in order to simplify the problem. Therefore the equivalent spring 
constant is kn*{\, re, R) = k\{Q, n, R). Fig. 8 shows the results for a 
cylinder with both inner and outer elastic supports having the same 
Young's modulus and with Poisson's ratios v and i/c taken as 0.3. 

The relation between critical bending stress and cylinder length 
is shown in Fig. 2. Numerical results are shown for Ec/E = 6.5 X IQ~* 
and ECIE = 6.5 X 10~5. It can be seen that critical stress increases 
extremely as the length becomes short. As the length increases, the 
critical bending stress becomes almost constant and is affected by the 
elastic support. Minimized hb values are used in the following dis
cussion. 

Fig. 3 represents the relation between critical bending stress and 
Young's modulus for the elastic support. The broken line in Fig. 3 
indicates the critical compressive stress for a cylinder with an inner 
elastic support obtained as follows. The equation to determine the 
critical compressive stress is obtained from equation (6) introducing 
hb = 0. 

-Nomenclature-
an — coefficient in deflection function 
D = flexural stiffness of cylinder wall, Et3/ 

12(1 - v2) 
E, Ec = Young's modulus of cylinder and 

elastic cushion, respectively 
/„(A, n, R) = nondimensional spring con

stant 
hb = buckling stress ratio for bending, 

hc - buckling stress ratio for compression, 
ache _ 

kn(X,n,R) = spring constant for n circum
ferential wave 

ki = outer elastic spring constant 
ki = inner elastic spring constant 
kn* = equivalent spring constant for n cir

cumferential wave 
Kn* = spring constant parameter, fc„*[3(l — 

v2)}irzR3/Et2 

L = cylinder length 
m,n = integers 
R = cylinder radius 
R = wavelength parameter, rmrR/L 
S = radius-thickness parameter, [12(1 — 

v2)]1/2R/t 
w = radial deflection 

&b = maximum stress due to bending 

ac = stress due to compressive load 

<re = theoretical compressive buckling stress 

for a long cylinder, Et/[3(1 - v2)Y'2R 

(To, <rz = direct stresses 

TZQ = shear stress 

A = thickness parameter 
v,vc = Poisson's ratio of cylinder and elastic 

cushion, respectively 

V4 = operator, (d4/6z4 + 2d4/fl2dz2d02 + 
d4/R4d64) 
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Fig. 3 Relation between buckling stress and elastic cushion stiffness 

2-

Ec/E= 

St A* 
St 

St 
St 

St 
St A 

I i 

=6.5X10"4 / 

/ i 

S? 
St 

St 

si 
St 

XX) 200 300 400 500 
R/t 

Fig. 4 Relation between buckling stress and radius-thickness ratio 

50 

40 

a. 
e 

30 

20 

10 
10"* 1CT3 10"2 

Ec/E 
10" 

Fig. S Relation between wavelength parameter and elastic cushion stiff
ness 

Fig. 6 Interaction between axial load and bending stress 

(R + n^lW 
S (R + nVR)2. ' R2 (10) 

The critical compressive stresses are obtained as hc values mini
mized with respect to wavelength parameter R, because the axismetric 
mode (n = 0) yields lower compressive buckling stress than the other 
mode [2]. Comparison between bending and compression results in
dicates that effects of the elastic supports are nearly same. 

Fig. 4 indicates the relation between critical bending stress and 
cylinder thickness. The effect of the elastic support increases as R/t 
increases. For a cylinder without elastic support, ht is approximately 
1 for all values of R/t [3]. The compression results from equation (9) 
are shown for comparison and are seen to coincide with those for pure 
bending. 

Table 1 indicates the comparison of critical stresses between 
bending and compression. The approximation of critical compressive 
stress is also indicated from equation (11), which is accurate for values 
of hc less than 1.5 [2]. 

^ 1 2 ( 1 - v2) Ec jR\s/2 
h * = 1 + • 

4 ( 1 - J V 2 ) E \t 
(11) 

Table 1 Comparison between bending and compression 

E „/E 

1.33 

2.43 

3.56 

1.31 

2 .37 

3 .48 

h* i s ob ta ined from Eq.(11) 

The critical compressive stress hc is a few percent less than the 
critical bending stress hi,. 

The results between wavelength parameter R and Young's modulus 
for the elastic support are shown in Fig. 5. It can be seen that wave
length parameter R increases as Young's modulus for the elastic 
support increases. This effect becomes especially significant when 
Ec/E is greater than 10 - 3 for R/t = 100 and when Ec/E is greater than 
5 X 10-4 for R/t = 200. 

The effect of additional compression on a cylinder under bending 
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300° 

o 
270 

0° 
330° 360° 

\P/t=100 

EVE=6.5XKf4 

30° 2.0 

6<f 

90° 

Fig. 7 Circumferential deflection shape 

2.0 

1-0 

R/t=100 

EC/E=6.5X10~4 

0 0.05 0.10 0.15 0.20 0.25 

U-1) 
Fig. 8 Relation between buckling stress and outer elastic cushion thick
ness 

is shown in Fig. 6. Fig. 6 indicates that the critical bending stress Ob 
decreases linearly as the axial compression stress <rc increases. This 
variation does not appear to be affected by the presence of the elastic 
support. 

The circumferential deflection is computed with equation (3) and 
the eigenvector \an\ associated with the minimum eigenvalues. The 
result for a cylinder whose R/t = 100 and Ee/E = 6.5 X 10~4 is shown 
in Fig. 7. 

Calculated results, for a cylinder with both inner and outer elastic 
cushions, whose Young's moduli are the same, Ec/E = 6.5 X 10 - 4 

(shown in Fig. 1), are shown in Fig. 8. Calculated ht, values for R/t = 
100 are calculated with respect to the outer thickness parameter A. 
The thickness parameter A indicates that the thickness of the elastic 
cushion vanishes, when A is equal to 1, and the thickness increases as 
A increases. The effect of the outer elastic cushion is pronounced when 
the thickness parameter (A — 1) is less than 0.15. However, when the 
parameter (A — 1) is more than 0.15, the effect becomes small and 
critical bending stress <n, converges. This is why the spring constant 
depends upon the thickness parameter A, which is discussed in the 
Appendix. 

5 Experimental Investigation 
An experimental study was conducted to compare experimental 

to 1.0 

to 

R/t=100 

Theoretical 

(O Experimental ) 

0 0.5 1.0 1.5X10' 
Ec/E 

Fig. 9 Theory and experimental results comparison 

0 0.2 0.4 0.6 08 10 
(A-1) 

Fig. 10 Relation between nondimensional spring constant and elastic cushion 
thickness parameters 

Table 2 Test specimen details 

Specimen R ( m m ) t ( m m | L ( m m ) R / t L/R E (N/m") E (N/m !) Note 

1 

2 

3 

4 

20 

20 

20 

20 

0 . 2 

0 . 2 

0 . 2 

0 . 2 

70 

68 

18 

B0 

100 

100 

100 

100 

3 .5 

3 .4 

3 ,9 

4 . 0 

4 x 1 0 s 

4 x l 0 9 

4 x 1 0 s 

4 x 1 0 s 

4x10* 

.without elastic 

with elastic 
' cushion 

results with the numerical results, using cylinders with inner elastic 
core and cylinders without an elastic cushion. The cylindrical walls 
of the test specimens were made of Mylar (polyester film) and the 
elastic cushion was a silicon rubber rod. Two of the test specimens 
contained no silicon rubber and the other two contained a silicon 
rubber rod as the inner elastic cushion. Details of the specimens are 
described in Table 2. 

Test specimens were bent, little by little, by a bending instrument 
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made for cable bending tests. Critical bending data were obtained 
from an automatic graphic record of strain gage readings as a function 
of varying bending radius, since it had been found that there were 
sharp discontinuities in these records when buckling occurred [2]. 

Comparison between experimental results and theory is shown in 
Fig. 10. The experimental results are less than the theoretical values 
and the difference is larger for a cylinder without an elastic core than 
for a cylinder with an elastic core. This tendency agrees with the 
compression results reported by Seide [2] and Almroth [5]. As the 
small deflection theory indicates the upper bound for the critical 
compressive buckling stress in reference [5], this analysis is seen as 
the upper bound for the critical bending stress. 

6 Conc lus ion 
The stability of a circular cylindrical shell, supported by elastic 

cushions and subjected to bending, was investigated using small de
flection theory. The results indicate that the effect of the cushions 
on the buckling of circular cylindrical shells under bending is similar 
as the effect under compression. By comparison between theoretical 
and experimental results, this analysis is expected to indicate the 
upper bound for the critical bending stress. 
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APPENDIX 

Nondimensional Spring Constant 
The determination of the spring constant is reported by Seide in 

reference [2], Although the procedure of reference [2] applies for a 
cushion with a central hole, the result is only given for an elastic 
cushion without a central hole. The same procedure for the calculating 
of the spring constant of an elastic cushion with central hole is used 
here in order to determine the effect of the thickness. The procedure 
is omitted here for brevity. Only the numerical results are shown in 
Fig. 10. Fig. 10 represents the relation between the nondimensional 
spring constant for the outer elastic cushion in Fig. 1 and the thick
ness. When R and n are large, the nondimensional spring .constant 
/ rapidly converges to a constant value in the small X range. However, 
when R and n are small, / increases gradually as X increases. 
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Stability Considerations in 
Thermoelastic Contact 
A simple one-dimensional model is described in which thermoelastic contact conditions 
gioe rise to nonuniqueness of solution. The stability of the various steady-state solutions 
discovered is investigated using a perturbation method. The results can be expressed in 
terms of the minimization of a certain energy function, but the authors have so far been 
unable to justify the use of such a function from first principles in view of the nonconser
vative nature of the system. 

Introduction 
It is known that mathematical difficulties arise in problems of 

thermoelastic contact between bodies with geometrically smooth 
surfaces. In particular the conventional boundary conditions of perfect 
thermal contact (no resistance to heat flow leading to continuity of 
temperature) in regions of mechanical contact and complete insula
tion (no heat flux) in regions of separation lead to ill-posed bound
ary-value problems whenever the hotter solid has the higher thermal 
distortivity defined by 

*(1 + v)lk (1) 

where a, k, v are, respectively, the coefficient of linear thermal ex
pansion, thermal conductivity, and Poisson's ratio for the material 
[1-3]. An asymptotic analysis of the transitions between the various 
boundary regions [3] suggests that the conventional boundary con
ditions can be safely applied when heat flows in the opposite direction, 
but there is evidence that, in this case, the solution obtained is not 
necessarily unique [4]. This immediately raises the question of sta
bility which forms the subject of this paper. 

Stability questions can be probed by energy arguments or by an 
analysis of small perturbations about the steady state. The former 
would have the advantage of analytic simplicity, since a perturbation 
analysis involves a consideration of transient heat conduction, but 
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it is far from clear what energy formulation would be appropriate for 
thermoelastic contact, since the system is inherently nonconservative, 
i.e., it is possible to devise loading cycles which would cause the con
tacting solids to act as a heat engine. In order to elucidate this question 
and to investigate the fundamental characteristics of thermoelastic 
contact, we give here an exhaustive treatment of the simplest contact 
system which exhibits thermoelastic nonuniqueness—a one-dimen
sional rod conducting heat between rigid walls. A perturbation 
analysis is used to determine the conditions for stability of the various 
steady-state solutions, but it transpires that these conditions can be 
stated in terms of the minimization of an energy function with a 
straightforward physical interpretation. 

The Model: Steady-State Solutions 
The system to be analyzed is illustrated in Fig. 1. Two perfectly 

conducting and rigid walls, separated by a distance /, are maintained 
at temperatures To and zero, respectively, and a uniform elastic rod 
of cross-sectional area A is built into the cold wall as shown. The 
length of the rod is such as to leave a gap g = go when the temperature 
is everywhere zero. The same model, with the temperature difference 
reversed, has been used to investigate the nonexistence of solutions 
in thermoelastic contact [2]. 

For sufficiently high values of the hot wall temperature To, we 
should expect two steady-state solutions to the problem: One in
volving contact between the rod and the wall, the gap being closed by 
thermal expansion of the rod; the other with separation between the 
rod and the wall, the gap being sufficient to prevent significant heat 
flow into the rod. To investigate the matter further, we postulate the 
existence of a thermal resistance R between the hot wall and the rod, 
which will be a function of contact force P when contact occurs and 
of gap size g when it does not. No assumptions will be made about the 
nature of this function though, on physical grounds, we should expect 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 871 
Copyright © 1980 by ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



9o-g 

^ 

Fig. 1 The rod transferring heat from the hot to the cold wall 

it to fall monotonically as the gap is reduced or the pressure in
creased. 

If the contact resistance R is known, the temperature T' at the hot 
end of the rod can be determined from continuity of heat flux Q in the 
steady state. Thus 

Q = (T0 - T')IR = T'Ak/l 

Solving for T', we have 

1 + AkR/l 

and hence the unrestrained thermal expansion of the rod is 

Uth = 2aTl = WTAW) = Uof 

where UQ = % alT0 is the thermal expansion which would be devel
oped with T" = To, i.e., perfect thermal contact between the rod and 
the wall, and 

(2) 

(3) 

(4) 

/ = 1 + AkR 
(5) 

The function / ranges from zero for complete thermal insulation (g 
-*• °°) to unity for perfect thermal contact (P ->- <*>). 

We can now write down the equations determining the steady-state 
solutions. For separation, 

g = go - uof(g), g^O 

whereas for contact, 

0 = go-uof(P)+Pl/AE, P>0 

(6a) 

(66) 

The variables g and P apply to separate regimes which intersect only 
in the point g = P = 0. We can therefore define a continuation of g into 
negative values by the relation 

g = -Pl/AE, P>0 and g < 0 (7) 

With this definition, the two equations (6a, b) reduce to the same form 
which is conveniently written 

fig) = (go ~ g)/uQ (8) 

A graphical solution to equation (8) could be envisaged as shown in 
Fig. 2. The two sides of the equation are plotted as separate functions 
of g, and steady-state solutions are represented by intersections be
tween these functions. In general, there will be either one or three 
solutions, depending on the values of go, uo and the nature of the 
function f(g). 

It is instructive to examine the limiting case where the contact re
sistance passes from zero to infinity over an infinitesimal range of 
values aboutg = 0. The corresponding limit for f(g) is the step func
tion f(g) = H(—g) shown in Fig. 3. When three steady-state solutions 

CONTACT SEPARATION 

9o 

Fig. 2 Graphical interpretation of the stability criterion 

SEPARATION 

Fig. 3 Graphical interpretation for the idealized boundary conditions 

occur, two of them lie on the horizontal branches of the step functions 
at A and C, corresponding to perfect thermal contact and separation, 
respectively, while the third lies on the vertical step at B and corre
sponds to the state defined by a similar limiting process as "imperfect 
contact" in reference [2]. 

S t a b i l i t y A n a l y s i s 
In order to investigate the stability of the various steady states 

described by equation (8), we examine the conditions under which 
a small perturbation can grow exponentially with time. Such a per
turbation will only be possible for certain eigenvalues of the expo
nential growth rate, and the condition for stability is that there should 
be no positive eigenvalues. If complex eigenvalues are possible— 
corresponding to exponentially growing oscillatory perturbations— 
there must be none with a positive real part. 

Temperature Distribution in the Bar. The perturbation in 
temperature and heat flux in the bar from the steady-state value must 
satisfy the transient heat conduction equation 

d2T 1 dT 
(9) dx2 K dt 

where K is the thermal diffusivity of the bar material and x is measured 
along the bar from the cold end. 

Assuming a perturbation of the form T = <j>(x)eat, we have 
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dx2
 K 

0 = 0 

the solution of which is 

tj> = A cosh Xx + B sinh Xx 

(10) 

(11) 

with X = (O/K) 1 / 2 . Applying the condition T = 0 at x = 0, the constant 
A must be zero, and hence the perturbation in temperature is de
scribed by 

while the heat flux is 

T = Beat sinh \x 

dT 
Qx = -Ak — = -BAk\eat cosh Xx 

dx 

(12) 

(13) 

The change in the gap between the rod and the wall due to this 
temperature perturbation is 

Ag=- f 
Jo 

aTdx = -B- eat(cosh XI - 1) (14) 
X 

and the perturbations in heat flux Q and temperature T at the free 
end x = I are 

A Q = -Qx(l)=BAkXeat cosh XI (15) 

AT = T(l) = Beat sinh XI (16) 

Contact Resistance Equation. To complete the analysis, we li
nearize the relation (2) between heat flux and temperature in the vi
cinity of the steady-state solution, obtaining 

(To - T')AR AT 

R2 R 

where AR is the corresponding perturbation in contact resistance and 
R, T" here describe the steady-state values. 

Equation (17) can be cast in terms of the function /(g) by using 
equation (5). Thus 

AQ- (17) 

Ak\f 

and hence 

AR = -
dR If'l 

(18) 

(19) 
dg Akf2 

Substituting for V, R, AR from equations (3), (18), and (19), re 
spectively, into equation (17), we obtain 

i (H- Tpf'Ag 

f 
-AT (20) 

Characteristic Equation. Finally, we substitute for the per
turbations Ag, AQ, AT from equations (14)-(16) into (20) to obtain 
the characteristic equation for a which is 

BXl - - l) eat cosh XI =- BocTo f- eat (cosh XI - 1) 

-Beat sinh XI (21) 

and which can be simplified to the form 

(1 - f)y 2 cosh y + 2u0/ ' (cosh y - 1) + fy sinh y = 0 (22) 

where 

•• al2U (23) 

Restricting attention initially to the case of real roots, we expand 
equation (22) in the form 

^ ^4[2j{2j - 1 ) (1 - f] + W + 2"of] = 0 (24) 

The functions /, (1 — /) are both positive for positive values of R (see 
the section, "The Model: Steady-State Solutions") and hence the 

series will be positive for large values of y. However, it will be negative 
at small values of y, giving a zero somewhere on the real axis if 

2(1 - /) + 2/ + 2u0 f < 0 

- / ' > 1/uo 

(25) 

(26) 

(Note that / ' is generally negative—see Fig. 2). Furthermore, it is clear 
that if this condition is not satisfied, all the terms of equation (24) will 
be positive and there will be no real root for y (except the trivial so
lution y = 0). 

Of course, equation (22) may have complex roots, describing os
cillatory perturbations. This possibility is investigated in the Ap
pendix, where it is shown that (26) also describes the condition for a 
complex root for the exponential growth rate a to have a positive real 
part. Hence, we conclude that the system is unstable if and only if 
condition (26) is satisfied. 

Graphical Interpretation and History Dependence. By re
ferring to equation (8) it is clear that the criterion (26) for instability 
describes those intersections in Fig. 2 at which the function /(g) 
crosses (go — g)/«o from above with increasing g. Thus solution B is 
unstable, while A and C are stable. 

The steady-state solution C is possible only if the imposed tem
perature To is smaller than a certain temperature, say, Tc which can 
be determined graphically for given go from the curve /(g) in Fig. 2. 
Similarly, solution A can occur only if To is above a certain temper
ature, say, TA- All three solutions A, B, and C are possible in the in
termediate range Tc < To < TA. Which of the stable steady states 
are reached depends on the history of the thermal process. Suppose 
that the rod has a certain initial temperature distribution and that, 
during the early stages, T0 depends on time, but that later in the 
process To is kept constant so that a steady-state distribution of 
temperature in the rod is eventually achieved. It is then clear that the 
final state depends on the previous manipulations of the process. 
Consider for instance the rod being initially at zero temperature with 
To slowly raised from zero to some finite value. In such case, the steady 
state reached will correspond to solution C, provided the final value 
of To is smaller than Tc- If, on the other hand, the rod has initially 
a temperature distribution such that it is in contact with the hot wall, 
and the temperature To is not suddenly dropped below a level to break 
contact, the steady state A will establish itself for long time values of 
To > TA- The unstable steady state B could conceivably be reached 
by carefully steering the process during its early stages. However, any 
temperature disturbance that corresponds to thermal elongation of 
the rod will eventually make the system settle down in state A. Con
versely, disturbances that make the rod contract slightly will make 
it go into state C. 

More generally, we conclude that, if the contact resistance is a 
continuous function of g, there will be an odd number of steady-state 
solutions which are alternately stable and unstable. The stable solu
tions might be thought of as separated from each other by "higher 
energy" unstable barriers. In the particular case of the step change 
in resistance shown in Fig. 3, the imperfect contact solution acts as 
such a barrier and is unstable. 

E n e r g y C o n s i d e r a t i o n s 
If we define an "energy function: 

f l uu-f - (go - g)2 + S uofdg (27) 

with E denoting Young's modulus, the condition (8) for a steady-state 
solution can be expressed as 

dU/dg = 0 

while the condition for instability (26) is 

d2U/dg2 < 0 

(28) 

(29) 

In other words, the function U is stationary at all steady-state solu
tions, being a maximum if the solution is unstable and a minimum if 
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it is stable. Thus it behaves in all respects as the total energy of a 
conservative mechanical system. 

Furthermore, we can give a physical interpretation to the two terms 
in equation (27). The first term, Vzigo - g)2AE/l, is the elastic strain 
energy involved in extending or compressing the rod isothermally at 
temperature zero, while the second term can be expressed as 

- J u0fdP = - J uthdP (30) 

(see equations (4) and (7)) where the compressive force P has a con
tinuation (—gAE/l) into negative values. 

As long as conditions are changed slowly enough for the tempera
ture distribution in the rod to be in a quasi-steady state, the rod with 
pressure/gap dependent contact resistance will exhibit a unique 
relation between load (gap) and extension. Now, if a mechanical 
system could be constructed with the same load extension relation, 
the normal energy theorems could be applied to it, since we should 
not now have a continuous flow of energy across a boundary con
taining the system. However, such a mechanical system would only 
be conservative if the load was always varied incrementally, i.e., the 
sudden application or removal of a finite load may lead to the system 
doing extra work on the surroundings. Of course, this quasi-static, 
incremental behavior cannot be guaranteed in the thermal system, 
but the energy function obtained in the foregoing from perturbation 
arguments is closely related to that which would be obtained by im
posing the requirement of minimum complementary energy on such 
a system. 

The authors have as yet been unable to justify use of such an energy 
argument other than through the perturbation analysis set out in the 
section, "Stability Analysis," but the result summarized in equations 
(27)-(29) is extremely suggestive. If such a justification could be 
produced, it would be capable of extension to more difficult ther-
moelastic contact problems involving nonuniqueness, such as those 
concerned with the half space [4], for which a perturbation analysis 
would be of formidable complexity. The reader's attention is drawn 
to this unsolved problem. 
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APPENDIX 

Cri ter ion for C o m p l e x B o o t s of E q u a t i o n (22) 
We are concerned to find the conditions under which the func

tion 

F(z) = z 2 cosh z + az sinh z + /3(cosh z - 1) (31) 

has complex roots corresponding to values of z2 with positive real part. 
In the z-plane, the corresponding zeros of F(z) must lie in the two 
sectors shaded in Pig. 4 and bounded by the lines z = ± (1 ± i)a. The 
origin is also excluded by two small quarter circles, as a zero there is 
introduced by the multiplication by y in the derivation of equation 
(22) and is of no physical significance. 

F(z) is a continuous function of the coefficients a = f/(l - f) and 
,8 = 2uo/7(l — /) and has no zeros in the domains of Pig. 4 if a = ji = 
0. Hence, if we start from this condition and change a, ft continuously, 
the zeros will move continuously about the complex plane and will 
only be able to enter the domain by crossing one of its boundaries. The 
stability boundary is therefore equivalent to the condition that F(z) 

Fig. 4 Regions In the complex plane 

has a zero on the domain boundary. We consider these boundaries in 
turn: 

(i) z = (1 + i)h). If we treat (31) as an equation for a, we have 

z 2 cosh z + fl(cosh z — 1) 
a = P - (32) 

z sinh z 
which can be decomposed in the form 

2o)2 sh-s - fi(ch • c - 1) - i(2o>2ch • c + Bsh-s) 
a = — (33) 

u\sh • c — s • ch + i(sh • c + ch • s)] 
where s = sin a>, c = cos w, sh = sinh u, ch = cosh a. 

Now a is a real constant and hence the imaginary part of equation 
(33) is zero, i.e., 

[2ui2sh • s - [3(ch • c - l)](sh -c + ch-s) 

-\2w2ch -c + fish-s](sh-c - ch • s) = 0 (34) 

from which, after some manipulation we have 

. 2o)2(ch • sh — c • s ) 
13 = TT ^Tu r (35) 

(sh — s)(ch — c) 
Back substitution into equation (33) then gives 

u>(ch • sh2 — c • s2) 
a = - (36) 

2(sh2 • c2 + ch2 • s2)(sh - s) 
which is negative for all a>, whereas a = / / ( l — /) must be positive for 
all possible resistance functions /. 

We conclude that no zero can enter the domain across z = (1 +i)tx>. 
A similar argument can be used to prove that zeros cannot enter across 
the other diagonal boundaries. 

(ii) z = reie,r small, -w/4<6 <-jr/4. For this boundary, F{z) 
can be expanded as in equation (24) and condition (25) is immediately 
obtained on dropping all except the lowest order terms in r. 

(Hi) The Point at Infinity. As z -»• <», the function F(z) becomes 
dominated by the term z 2 cosh z which is insensitive to variation of 
a, /3. Thus no zeros can enter the domain through the point at in
finity. 

We therefore conclude that condition (25) is the correct stability 
criterion for real or complex roots. In fact, a further analysis along the 
same lines, but excluding the real axis by the two lines z = ±iS, shows 
that zeros of F(z) in the domain of Pig. 4 can only occur on the real 
axis. In other words, there are no oscillatory perturbation solutions 
to the problem. 

874 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Carl Panek 

Ebasco Services, Inc., 
2 Rector Street, 

New York, N. Y. 10006 

A Thermomechanical Example of 
Auto-Oscillation 
A system which progresses repeatedly through a cyclic sequence of physical configura
tions (continuous or discrete), in the absence of any periodic excitation, is said to be in 
the state of auto-oscillation. In this paper the author examines a thin thermoelastic rod 
projecting from the warmer of two parallel rigid walls, their separation being slightly 
wider than the length of the rod. Assuming heat transfer by conduction only, it is found 
that for certain combinations of physical parameters the rod does auto-oscillate (repeat
edly makes and breaks contact with the cooler wall at finite frequency) provided that part 
of the rod near the cooler wall has a nonpositive thermal coefficient of expansion. This 
last condition is absolutely necessary since otherwise one encounters certain thermome
chanical pathologies. The only other way that these pathologies could be eliminated 
would be to employ the concept of imperfect contact as suggested by Barber, which may 
also be interpreted as allowing heat transfer by radiation. 

Introduction 
Auto-oscillation describes the ability of a system to progress from 

one configuration through a number of subsequent configurations, 
eventually duplicating the initial configuration. Fundamental to the 
concept of auto-oscillation is the requirement that the system in 
question present its cyclic behavior in the total absence of periodic 
excitation. Briefly stated, auto-oscillation is the existence of periodic 
behavior in the absence of periodic stimulus. Some examples of 
auto-oscillation are as follows: 

1 A pendulum with escapement mechanism. 
2 Certain chemical reactions [1]. 
3 Oscillating configurations in cellular automata theory [2]. 

The current interest in thermoelastic contact, and Barber's concept 
of heat conduction through zones of imperfect contact [3], have led 
the author to examine one simple thermomechanical system for 
auto-oscillation. While such a study does not yield results which are 
directly applicable to specific questions, it does cause ont to think 
carefully about the physical meaning of thermomechanical boundary 
conditions; and in any case it is difficult to ignore a system which 
presents the possibility of exhibiting auto-oscillation. 

Description of the Problem 
Consider a thin uniform rod of initial length w, projecting from a 

warm rigid wall, as shown in Fig. 1. At a distance ir + g from the warm 
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Fig. 1 Geometry of the problem 

wall let there be a cooler wall. Without loss of generality it may be 
assumed that the warm wall is maintained at temperature T = 1, and 
that the cooler wall is maintained at temperature T = 0. Materially 
the rod is divided into two coUinear parts having thermal coefficient 
of expansion a\ and az, thermal conductivity ki and k% and thermal 
diffusivity fli and D2, respectively. Finally, it is assumed that heat 
may flow by means of conduction only, and only where there is inti
mate contact between two surfaces. 

If g is sufficiently small or sufficiently large one steady state or 
another develops, but for a certain range of g between these two ex
tremes it is impossible to develop a steady-state solution consistent 
with the assumed mechanism of heat transfer. On the other hand, any 
oscillatory solution has an intrinsic pathology since the heated rod 
cannot remain in contact with the cooler wall for any finite period of 
time. This behavior is due to the fact that the rate of contraction of 
the rod is proportional to the heat flux out of the rod times the thermal 
coefficient of expansion of the rod, and at the instant of contact with 
the wall the net heat flux out of the rod is infinite. 

One solution to this dilemma is to introduce the concept of im
perfect contact. In this case the rod expands by an amount g, develops 
a zone of imperfect contact at the wall, and then remains in imperfect 
contact with the wall as all transient effects die out. Alternatively, it 
is possible to find an oscillatory solution to this problem consistent 
with both mechanisms of heat transfer provided that the part of the 
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rod near the cooler wall has a nonpositiue thermal coefficient of 
expansion. 

T h e r m a l R e q u i r e m e n t s for A u t o - O s c i l l a t i o n 
Regardless of the feasibility. of satisfying the combined ther-

momechanical boundary conditions, one can solve for a periodic 
temperature field consistent with a regularly alternating thermal 
boundary condition at the cooler end of the rod. After such a solution 
has been found, it will be examined to determine whether or not it 
satisfies the mechanical boundary conditions necessary for auto-
oscillation. 

To find a periodic temperature field, first express the temperature 
in the rod as two different infinite series, one for each part of the cycle, 
whose individual terms each satisfy the one-dimensional heat-con
duction equation 

dt ~ dx2 (1) 

Thus one has 

T(x, t) = 1 - - + D Cn exp (-n2Dt) sin nx, 0 < t < T (2) 
7T n = l 

and 

T*(x, t*) = 1 + £ C„* exp \-(n - h)2Dt*} sin (n - J)x, 
n=\ 

0 < t* < T* (3) 

where T denotes the temperature field when the rod is in contact with 
the wall, and T* denotes the temperature when the rod is out of 
contact with the wall, r and T* denote the length of time the rod is in 
or out of contact with the wall, respectively. Note that the form of each 
series was chosen so as to satisfy the boundary conditions at x = 7r, 

and 

TCTT, t) = 0, 0 < t < » 

— T*(x,t*)\x=„=0, 0 <£*<<» 
dx 

(4) 

(5) 

as well as to yield the correct steady-state solutions as t or t* goes to 
infinity. 

In the interest of mathematical simplicity, it has been assumed that 
Di = D2 = D and k\ = k2 = k. Doing this results in the continuity of 
both T(x, t) anddT(x, t)/bx at the junction of the two rods. Actually 
the second condition is not necessary since it is always possible to 
transpose the length a to an equivalent length a ' according to a' = 
k2air/[k\ir + (k2 - ki)a\. 

By requiring continuity of the two temperature fields at the instant 
the rod breaks contact with the wall, one finds that 

T(x, T) = T*(x, 0), 0 < x < 7T (6) 

Because the behavior is expected to be cyclic, one must also require 
continuity of the two temperature fields at the instant the rod again 
makes contact with the wall. Thus one has 

T*(x, T*) = T(x, 0), 0 < x <TT (7) 

It is proposed to satisfy the two continuity equations in a least-squares 
sense. Proceeding, one defines an error integral I(\C], (C*)) according 
to 

JflCj, |C*j) = f |[T(x, T ) - T*(x, 0)]2 

Jo 

+ [T*(x, T*)-T(X, 0)]2jdx (8) 

Differentiating I{\C}, \C*\) with respect to the individual coeffi
cients Ci and C(* in turn, and carrying out all the resulting integra
tions, one finds two infinite sets of simultaneous equations: 

2 
- - [1 + exp (-m2Di-)] = ( - ! )"• m[l + exp ( -2m 2 Dr)] Cm (9) 

TEMPERATURE PROFILE AT 
TRANSITION FROM SEPARATION -
TO CONTACT 

TEMPERATURE PROFILE AT 
TRANSITION FROM CONTACT-
TO SEPARATION 

Fig. 2 Temperature profiles at the two transition times DT = 0.5 and 
DT" = 1.0 

\m2 -{n- | ) 2 ; 

+ exp {-(« - i)2DT*\] Cn*, m = 1, 2 , . . . 

•- £ (-D 
T n=l 

. - 0) 
(Cont.) 

and 

- [1 + exp | - ( m - h)2DT*}} 

= ( - l ) m (m - i) [1 + exp j -2 (m - h)2DT*}} Cm* 

- - E ( - 1 ) " n ( 2
(m~W

uJ lexp | - ( m - i)2Dr*} 
ir n=i \n2 - (m - J)2/ 

+ exp (-n2Dr)] C„, m = 1, 2 , . . . , = (10) 

For the solution of the periodic temperature field, the foregoing 
system would be truncated to some finite number of equations, say 
2N. Given times for the desired duration of each part of the cycle, DT 
and DT*, one would solve the truncated system for the 2N coefficients 
Ci, C2 , . . . , C2N, Ci*, C2*, . . . ,CiN*- Results are plotted in Figs. 2 
and 3 for the single case DT = 0.5, DT* = 1.0. Note that the temper
ature profiles undulate, and near the center of the rod one sees a pe
riodic flow and ebb of heat superimposed on the overall temperature 
gradient. 

M e c h a n i c a l R e q u i r e m e n t s for A u t o - O s c i l l a t i o n 
Given the thermal coefficients of expansion for the two parts of the 

rod, one can compute the extension of the rod as a function of time 
simply by integrating «T(x, t) over the length of the rod. (Note that 
if the length a had been transposed to a' in order to eliminate the slope 
discontinuity in the temperature field, it would be necessary to 
transpose back to the original length a before integrating over x.) The 
extension of the rod during each of the two parts of the cycle may be 
written, respectively, as 

e(t) = ai C'. 
Jo I T(x, t)dx + a2 J T(x, t)dx, 0 < t < T (11) 

and 

e*(t*) = ai C" T*(x,t*)dx + a2 C" T*(x, t*)dx, 
Jo J a 

0 < £ * < T * (12) 

In order to satisfy the mechanical condition necessary for auto-os-
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Fig. 3 Detail showing deviation of the temperature from the line 1-0.8jr/7r 
as Dt goes from 0 to 0.5 and as Dt' goes from 0 to 1.0 

cillation one must not only close the gap at the beginning and end of 
each part of the cycle, 

«(0) = «*(0)=£ or e(r) = e*(r*) = g 

but one must also satisfy the inequalities 

e(t) >g, 0<t <T 

and 

e*(t*) <g, 0 < t* < T* 

(13) 

(14) 

(15) 

« i 

which require that the gap not open/close during that part of the cycle 
when the gap is to remain closed/open. Throughout the remaining 
analysis it is assumed that this set of inequalities is satisfied as long 
as « 2 is nonpositive and equation (13) is satisfied. A rigorous proof 
of this statement will not be presented, but its validity will be dem
onstrated in the next section by considering a sample problem. 

When applying equation (13) it is sufficient to use only one of the 
two versions persented. In consideration of improved numerical 
convergence it is advantageous to use the right-hand version. Thus, 
in conjunction with equations (11) and (12), one finds 

(a - W/n + £ n-1 Cn exp (-n2Dr) [1 - cos na]\ 

+ a2 ((IT - a) - &TT2 - a2)/ir + £ n'1 Cn exp ( - M 2 D T ) 

X [cos na - (-1)"]] = «i a + £ (n - l ) " 1 C„* 

X exp | - (ra - h)2Dr*} [1 - cos (n - |)a] + a2 <7r - a) 

+ L (n - l)'1 Cn* exp | - (n - i)2Dr*} [cos (n - |)a] = g (16) 
n = l / 

The most practical means of solving the foregoing equation is to 
proceed in three stages. First, choose values for DT and DT*, and solve 
equations (9) and (10) for the Fourier coefficients C„ and C„*. Then 
choose a value for a and determine the ratio aila\ from the first 
equality of equation (16). Once ctila\ has been found it is possible to 
determine gla\ from the second equality of equation (16). In this way 
it is possible to develop a plot of oscillation period versus initial gap 
for a rod of given configuration. Two examples of such plots are given 
in Fig. 4. 

S a t i s f y i n g the Gap Inequa l i t i e s 
As previously stated, it has been assumed, but not proven, that 
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requiring «2 ^ 0 and satisfying equation (13) is sufficient to guarantee 
that the inequalities of equations (14) and (15) are also satisfied. In 
order to demonstrate the validity of that assumption, consider the 
temperature profiles shown in Fig. 3 where D T =0 .5 and Dr* = 1.0. 
By iterating on equation (16), it is found that the time DT = 0.5 and 
DT* = 1.0 result in auto-oscillation when «2 = 0 and a = 0.5757T. Since 
«2 = 0 in this example, the elongation of the rod is equal to «i times 
the integral of the temperature (the area under the curve) from x = 
0 to x = 0.5757T. Referring to Fig. 3, one sees that the rod does continue 
to expand for some time after making contact with the wall, and 
continues to contract for some time after breaking contact. 

Another way to verify this behavior is to consider the time rate of 
elongation of the rod. Differentiating equations (11) and (12) with 
respect to t, one finds 

d_ 

dt' 
tit) J 'a d /-»ir a 

— T(x, t)dx + « 2 | — T(x, t) dx 
o dt Jo dt and 

d_ 

dt 

Using the heat conduction equation, DdTfdt: 

that 

t*(t*) = « i C" — T*(x,t*)dx + a2 C" — T*{x,t*)dt 
Jo dt Ja dt 

(17) 

(18) 

and 

D-e(t) 
at 

D — i*(t*)-
dt 

a\-
dT 

dx 

dT 
+ «2 

0 i>X 

d2T/bx2, one finds 

(19) 

CL\-
dT* 

dx 

" dT 
+ a 2 — 

o ox 
(20) 

Thus, in the present example, since «2 = 0, one can determine whether 
or not the rod is expanding by comparing the slopes of the tempera
ture profiles at the points x = 0 and x = 0.5757T. To insure that the rod 
is expanding when contact is made, and that it is contracting when 
contact is broken, one must have 

dT(x, t) 

and 

dx 

dT*(x,t*) 

dT{x, t) 

dx < 

dx 

dT*(x,t*) 

dx 

Dt =* 0 

Dt* ~ 0 

(21) 

(22) 

Indeed one sees from Fig. 3 that these conditions are met. Moreover, 
since the temperature profiles change so smoothly in time, one can 
convincingly argue that the extension of the rod changes in a simple 
cyclic manner. Finally, since the particular example apparently 
contains no anomalies, it is reasonable to generalize the conclusions 
obtained here to all other cases. 

C o n c l u s i o n s 
In the aforementioned work the author examines a simple ther-

momechanical system for the existence of auto-oscillation; the system 

being a thin thermoelastic rod projecting from the warmer of two 
parallel rigid walls, their separation being slightly wider than the 
length of the rod. It is found that given a physical configuration which 
excludes the two limit cases (intimate contact with the cooler wall and 
absolute noncontact with the cooler wall) either an oscillatory solution 
or a steady-state solution may develop. 

The actual solution which does develop depends solely on <X2, the 
thermal coefficient of expansion of the part of the rod near the cooler 
wall. If «2 > 0, one must employ Barber's condition of imperfect 
contact. In this case the rod expands by an amount to just close the 
gap, develops a condition of imperfect contact, and remains in contact 
with the wall. Notice that this is just the behavior expected if one were 
to allow radiation effects, thus suggesting an equivalence between the 
two processes. On the other hand if «2 S 0, one finds that imperfect 
contact does not develop. In fact if <*2 < 0 one sees that as the end of 
the rod just touches the cooler wall, the rod actually jumps into inti
mate contact with the wall. This behavior is due to the fact that for 
Qi2 < 0 the extension of the rod is proportional to the heat flow out of 
the rod, and as contact develops the instantaneous heat flow out of 
the rod is infinite. 

The combined result of these considerations are that for ther
moelastic contact between two bodies 

1 Imperfect contact must develop during the transition from 
intimate contact to separation if heat flows out of the body with the 
higher distortivity (distortivity is proportional to a; see Dundurs and 
Panek [4]). 

2 Imperfect contact cannot develop during the transition from 
intimate contact to separation if heat flows out of the body with the 
lower distortivity. 

These results refer to a transition in time, but the validity of a similar 
set of results applicable to transition on a boundary surface has been 
recently proven by Comninou and Dundurs [5]. 
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Steady-State Vibrations of a Beam 
©n a Pasternak Foundati©n f©r 
Moving Loads 
The response of an infinite beam supported by a Pasternak-type foundation and subject
ed to a moving load is investigated. It is assumed that the load is uniformly distributed 
over the finite length on a beam and moves with constant velocity. The equations of mo
tion based on the two-dimensional elastic theory are applied to a beam. Steady-state solu
tions are determined by applying the exponential Fourier transform with respect to the 
coordinate system attached to the moving load. The results are compared with those ob
tained from the Timoshenko and the Bernoulli-Euler beam theories, and the differences 
between the displacement and stress curves obtained from the three theories are clari
fied. 

Introduction 
The dynamic response of an infinite beam on an elastic foundation 

under moving loads is of great interest in many fields of engineering, 
and many papers have been published in the field of such problems. 
In these studies, the simplest model considered was a Bernoulli-Euler 
beam model supported by a Winkler-type foundation. Some of the 
previous studies of this kind have been the works of Dorr [1], Kenney 
[2], Mathews [3, 4], and Keer [5]. Holder and Michalopoulos [6] in
troduced an inertial foundation instead of massless Winkler-type 
foundation that reacts only on the local deflection of the mounting 
body and investigated the effects on the system response of founda
tion mass. It is well known, however, that the Bernoulli-Euler beam 
theory is inadequate for increasing frequencies which result from 
higher load velocities, and a significant improvement has been ob
tained by considering the Timoshekno beam theory. Crandall [7] 
replaces the Bernoulli-Euler beam by the Timoshenko model and 
obtained the steady-state solutions for the beam on an elastic foun
dation with a moving concentrated load. The problem of a semi-in
finite Timoshenko beam of an elastic foundation with a load moving 
from the end at a constant velocity was discussed by Steele [8, 9]. 
Recently Chonan [10, 11] analyzed the response of an elastically 
supported Timoshenko beam subjected to an axial force and a moving 
load, and a moving harmonic force. Thus, in the analysis of response 
of a beam subjected to a moving load, one-dimensional equations of 
motion based on the Bernoulli-Euler or the Timoshenko beam the
ories have been widely used. Though such approximations are very 
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useful when one wishes to handle the complex problem of the response 
of a beam to dynamic loading, it will be necessary to confirm how 
accurate the results can express the behavior of the beam as compared 
with the exact ones obtained from the two-dimensional linear elas
ticity theory. On the other hand, shear interactions between the 
foundation spring elements are neglected in the Winkler foundation. 
This is not the case with the real foundation. 

The present paper is concerned with an analysis of the response of 
an infinite beam on an elastic foundation under moving load with 
constant velocity. The equations of motion based on the two-di
mensional elastic theory are applied to a beam and the Pasternak-type 
foundation is introduced considering shear interactions as well as 
reaction proportional to displacement. For simplicity a mass of 
foundation is neglected. If the moving load is assumed to be a con
centrated force acting on a straight boundary, the stress components 
become infinite at the point of application of the load and a further 
investigation of the problem is necessary. In practice the load will 
distribute over a finite area. To consider the local effect near the load, 
it is assumed that the load is distributed over the narrow finite length 
on a beam. The solutions are obtained by using Fourier transforms 
and the numerical results are compared with those obtained from the 
Bernoulli-Euler beam theory and the Timoshenko beam theory. The 
influence of the higher modes of vibration due to two-dimensional 
effects is conspicuous for load speeds higher than the velocity of 
Rayleigh waves. 

Analysis 
Fig. 1 shows an infinite beam with thickness h which is on the 

Pasternak-type foundation and subjected to a moving load. The x -axis 
is spaced along the interface between the beam and the foundation, 
and the y-axis normal to the x-axis. The applied load which is dis
tributed in the region 2e with intensity / is assumed to move with 
constant velocity c in the x -direction. 

Putting the beam displacements in the x,y-directions as 
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Fig. 1 Geometry of problem and coordinate axes 

d0 d\p dtp d\p 

dx dy ' dy dx 

the plane-stress equations of elastodynamics are described as 

1 - ; / G dt2 G dt2 

and the stress components are, in usual notation, 

2G Idu dv\ 

1 — v \dx dy/ 

2G dv du\ 

1 — v \dy dx) 

G [ ^ + ^ 
\dy dx 

(1) 

(2) 

(3) 

where G is the modulus of rigidity, v is Poisson's ratio, p is mass 

density, t is time, respectively, and V2 is 

„ d2 d2 

V2 = + — 
dx2 5y2 

For the Pasternak foundation with viscous damping, the foundation 

reaction Q is given as [12] 

, dv d2v 
Q = kv + d Go— -

dt dx2-

where k is the Winkler foundation modulus, G0 is the shear founda-

Hly) = f °° F(x,y)e-^ dx, F(x,y) = — f " P&yW&dZ 
«y —™ 27r %J~<» 

give 

dy2 •P2¥ :°' \w-^=Q 

di/ d4> « 

dy dy 

2G 

1 - v 

2G 

v — - — i£ — 
\dy2 dy) 

1 - v <y2 rfy/ \ dy). 

and 

Aty = 0 

Aty = h 

where 

' • " « ^ % * ^ % . 

fiy = 0, ffy = (k + i£cd + Go£2)i> 

7-^=0, o - y = / ( e - " f - e " f ) / ^ 

p 2 = l -

1G 

1 
e 

C2 

Cl* C<f = — , I : 

(5) 

(6) 

(7) 

(8) 

(9) 
piX-v 

and p1 is the nondimensional load velocity. 

The solutions of equations (5) can be obtained as 

<j> = A cosh p%y + B sinh p£y, $ = C cosh <?£y + D sinh <?£y 

(10) 

where A-D are undetermined constants. Substituting equations (10) 

into equations (6) and (7) and utilizing equations (8) give 

0 

(P2 - v)ij 
lip sinh pr\ 

(p2 — v) cosh pr] 

2ip 

-(K + L/3iji + Hn2)p 

lip cosh p 7/ 

(p2 — v) sinh p ?) 

l + <72 

(K + Lfai +Hn2)i 
(1 + q2) cosh (/?/ 

(-1 + v)iq sinhg?/ 

0 

(-1 + v)iqi\ 

(1 + <72) sinh qrj 

(-1 + v)iq cosh qrj 

~A~ 
B 
C 
D 

= 

0 ~ 
0 
0 

L°^LI 
(11) 

tion modulus, and d is viscous damping coefficient. Then the 

boundary conditions are 

Aty = 0 

where 

n = H, K-
(1 - v)hk 

, dv d2v 
0, <jy = kv + d G0 

dt dx2 

6(D) 

2G ' 

(1 - v)fh3 

(1 - v)c2d 

2G 
H •• 

(1 - v)G0 

IGh 

(e~ivt/h _ Qii}(/h\ (12) 

Aty =h 

. = 0, o-v = F(JC - ct) 
- / , |x — ct | s e 

0, I* -ct\> e 
(4) 

2iG773 

Substituting 0 and \j/, in which constants A-D are determined from 

equation (11), into equations (6) and (7) and using the inverse 

transform, one can get the solutions for the displacements and the 

stress components of a beam. If one puts e —• 0 and 2tf = P in equa

tions (11) and (12), the case of a beam subjected to a concentrated 
Now it is assumed that the steady state has been reached and de- „ „ . ... . . . ., . . , . . 

. . . . . . , .. . ., .. . force P moving with constant velocity can be obtained 
lormation pattern is time invariant relative to a following coordinate „, . . . , , . , . , 

system attached to the moving load 
The integrals are transformed to the sum of the residues of the poles 

defined by the roots of the characteristic equation 

0 

(p2 - V)TJ 

2ip sinh p ?) 

(p2 — v) cosh pr; 

2ip 

-(K + iL/3V + Hr/2)p 

2jp coshp?/ 

(p2 - v) sinh pr/ 

1 + q2 

(K+iLPn + Hri2)i 

(1 + q2) cosh qr\ 

(-1 + v)iq sinh qr\ 

0 

(-1 + v)iqi\ 

(1 + q2) sinh qrj 

(—1 + v)iq cosh qrj 

: 0 (13) 

x = x — ct 
which results from equating the denominators of the integrands to 

Transforming the equations (l)-(4) to the moving coordinate and zero. 
applying the exponential Fourier transform with respect to x defined It is noted that equation (13) corresponds to the dispersion equation 
as which is obtained in the study of the free wave propagation in an in-
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0-5 TWO-DIMENSIONAL ELASTIC THEORY 
TIMOSHENKO BEAM THEORY 
BERNOULLhEULER BEAM THEORY 

10 15 20 

Fig. 2 Nondimensional velocity of the moving load /3 versus nondimensional 
integral variable r) (K = 0.1, H = 0.05) 

finite beam on an elastic stratum by regarding /? and r/ as the nondi
mensional phase velocity and wave number of free waves. 

Numerical Results 
Numerical calculations have been carried out for the case 2c/h = 

0.4, v = 0.3, and arbitrarily chosen values of K and H. To simplify the 
calculations, we will consider only the limiting case d = 0. For d = 0, 
the equation (13) has real roots besides complex roots. In this case, 
however, if infinitesimal amount of damping is introduced, it is pos
sible to ascertain whether the real poles should belong to the upper 
half plane or the lower half plane at the time of accomplishing the 
inverse transform. 

The variations of the nondimensional velocity of the moving load 
/} versus the nondimensional integral variable i) in the case of K = 0.1 
and H = 0.05 are shown by the solid lines in Fig. 2. A broken line and 
chained lines in the figure are the results from the solutions of the 
BernouUi-Euler beam theory and the Timoshenko beam theory, re
spectively, which are shown in the Appendix. The graph is symmet
rical with respect to r; = 0, and only the curves for real and positive 
values of rj are shown. The value of the shear coefficient K for Ti
moshenko beams is taken to be 0.85 which is given for a rectangular 
section by Cowper [13]. It will be found from the figure that infinite 
numbers of curves exist if the two-dimensional elastic theory is ap
plied to a beam. 

When the integrand has poles of the second order on the real axis, 
the integral values blow up and the displacements along the beam 
become unbounded. The velocity in this case is associated with critical 
velocity, the values of which are given by those of the load velocities 
at the minimum points of the curves in Fig. 2, that is, /3cr = 0.704 for 
the two-dimensional elastic theory, ficr = 0.727 for the Timoshenko 
beam theory and ftcr = 0.805 for the BernouUi-Euler beam theory. 

Figs. 3 (a) and (b) show the curves of the first mode for various 
values of K or H taking H = 0 or K = 0.1. In the figures, solid lines are 
results obtained from the two-dimensional elastic theory, chained 
lines from the Timoshenko beam theory and broken lines from the 
BernouUi-Euler beam theory. It can be seen from Fig. 3 that critical 
velocities increase with increasing the values of K and H. 

As mentioned previously, Figs. 2 and 3 are also considered as the 
phase velocity spectrum of free waves along the beam, if /3 indicates 
the phase velocity and r\ the wave number. When t\ —* 0 in Fig. 2, the 
curve of the solid line for the first mode consists with the longitudinal 
wave speed c = \fWTp and the rest of curves tend to infinity. On the 
other hand, as T\ becomes large, the curve of the solid line for the first 
mode approaches to the Rayleigh wave speed and curves in the region 
of ft > 1 to the velocity of distortional wave 0 = 1 [14]. The Timosh
enko beam theory gives two dispersion curves and the curve for the 
first mode is in good agreement with that from the two-dimensional 
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Fig. 3 Nondimensional velocity of the moving load /S versus nondimensional 
integral variable TJ for lowest mode 
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Fig. 4 Displacement of midplane of a beam versus x/h (K = 0.1, H 
0.05) 

elastic theory. As the value of H increases, however, the discrepancies 
between the two become evident and even if ?j -* <*>, the curve from 
the Timoshenko beam theory does not approach to the Rayleigh wave 
speed. This phenomenon is due to using the shear coefficient obtained 
by Cowper. If the shear coefficient given by Mindlin's method [15] 
is used, the curve for the first mode obtained from the Timoshenko 
beam theory approaches to the Rayleigh wave speed as i\ —• <». In this 
case, however, it is noted that the shear coefficient K becomes the 
function of the shear foundation modulus H, and the value of K 
changes with the value of H. 

Now let us return to a consideration of the response of a beam to 
moving loads. The curves of the solid line in Fig. 4 show the deflection 
profiles of the midplane of the beam (y/h = 0.5) for various values of 
load velocities lower than the critical velocity in the case of K = 0.1, 
H = 0.05. The displacement u is nondimensionalized by (1 — v)hf/2G 
and x by h. Fifty terms of residues which belong to each of the upper 
and the lower half plane were taken in the prediction of the dis
placement of a beam, where the error of integral value is less than 
10 - 5 . For /3 = 0.6, results obtained from the Timoshenko beam theory 
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Fig. 5 Maximum value of displacement of midplane of a beam versus /3 (K 
= 0.1, H = 0.05) Fig. 6 Maximum value of fiber stress of upper surface of a beam versus 

fi(K = 0.1, H = 0.05) 

and the Bernoulli-Euler beam theory are superimposed by chained 
and broken lines, respectively. The deflection profile is symmetrical 
with respect to the load center. It can be observed from the figure that 
the Bernoulli-Euler beam theory gives the smallest peak deflection 
and the two-dimensional elastic theory gives the largest peak de
flection among three theories. 

The deflection is maximum under the load and increases mono-
tonically to infinity as the load velocity approaches to the critical 
velocity. These maximum values of the deflection of the midplane of 
a beam are plotted as a function of the load velocity /5 in Fig. 5. 

Fig. 6. is a plot of the fiber stress ax at the midposition of the load 
region on the upper surface of the beam as a function of the load ve
locity p\ 

Fig. 7 shows the deflection profile of the median plane of the beam 
for various values of velocities higher than the critical velocity in the 
case of K = 0.1 and H = 0.05. Solid, chained, and broken curves are 
obtained from the two-dimensional elastic theory, the Timoshenko 
beam theory, and the Bernoulli-Euler beam theory, respectively. It 
is seen from the figure that the deflection wave shapes lose their 
symmetry with respect to the point x - 0 and the peak deflection 
occurs behind the moving load. When ft = 0.8, the results from the 
Timoshenko beam theory are in good agreement with those from the 
two-dimensional elastic theory, though the curve from the Ber
noulli-Euler beam theory is yet symmetrical relative to the position 
x = 0 since the velocity /? = 0.8 is just lower than the critical velocity 
obtained from the Bernoulli-Euler beam theory. 

When the load velocity becomes higher than the Rayleigh wave 
speed, remarkable discripancies occur between the results from the 
two-dimensional elastic theory and those from the one-dimensional 
beam theories. In the case of/3 = 0.95, the deflection profile in front 
of the load obtained from the two-dimensional elastic theory seems 
to be a damped sinusoid and those from the one-dimensional beam 
theories are undamped sinusoids, though in rear of the load the de
flection profiles from the three theories are almost good agreeable. 
If the shear coefficient for the Timoshenko beam is taken to be that 
by Mmdlin's method, the amplitude of displacement from the Ti
moshenko beam theory will decrease rapidly with an increase in dis
tance from the load. 

When /3 > 1, the deflection profile in rear of the load obtained from 
the two-dimensional elastic theory is very complicated because it is 

(a) ,8=0-8 

H A 

(b)/3=0-95 

Fig. 7 Displacement of midplane of a beam versus x/h (K = 0.1, H 
0.05) 

constructed with many higher modes. In the case of/? = 1.2, the de
flection curve in rear of the load obtained from the Bernoulli-Euler 
beam theory is an undamped sinusoid and that from the Timoshenko 
beam theory is also an undamped sinusoid except the neighbor region 
of the load. In front of the load, the deflection curve from the Ber
noulli-Euler beam theory is an undamped sinusoid while the ampli
tudes of waves from the Timoshenko beam theory and the two-di
mensional elastic theory decrease rapidly. In the case of/? = 1.65, as 
the load velocity is between \fWp and ci, the Timoshenko beam is 
undisturbed in front of the moving load, but the displacement ob
tained from the two-dimensional elastic theory has negative value and 
approaches to zero as x -* <». In the case of ft = 1.9 where the load 
velocity is higher than ci(> C2), the beam is undisturbed in front of 
the load, i.e., the displacement of midplane of the beam is zero in x/h 
> t/h. The results from the two-dimensional elastic theory and the 
Timoshenko beam theory can indicate this phenomenon accurately, 
though that from the Bernoulli-Euler beam theory cannot do so and 
the deflection profile is an undamped sinusoid in front of the moving 
load. 
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On the whole, it m a y be seen from curves in Fig. 7 that , though there 

a re m a n y sec t ional differences, t h e d iscrepancies be tween t h e de 

flect ion profiles in rear of t h e load from t h e two-d imens iona l elast ic 

theory a n d t h e one-d imens iona l beam theories are no t so serious and 

b e a m theories seem to afford a useful approximat ion in the rear of the 

load. I t is supposed , however , t h a t fiber s t ress of t h e b e a m o b t a i n e d 

from the two-d imens iona l e las t ic t heo ry is very compl ica ted in rea r 

of t h e load c o m p a r e d wi th t h a t from t h e one-d imens iona l b e a m t h e 

ories, because t h e b e a m response from t h e two-d imens iona l e las t ic 

theory is t h e s u m of t h e n u m e r o u s h igher m o d e responses of a b e a m 

a n d t h e deflect ion profile is n o t even, while t h a t from t h e Bernoul l i -

Eu le r b e a m theory is cons t ruc ted wi th one sinusoid and t h a t from t h e 

T i m o s h e n k o b e a m theo ry wi th two s inusoids . 

Conclusions 
T h e responses of an inf ini te b e a m on t h e P a s t e r n a k - t y p e founda

t ion to moving loads have been t r e a t e d exact ly by apply ing t h e two-

d imens iona l elast ic t heo ry a n d t h e resu l t s ob t a ined have been com

pared with those from the T imoshenko and the Bernoull i-Euler b e a m 

theor ies . T h o u g h t h e Bernou l l i -Eu le r b e a m theo ry gives ex t r eme ly 

incons i s ten t resu l t s in t h e front of t h e load for t h e moving velocity 

h igher t h a n t h e cri t ical velocity, i t seems to be rel iable for all t h e ve

locities excluding the foregoing region. T h e resul ts ob ta ined from the 

T i m o s h e n k o b e a m theo ry m a y be seen t o be in r e m a r k a b l y good 

agreement with those obta ined from the exact two-dimensional elastic 

theory, b u t one can also see t h a t higher modes of b e a m vibra t ion give 

locally a grea t influence u p o n t h e r e sponse of a b e a m in t h e region of 

load velocities h igher t h a n t h e cri t ical velocity. 
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APPENDIX 
Solution From the Bernoulli-Euler Beam Theory 

T h e equa t ion of mo t ion of t h e b e a m wi th shear de fo rmat ion a n d 

t h e ro t a to ry iner t ia be ing ignored is 

1 + v , „ d4v d2v du d2v 
Gh3—;+ph—~ + kv + d— - G 0 

6 dx4 dt2 dt dx2 

_ —f,\x—ct\£e 

. 0, \x-ct\> e 

T h e resul t ing d e s p l a c e m e n t is given by 

l(l-v)hf 12 1 /(l-v)hf 12 1 r - 1 
v / = I e ' 

/ 2G 1-v22irj J - » j ;Ai 

i£x/h-tlh)n _ giU//i+E//i)jjjc | j j 

where 

Ai = V4 

1 + v 
„-M-W. 12 iLfa + r^K 

l~v2 1-v2 

Solution From the Timoshenko Beam Theory 
T h e e q u a t i o n s of mot ion of t h e b e a m where shear and ro ta to ry 

ine r t i a are i nco rpora t ed are 

ph3 i>2B 1 + v i>28 Idv 
-Gh* — -GKh — + 

6 d x 2 Id* 12 d t 2 

, d2u „ , i>2v dd\ , , d o „ d2u 
ph Guhl—- + — \ + kv + d G 0 — -

dt2 [dx2 bxl dt dx2 

- / , \x - ct\ £ e 

I 0, \x -ct\ > £ 

where 6 is t h e b e n d i n g slope and K is the shear coefficient.. 

T h e resu l t ing d i sp l acemen t is given by 

2,-Kl •/-«> TtlXo. 2G 
l2K)\eilx/h-</h)i - e i(x/h+e/h)i}'i \dv 

where 

|(/32/2) - (1 + v)\n2 - 6/c 

— (1 — v)iKTj 

— 6JK7) 

X \(K - /?2)(1 -i>) + 2H}IJ2 + liLliT] + 2K 
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Asymptotic Integration Methods 
Applied to Rotating Beams 
The in-plane vibrational characteristics of an off-axis clamped beam subjected to either 
compressive or tensile forces arising from steady rotation are studied. The differential 
equations of motion are cast into state vector form and solved using asymptotic matrix 
integration methods. The general theory of these methods is described in this paper and 
their application to the analysis of rotating beams is made. The advantages inherent in 
these methods with regard to accuracy, reduction of analytical complexity, and savings 
in computational costs are discussed. 

1 Introduction 
For mechanical systems with coefficients whose spatial variation 

is smooth, asymptotic integration methods can, for example, yield all 
higher modes for little computational effort. Since so much infor
mation can be gained from the simplest one-term asymptotic solution, 
i.e., a WKB solution, it is natural to seek to extend the range through 
including more terms of the asymptotic series, through recasting the 
asymptotic series, through alternate forms of the expansion utilizing 
special functions, etc. However, these methods are not well suited for 
general computer applications, particularly since the higher terms 
of an asymptotic series invariably involve successively higher deriv
atives of the system coefficients. 

In this article the WKB method is investigated and applied to the 
analysis of a linear fourth-order differential equation with variable 
coefficients. For the first and second modes, WKB supplies a rough 
approximation which can be corrected using a convergent asymptotic 
matrix integration method. One such method, derived by Keller and 
Keller [1], has the WKB solution as its leading term. A second method 
termed WKB-direct integration iterates the WKB solution through 
an integral equation to converge to the exact solution. For modes three 
and above, the WKB one-term solution produces satisfactory re
sults. 

The simplicity of these three solutions, WKB, Keller-Keller, and 
WKB-direct integration, as well as the accuracy they afford are 
studied. Other methods available for comparative purposes include 
approximations based on energy principles, Myklestad finite differ
encing, perturbation expansions, and integrating matrices. 

Contributed by the Applied Mechanics Division and presented at the Winter 
Annual Meeting, Chicago, 111,, November 16-21,1980, of THE AMERICAN SO
CIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
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to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, March, 
1980; final revision, June, 1980. Paper No. 80-WA/APM-32. 

In order to fully explore the range of capabilities to be exhibited 
in the three solutions, both the buckling instability as well as the 
general response for a uniform cantilevered beam rotating at constant 
speed are addressed. Critical rotation speeds are determined for those 
beams oriented radially inward and subjected to compressive stresses. 
Tensile stresses alter the modal response of those beams oriented 
radially outward and yield modal frequencies which are dependent 
on the rotation speed. 

2 Theory 
To apply the WKB method to a solid mechanics problem, it is ad

vantageous for both the analysis and the numerical evaluations to use 
an ri-dimension system of first-order equations. The Hellinger-
Reissner-Washizu formulation [2] is convenient for formulating the 
problem in state vector form. 

2.1 WKB F i rs t Approximation. A discussion of the WKB 
method, its application to solid mechanics problems, and how suc
cessive Corrections can be obtained is made by Steele [3]. In this sec
tion, the first-order approximation using the WKB method and state 
vector representation is presented. The general nth-order equation 
can be written in matrix form as 

y'(s) = A(s)y(s) (1) 

The first approximation to the general solution of (1) is [1, 3] 

yi = X exp (A)C (2) 

The eigenvector X„ corresponding to an eigenvalue £„' satisfies the 
matrix equation 

[A - £n'l]Xn = 0 (3) 

We consider only the situation in which all eigenvalues are distinct. 
Each eigenvalue is integrated to give the diagonal element of A, 

£> = Sin'ds = A„„ (4) 

For convenience, the eigenvector X„ is decomposed into two parts, 
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x n (£ n ' ) = dn(£n ' )xn(£„') (5) 

where dn can be viewed as a normalizing or an amplitude modification 
scalar function. Denote by.Z the matrix of eigenvectors associated with 
the transposed matrix. Where 

[A' - £„'ljzn = 0 

Zn(£„') = dn($n')zn($n') 

The determination of dn follows from 

(dn)2znf X x„ = constant 

(6) 

(7) 

(8) 

2.2 Keller-Keller Method. A thorough description of an ex
pansion which is convergent and has the first approximation as its 
leading term is found in Keller and Keller [1]; the general steps taken 
in the derivation are outlined as follows. 

By differentiating the first approximation given by the WKB 
method in (2), we find the exact differential equation which satisfies, 

yi. 

yi' - (A + X'X-^yx = 0 (9) 

The exact differential equation for y can be rewritten in the form 

y' - (A + X'X-l)y = -X'X-1 (10) 

The complementary solution of (10), treating the right-hand side as 
known, is given exactly by 

yfc = yi (11) 

The particular solution is given by integration with respect to the 
appropriate Kernel function K(s, t) 

yp = jK(s,t)(-X'X-1)ydt (12) 

where the Kernel matrix function is given 

K(.M) = y/1(s)y/,-1(0 (13) 

and the entire expression written with reference to (11) yields 

y = yi[i - fyrHt)x'x-iy(t)dt] (14) 

or letting 

y = yiO (15) 

gives the equation for the correction U 

a = I - JB(tMt)dt (16) 

in which 

B(£) = y r M W X - i y i W (17) 

Expanding this yields the convergent series 

y = yi[i - fB(t)dt + fB(t)fB(u)du dt-...] (18) 

The term in the brackets is usually rapidly convergent [3]. 
2.3 WKB-Direct In tegrat ion. Since (2) represents a first ap

proximation to (1), then by substituting the expression for y in (2) into 

the right-hand side of the differential equation of (1) and integrating 
numerically, one obtains a new expression for y which is denoted as 

V2-

Y2 = /Ayids (19) 

Repeating this procedure until convergence is obtained will yield 

y3 = /Ay2ds (20) 

y-i = J"Ay„_ids 

yn = y n - i + « 

(21) 

(22) 

where t represents some small allowable difference in the yn and y„_i 
vectors. This is the basis of the WKB-direct integration procedure. 

The noticeable absence of inverting matrices or taking derivatives 
lends to the analytical simplicity of this method. An understanding 
of some of the particulars present in the convergent process is im
portant, however. A discussion of some of these characteristics can 
be found in the first part of Section 4. 

3 A p p l i c a t i o n to R o t a t i n g B e a m s 
As stated previously, two analyses are conducted. The one with the 

beam oriented inward is representative of many machine elements 
and/or turbine blades. The second study, with the beam directed 
radially outward can be viewed as a model of satellite appendages, 
windmill, or helicopter blades. 

Pictured in Fig. 1 is the relevant geometry associated with the two 
configurations. The beam of length / is cantilevered to a hub of radius 
R rotating at constant speed co. The axis of rotation is perpendicular 
to the beam and passes through the hub center. The axial coordinate 
s is the distance from the rim of the hub to an arbitrary point on the 
beam and is considered positive directed toward the center of the 
hub. 

For bending in the plane perpendicular to the axis of rotation, the 
equation for small lateral deflection w is 

EIw" (Tw'Y = pA(u>2 + P2)w 0<s<l (23) 

where the term pA(co2 + @2)w represents the inertial force due to the 
angular velocity of the rotating frame and of vibration. The distri
bution of axial force is determined from the equilibrium equation, 

T' = pAuHR-s) (24) 

Integration of (24) with the stipulation that the tip (s = I) be free from 
stress yields, 

T = pAw2[(R - I)2 -(R- s)2}/2 (25) 

Note that only a linear analysis is conducted and no other stabilizing 
or destabilizing effects, due to rotation, are considered. 

In the matrix formulation, the dependent variable vector is taken 
to be 

y = [ M i f i i ) | ' 

The Hellinger-Reissner-Washizu formulation gives 

M' = H+T\P 

(26) 

. .Nomenc la ture* 

A = prescribed square matrix whose compo
nents may depend on * 

C = column vector of arbitrary constants 
EI = bending stiffness 
H = shear force 
I = beam length 
M = bending moment 
R = radius of hub 
s = independent variable, distance along 

beam from clamped end 
T = tensile force 

w = displacement amplitude of the beam (in 
the plane of rotation) 

X = square matrix of eigenvectors of A 
x = s/l 
y = dependent variable, column vector 
a = R/l 
|8 = modal frequency 
A = diagonal matrix of integrated eigenvalues 

of A 
fn' = nondimensional eigenvalue of A matrix 

(Hn'ID 

?) = pAfPfi/EI dimensionless frequency pa
rameter 

X = pAo)H*IEI dimensionless spin param
eter 

£„' = eigenvalue of A matrix 

pA = mass per unit length 

tp = bending angle 

o> = rotation speed of hub 
( ) ' = spatial derivative d/ds or d/dx 
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V" 
CL--RH 

(a) INWARD ORIENTATION 

a = - R / 2 

(b) OUTWARD ORIENTATION 
Fig. 1 Rotating beam geometry 

H' = -pA(o32 + /32)io 

\j/ = M/EI 

w' = —ip 

(27) 

The prime denotes differentiation with respect to the axial coordinate. 
These equations are in the form of (1), where the A matrix is given 
by 

(28) 

To determine the eigenvalues of A, the determinant of (3) is set equal 
to zero which yields the following fourth-degree equation: 

0 
0 
l/EI 
0 

1 
0 
0 
0 

T 
0 
0 
- 1 

0 
-pA(w2 + /32) 
0 
0 

£'4 _ (T/EI)^ - (pA/EI)(a2 + /32) = 0 (29) 

In the dimensionless terms given in the Nomenclature, (29) trans
forms to 

where 
r - x/wr - (\ + u) = o 

f(x) = [(a-l)2-(a-x)2}/2 

(30) 

(3D 

The four eigenvalues obtained from the roots of (30) are separate and 
distinct. 

fi ' = f = [X//2 + [(X//2)2 + X + J,]1'2]!/2 

f2' = - f ' (32) 

f3' = f *'i = [-A//2 + [(A//2)2 + X + T)]1'2]!/2 

U = -r'i 

The rath eigenvector corresponding to the reth eigenvalue is deter 
mined, 

" - ( £ / / P ) f „ ' 2 

-(EI(X+V)/l3)/tn' 

-In'II 

L-l 

The eigenvector associated with the A* matrix gives 

In'/I 

X„ = d(f„') (33) 

In = d(f„') 
(El/Wtn'Z 

L_-(Ei(\ + v)tts)/L'J 
Letting 

gives 

z n
t ( f n ' ) - x„ ( f„ ' ) = - i 

dn = d(f„') = [f„ ' ; 3 /2£/(f„ ' 4 + X + „)] 1/2 

(34) 

(35) 

(36) 

The first approximation given in (2) can now be assembled; all nec
essary expressions having been appropriately identified. Before 
completing the last step of the analysis, which will give the frequency 
equation and mode shapes, it is useful to transform the expression 

X exp A C = Y C* (37) 

by making use of sine and hyperbolic sine functions in place of ex
ponential functions. Boundary conditions for a cantilever beam are 
now applied, 

M(l) = H{1) = 0 

i/-(0) = w(0) = 0 

Moment and shear 
vanish at the tip 
Bending angle and deflection 
are zero at the root 

to give 

(38) 

(39) 

The determinant of Yp gives the following transcendental equation 
for the frequency: 

V * 2 . W2 

where 

<j)*<|) 

1/2 
(a* + a) cos J V ^ ' d x cosh JVf'cfc 

+ (S* - E) sin So^'dx sinh foH'dx] = 0 (40) 

E ,H* = r (0 ) , f ' ( 0 ) 

$ , $* = 34 + x + n, E*4 + X + 7) (41) 

The form of this equation is simplified by the fact that f '(l) = 
f*'(l). It is also of interest to note that for w = 0, E = E*, and (40) 
reduces to the familiar frequency equation for the nonrotating 
beam. 

1 + cos J V f ' d z cosh So1i'dx = 0 (42) 

For the instability study, a is considered positive and the search 
is for X-critical which drives r], a measure of the beam natural fre
quency to zero. In the analysis of frequency modification for the 
outward oriented beam, a is negative and ?) is studied as X takes on 
various prescribed values. 

4 R e s u l t s 
The results presented in the next three subsections deal with the 

buckling problem of the inward oriented beam and with the general 
modal determination of a cantilevered rotating beam. Although the 
methods presented are valid for variable mass and stiffness properties, 
uniform properties are used in this analysis for the purposes of com
parison. In order to investigate the range of accuracy afforded by the 
three solutions, a, the ratio of hub radius to beam length, and o> the 
rotation speed are varied. 
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Application of the solutions presented involve a search for either 
X or ?) which will yield zero for the determinant of the Yp matrix. The 
secant interpolation scheme gave very satisfactory results in all cases 
and usually zeroed in on the correct value within one or two trials. 

Use of the WKB first approximation given in (40) is straightforward 
and requires no further comment. However, a few remarks concerning 
the integration procedures involved in the Keller-Keller and 
WKB-direct integration solutions are made, as they should be taken 
into consideration when formulating the problem. 

Choice of the limits of integration for the eigenvalues of the A matrix 
and the eigenvectors X„ should be made such that the exp [A] will 
yield values consistent with one another (i.e., of the same numerical 
order). In this study all integration is carried forward from 0.0 to x 
except in the evaluation of A n and X2 where integration is backward 
from 1.0 to x. Use of Simpson quadrature with an integration step size 
of 0.02 is used throughout. 

Orthogonality of the eigenvectors is applied during computation 
of the WKB-direct integration method. Upon iteration of the sinus
oidal eigenvectors, any exponential residue will tend to amplify and 
produce a dependent system. To insure orthogonality and indepen
dence of the eigenvectors, a normalized dot product is subtracted from 
the sinusoidal eigenvectors prior to each integration step. This pro
cedure not only proved useful when iterating on the eigenvectors, but 
also provides another check on the accuracy of the converged solu
tion. 

In deriving the current results using the Keller-Keller expansion, 
only a second approximation or one term correction is used. This is 
found by approximating y(t) in the first integrand as yi(£) and ig
noring all subsequent terms (see (18)). 

Two methods are used to check the convergence of the WKB-direct 
integration method. Iteration is stopped when the sum of the squares 
of the integration endpoint of each eigenvector matches the previous 
two derived values within 1 percent or less. Also, the Rayleigh quotient 
is used to insure the last two integrations have yielded a converged 
solution as well as a general check on the value of X or r) produced. 

4.1 Inward Oriented Beam—Instability Study. Various direct 
numerical methods have been applied to the subject of instability of 
a rotating beam within the past 10 years [4-11]. An approximate 
analysis [4] using quartic polynomial shape functions which satisfy 
all the boundary conditions obtained information for the range of 0.5 
< a < 2.0. In the interest of determining the existence of a stability 
boundary, reference [5] obtained results with an analysis based on the 
extended Galerkin procedure using two Lengendre polynomials sat
isfying only the displacement boundary conditions as shape functions. 
Fig. 2 presents a comparison of the results found in [5] with those 
derived using the three methods presented herein toward the evalu
ation of the frequency fi, derived from X by the following: 

fi = a2(X)1/2 = uRHpA/EI)1'* (43) 

In the range of 0.5 < a < 2.0 the values determined by Wang [5] and 
Mostaghel and Tajbaksh [4] overlay the iterative integral data. In the 
lower range of a, 0.0 < a < 0.2, values produced in references [7, 8,18] 
support the data derived by the WKB-direct integration method; 
results given by Wang appear to be high. Table 1 provides a com
parison of the three solutions for a few representative data points. 

It is generally felt that the WKB method is most useful in the 
analysis of higher mode calculations; by utilizing this approximation 
in the iteratuve integral evaluation, exact results are achieved for all 
values of a, 0.05 < a < 5.0. 

4.2 Transition Point—Axis Clamped Case. A notable point 
of interest to many researchers in this area has been the buckling in
stability for a rotating beam subjected entirely to tensile forces, 0.0 
< a < 0.5. Reference [4] was the first to express surprise at this be
havior and subsequent investigations [7,8,10] have established that 
a = 0, the axis clampled beam, indeed represents the stability 
boundary for in-plane buckling of the first mode. 

The only physical explanation thus far given for this behavior is 
credited to Weber [11] who cites the existence of centrifugal forces 
as the factor responsible for this buckling phenomenon. Centrifugal 
forces, for the in-plane bending problem, increase with increasing 
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Table 1 

WKB-Direct 
I n t e g r a t i o n 
(converged ) 

. 35 
1 .13 
2 . 9 6 
5 . 3 5 
8 . 2 7 

14 .91 
2 2 . 7 0 

Critical buckling speed (f l) 

HUB 

( 1 - t e r m ) 

.52 
1 .06 
3 .32 
6 . 3 6 
9 .80 

19 .77 
30 . 15 

K e l l e r -
K e l l e r 

( 2 - t e r m ) 

.42 
1.07 
3 . 2 5 
5 . 9 3 
8 .98 

16 .06 
2 4 . 2 4 

Hodges!18] 
Numerical 

I n t e g r a t i o n 

. 35 
1 .13 
2 . 9 9 
5 .38 
8. 19 

14 .87 
2 2 . 7 7 

deflection, and therefore do represent a source of instability. However, 
the same centrifugal forces are present in both inward and outward 
oriented geometry (+a and —a). A more complete explanation for the 
cause of the known stability boundary can be found with a little in
vestigation of the WKB one-term solution. 

It can be determined (see Fig. 2) that as a tends to zero, X is rapidly 
increasing. Since it is known that the WKB approximation yields good 
results for large parameter values, it is surprising that the one-term 
approximation does not produce the expected results. An examination 
of the governing equations yields an understanding of the situa
tion. 

For large values of X(j/ = 0), the eigenvalues of (32) can be ap
proximated as 

it', JY <* o 

(44) 

It is important to note that fi' is purely real for all values of x in the 
range under consideration. 

The inability of the one-term approximation to give accurate pre
dictions arises from two of the roots, corresponding to the oscillatory 
eigenvectors, being zero. To remedy this situation, the first two ei
genvectors associated with fi' and fjj' are kept and two more solutions 
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of the differential equation are sought. Rewriting (23) in dimensionless 
terms gives 

w"" - Mfw'Y - (X + ij)io = 0 (45) 

A linear variation in x is found to satisfy this equation exactly for 
r; = 0. 

w = D(x + a) (46) 

where D is some arbitrary constant. 
Boundary conditions at the tip dictate that the contribution of the 

exponentially increasing eigenvector must be zero. Focusing attention 
on the satisfaction of the root boundary conditions will give 

w(Q) = C2di[l] + da = 0 (47) 

w'(0) = C 2 di f 1 ' (0 ) [ l ]+D = 0 (48) 

which requires 

D ~ -(X/(0))1«C2d1 (49) 

D = -C2di/a (50) 

Equations (49) and (50) can only both be true if a is positive, i.e., 
inward oriented beam. For the outward oriented geometry, a is neg
ative, and the inability for the root boundary conditions to be satisfied 
excludes the possibility of buckling in the region. Physically, the 
buckled beam is conforming to a straight line rotation of the beam 
about the spin axis. This is possible for the inward oriented beam as 
the exponentially decreasing solution allows for a smooth transition 
in the deflection; however this is not possible for the outbound 
beam. 

Also from equations (49) and (50) an approximate estimate for the 
spin parameter X can be obtained as a tends toward zero. 

X1/2 =* (aftO)1 '2)"1 = 1.414/a(l - a) (51) 

This approximation is good to the order of X_1/2 and the percent error 
is of order X -1. Reference [10] using singular perturbation techniques 
gives the approximation as 

Xi/2 ~ 1.414/a (52) 

In Table 2 a comparison is made with exact results using the WKB 
direct integration method to illustrate the accuracy of these approx
imations. 

A study of the vibration response for higher modes in this region 
yielded similar behavior to that exhibited in the outward oriented 
geometry discussed in the next section. This is in agreement with the 
statement in reference [10] that the beam has exactly one buckled 
mode. From the analysis presented this follows fairly naturally, the 
absence of the oscillatory eigenvector solutions excludes the possibility 
of any other buckling configuration shape. 

At this point it is appropriate to insert a note about the nature of 
the out-of-plane buckling problem. In this case, the influence of in-
ertial forces is absent and only the first two terms of (45) remain in 
the differential equation [12]. A similar analysis to the one given for 
the in-plane problem results in a second-order matrix equation. While 
a full scale treatment will not be presented, a few salient points which 
can be easily verified using the WKB one-term approximation are 
made. 

Table 2 Critical buckling speed ( X " 2 = U/a2) for small values of a 

WKB E q u a t i o n E q u a t i o n 
o Oireot (51) (52) 

In tegra t ion 

.05 30.428 29.773 28.284 

.075 20.067 20.385 18.856 

.1 15.149 15.713 14.142 

.15 11.109 11.092 9.428 

.2 8.686 8.839 7.071 

D KELLER-KELLER 
A DIRECT INTEGRATION 
— KUMAR, MYKLESTAD METHOD (1974) 

(X)"? SPIN PARAMETER (wl2(pA/EI)"2) 

Fig. 3 Variation in the first and second natural frequencies 

1 The buckling boundary present at a = 0.5 is due to the inability 
of the resulting exponential solutions (purely real arguments de
pending on the large parameter X) to satisfy the boundary conditions. 
This is similar to the transition point problem described in the fore
going, only in this event no solution varying linear with x is avail
able. 

2 The nature of the solution for the instability region 0.5 < a must 
be divided into two subregions to be handled correctly. 

(a) 0.5 < a < 1: In this range two turning points exist, the first 
at x = a and the second at x = 1. At x = a the tensile function / 
changes sign and causes a switch from oscillatory to exponential be
havior, very similar to the behavior of the Airy function at x = 0. This 
type of change can be easily accommodated by the WKB method 
working with appropriately described beam sections and taking care 
to match the values at the turning point. The turning point at the 
boundary, x = 1, has not been a source of difficulty in any of the 
analysis thus far made. 

(b) 1 < a: For this region, the beam is entirely under compres
sion, and the two oscillatory solutions which result describe the nature 
of the buckling problem for the first and subsequent higher modes. 

4.3 Outward Oriented Beam—Frequency Modification 
Study. The effect of rotation speed on the outward oriented beam 
natural frequencies has been a major subject of interest beginning with 
the design features x)f an airplane propeller blade. Early studies 
usually relied on the use of Rayleigh energy principles [12,13] to in
vestigate the bending frequencies of vibration for a given spin rate. 
As pointed out by Lo and Renbauger [14] a law of similarity exists 
which relates the natural frequency of vibrations occurring in any 
plane to that of another. The form this takes with regard to the in-
plane or out-of-plane studies is as follows: 

P out-of-plane P in-plane ' ^0 (53) 

Recent studies by Kumar [15] using the Myklestad method and by 
Nguyen and Hughes [16] and Peters [17] employing perturbation 
techniques are available for evaluating the calculations obtained 
herein. 

Plotted in Fig. 3 are the frequencies for the first two modes found 
using the convergent expansion method and the iterative integral 
evaluation. Direct integration is seen to reproduce data extracted from 
Kumar's study for both the first and second modes as well as the third 
mode (not shown). For comparison of the three solutions, values are 
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Table 3 Modal frequencies (J; 1 / 2 ) for moderate spin rales a 
-4 .0 

• 0.0, -1.0, 

- a 

MODE 

0 .0 
1.0 
4 . 0 

MODE 
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I n t e g r a t i o n 
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13 .21 
2 4 . 9 8 

32 .04 
4 3 . 2 4 
4 8 . 8 8 

7 4 . 2 3 
8 8 . 9 3 
9 6 . 6 2 

135 .41 
153 .62 
162 .38 

UKB 

C l - t e r m ) 

-
-
-

2 9 . 5 7 
3 8 . 9 0 
4 3 . 1 3 

7 3 . 0 7 
8 7 . 5 9 
9 3 . 7 2 

134 .05 
150 .72 
159 .84 

K e l l e r -
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7 3 . 1 3 
8 7 . 2 6 
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given in Table 3 along with data provided by Hodges [18] obtained 
by numerical integration to yield five place accuracy, rounded here 
to two decimal places. A dash in the tables signifies when a method 
is unable to give any useful information for a particular choice of 
parameters; (NA) denotes values were not available for inclusion in 
the table. 

This analysis is valid also at higher rotation speeds. Fig. 4 presents 
data determined by WKB-direct integration and curves given by 
Nguyen and Hughes for zero hub radius (a = 0.). Good agreement is 
achieved for Modes II or higher, using either the Keller-Keller (not 
shown) or WKB-direct integration (see Table 4). At higher spin rates, 
an increased number of iterations are required for convergence. It
erations are necessary for the determination of the first two modes; 
the WKB 1st approximation is sufficient for obtaining information 
for the third mode and above even at the higher spin rates. 

5 Conclusion 
It has been proposed that the WKB perturbation method would 

be a useful analytical technique in conjunction with other numerical 
methods for the complete investigation of a problem typical of solid 
mechanics. From the results produced herein, it is found that the 
WKB method along with some means for obtaining successive cor
rections, such as the Keller-Keller or WKB-direct integration, provide 
all the desired information over the full range of parameter variation. 
The simplicity, accuracy, and low computer costs afforded by this 
method, especially when applied to the generation of higher modes, 
should not be ignored in the analysis of problems in solid me
chanics. 
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Vibrations of Rectangular Plates 
With Nonuniform Elastic 
Edge Supports 
Two methods are introduced for the solution of free vibration problems of rectangular 
plates having nonuniform, elastic edge constraints, a class of problems having no previous 
solutions in the literature. One method uses exact solutions to the governing differential 
equation of motion, and the other is an extension of the Ritz method. Numerical results 
are presented for problems having parabolically varying rotational constraints. 

Introduction 
There is a wealth of literature dealing with the free vibrations of 

elastic, rectangular plates. Indeed, various summaries [1-4] identify 
at least 500 references, about half of which deal with plates governed 
by the classical differential equation 

DV'w + p 
b2w 

• 0 (1) 

that is, plates which are isotropic, homogeneous, thin, uniform 
thickness, which are not subjected to in-plane forces or surrounding 
fluids, and which undergo small amplitude vibrations. 

The vast majority of the aforementioned references deal with the 
classical boundary conditions representing clamped, simply supported 
or free edges, and a much smaller number can be found which treat 
edges which are elastically restrained against translation and/or 
rotation. A notable early effort was made by Lundquist and Stowell 
[5], who studied the problem of buckling of simply supported rec
tangular plates having two opposite edges elastically restrained 
against rotation, and obtained extensive numerical results which, by 
analogy, can be directly utilized in the vibration problem. Other rel
atively early works dealing with the vibrations of elastically supported, 
rectangular plates include those by Das [6], Carmichael [7], Joga-Rao 
and Kantham [8], Chulay [9], Stokey, Zorowski, and Appl [10], and 
Hoppmann and Greenspon [11]. More recently the effects of elastic 
constraints upon the free vibrations of rectangular plates have been 
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extensively studied by Laura, et al. [12-17], as well as by others 
[18-20]. 

However, all of the foregoing references consider only elastic con
straints which are uniform along a given boundary. Elastic constraints 
represent stiffness coupling with surrounding support structure and, 
in practical application, the stiffness of such surrounding structure 
along the common boundary will not be constant, but will vary from 
point to point. Indeed, the variation in stiffness of the support 
structure is often known, either from experimental tests or from other 
numerical evaluations, particularly finite-element analyses. 

Recently, the present authors [21] demonstrated how one can solve 
the vibration problem for nonuniform elastic translational and/or 
rotational constraints in the case of a circular plate. The method 
utilized the exact, classical solution of the differential equation in 
polar coordinates expressed in Bessel functions, and expressed the 
arbitrarily varying spring coefficients in terms of Fourier series. The 
procedure was subsequently utilized by Narita and Leissa [22,23] to 
analyze the vibrations of simply supported and free circular plates 
having uniform elastic constraints along part of an edge. 

In the present work the free vibrations of rectangular plates having 
nonuniform elastic constraints are studied. Two methods for dealing 
with such problems are demonstrated. The first, utilizing exact so
lutions to equation (1) in rectangular coordinates, treats problems 
having two opposite edges simply supported. The second procedure 
shows how the well known Ritz [24] method can be applied to a more 
general class of problems. Numerical results are obtained in both 
instances for the case when two edges have parabolically varying ro
tational springs, and are compared with each other and with other 
results in certain limiting cases. 

Exact Solutions 
The classical governing differential equation of transverse motion 

for a plate is given by equation (1). Exact solutions for equation (1) 
in rectangular coordinates may be taken as (cf., ref. [1, p. 45]) 

"K*, y, t) = W(x, y) sin <x>t (2) 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 891 
Copyright © 1980 by ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s.s. 

Elast ic Support 

1 a 

b 1 S.S. 

Elastic Support 

Fig. 1 Rectangular plate, simply supported on two opposite edges, elastically 
supported (translational and rotational) on the others 

K„x ( a - x ) 

fjjYjfYYjjjjT 
Fig. 2 Simply supported plate with rotational springs of parabolically varying 
stiffness along two opposite sides 

W(x,y)= E [Am s i n \ J k 2 - a m
2 y + Bm c o s \ / k 2 - a m

2 y 

+ Cm sinh \/k2+am
2y + Dm cosh \/k2+am

2y] sin amx (3) 

where 

am = mir/a (m = 1, 2 . . . ) 

k2=wVp/D 

k2 -am
2>0 (4) 

If k2 — am
2 < 0, then sin \lh2—am

2y and cos y/h2—am
2y must be 

replaced by sinh V ' a m
2 - k 2 y and cosh \/am

2-k2y. 
Consider now a rectangular plate having dimensions a X 6, simply 

supported along the boundaries x = 0 and x = a, and elastically 
supported along y = 0 and y = 6, as shown in Fig. 1. It is well known, 
and easily shown, that the classic solution of Voigt [25] given previ
ously satisfies the boundary conditions at x = 0, a exactly. The elastic 
support conditions on the other two edges are (cf., [1, p. 114]): 

dW 
My(x, 0) = - K i — (x, 0) (5a) -Ki — ( * , 0 ) 

dy 

dW 
My(x,b) = K2 (x,6) 

dy 

Vy(x, 0) = K3 W(x, 0) 

Vy(x, b) = -K4W(x,b) 

(56) 

(5c) 

(5d) 

where now the translational and rotational spring coefficients K\,..., 
K4 are not necessarily constants, but in general are functions of x; that 
is, nonuniform. The bending moment and edge reaction are, as usual, 
given by 

/d 2 W d2W\ 

\ dy2 dx21 

d „ d2W 
~D—V2W-D(l-u) — (66) 

dy dx2dy 

My 

Q y + ^ -
dx 

Now expand each Kt into a Fourier cosine series. For example, 

Ki(x) = E Qn cos anx (an = rnr/a) 
n=0 

where 

2 /"• 

a Jo 
K\(x) cos anxdx, ao 

1 ra 

a Jo 
K1(x)dx 

(7) 

(8) 

and similarly for K% K& and K4. Substituting equations (3), (6a), and 
(7) into equation (5a) yields 

- f l E | A m ' 0 + B m [-(k2 - am
2) - uam

2] 
m-l 

+ Cm-0 + Dm [+(k2 + <xm
2) - vam

2]} sin amx 

E an cos anx E \Am \/k2-am
2 - Bm • 0 

n=0 Jm=l 

+ Cm y/k2 + am
2 + Dm • 0) sin amx (9) 

(ConJ.) 

The products of two infinite sums, as seen on the right-hand-side 
of equation (9) can be reduced to a single infinite sum by utilizing the 
identity 

sin am*-cos amx = \ sin (am — an)x + \ sin (am + an)x (10) 

Repeating this procedure for equations (56), (5c), and (5d) and 
equating coefficients of like terms sin amx in the resulting four 
equations yields a four fold infinite set of homogeneous equations in 
Am, • • •, Dm. The eigenvalues, or nondimensional frequency param
eters, (ka)2 = wa2 Vp/D are determined by setting the determinant 
of the coefficient matrix equal to zero. Convergent solutions are de
termined to any desired degree of accuracy by successive truncation 
of the infinite determinant into a set of determinants or order 4p (p 
= 1,2, . . . ). Eigenfunctions are obtained, in the usual manner, by 
back-substitution of the eigenvalues to determine the amplitude ratios 
Bm/Am, Cm/Am, and Dm/Am. 

E x a m p l e 1: S i m p l y S u p p o r t e d P l a t e W i t h S y m m e t r i c , 
N o n u n i f o r m , R o t a t i o n a l Cons tra in t s 

To demonstrate the solution procedure previously described, 
consider the rectangular plate simply supported along all four edges, 
restrained by nonuniform rotational springs of parabolically varying 
stiffness coefficient along two opposite edges (see Fig. 2). Specifically, 
take 

K1 = K2 = Kax(a-x) (11) 

where Ko is a constant, which yields a problem having twofold sym
metry. A new choice of coordinate origin is shown in Fig. 2 to take 
advantage of the symmetry. 

The problem uncouples into four symmetry classes, corresponding 
to vibration modes which are either symmetric or antisymmetric with 
respect to the two symmetry axes of the problem. We will restrict 
ourselves to finding the fundamental (i.e., lowest) frequency, which 
is associated with the first doubly symmetric mode. Therefore, 
Am = Cm = 0, and m are odd integers in equation (3), and the two 
boundary conditions to be satisfied are 

W(x, 6/2) = 0 

Z>W 
My(x,b/2) = K2 (x, 6/2) 

dy 

(12a) 

(126) 

(9) 

Substituting equation (3) into (12a) permits exact satisfaction of 
the latter, provided that (for k2 > am

2) 

Bm cos y/k2 -am
2-- + Dm cosh y/k2 + am

2 • - = 0 (13) 
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hence 

W(x,y)= £ Bn 
m=l 

cos Vfe2 - ctm
2y 

6< 
\\/k2- am

2--

^cosh Vfe2 + a n 2 • / 

cosh V P + O m y sin a m y (14) 

The last boundary condition is satisified by expanding K2(x) into 
a Fourier cosine series corresponding to the parabolic variation given 
in equation (11) and substituting it and equation (14) into (126). The 
resulting characteristic determinant of infinite order will be 

where 

Ma 

| M ( , | = 0 

Mu = 2E2i-1 + (2 ao1 - aU-J)F2;-i 

lam-j)1 - a2(i+j-i)1]F2j-i (i > j) 

Q20-1)1 - a2m +j- l)]F2J-i (i < j) 

and where, for (ka)2 — m2ir2 > 0, 

Em = 2(ka)2 cos 

X 

— ^J (ka)2 - mW 
2 

(15) 

(16a) 

(166) 

(17a) 

7777777777 

K ' h 

L 
r nhini 

Fm = V ( f e a ) 2 - m27r2 sin V(feaF 

+ V(fea)2 + mz ir2cos • V ( £ a ) 2 - m % 2 

•tanh -VJkaY+mV 

and for (fta)2 — m27r2 < 0, 

£ m = -2(fea)2cosh 

[X 

• ̂ m2ir2 — (ka)2 

(176) 

(18a) 

Fm = V m 2 x 2 - (fea)2 sinh -\/mV - (ka)2 

• \lm2v2 + (fea)2 cosh 

Xtanh 

-\/m2ir2 — (ka)2 

2 

-y/mV + (ka)'1 (186) 

with 

, 6 , K 0 a 3 , # 0 a 3 , 
X = ~' a° ^ 7 T ' a" ^ i ^ ( n = 2 , 4 . . . ) . 

a 6D n2ir2D 

Ritz So lu t ions 
Consider next, the rectangular plate simply supported all around, 

restrained by uniform rotational springs along the edges x = ±a/2 and 
nonuniform rotational springs along y = ±6/2 (see Fig. 3). The pre
vious procedure, utilizing exact solutions, is not suitable for this 
problem, but the method of Ritz [24] can be extended. 

Assuming simple harmonic motion in time as before (equation (2)), 
the functional to be minimized is 

/(W0 = V m a x - T m a x 

(19) 

where Vmax> the maximum potential energy, consists of the first area 
integral and the line integral around the boundary, m(s) is the 

Fig. 3 Simply supported plate with uniform ( * i , k2) and nonuniform (Ki, K2) 
rotational springs 

boundary value of the edge moment, and Tm a x . the maximum kinetic 
energy, is represented by the last area integral. It is generally known 
that the strain energy, given by the first integral, reduces to the rel
atively simple form given above for polygonal plates having zero 
boundary displacement. 

The geometric boundary conditions, which must be satisfied exactly 
when using the method, are 

W(-ah y) = W(ai, y) = W(x, - bx) = W(x, 6i) = 0 (20) 

where a\ = a/2 and 6i = 6/2. The boundary conditions of elastic, ro
tational constraint are given by 

dW 
fti—=-(-ai,y) = D 

dx 

dW 
k2—— (a1:y) = -D 

dx 

dW 
Ki(x) — (x,-b1)=D 

dW 

dy 

d2W, _, d2W, 
-—T (-ai. y) + v - r r (-"I. y) 
dxz dy z 

d2W, _N d2Wr _ ' 
——- ( a b y) + v —— (oi, y) 
dxz dyz 

d2W d2W,_ , , 
—— (x, - 6i) + v —— (x, - 6i) 
i)yl dxz 

d2w,_ L , d2w,_ L : 
—— (x, 6i) + v ——- (x, 6X) 
dy2 dxz 

(21a) 

(216) 

(21c) 

(21d) 

Equations (21) need not be satisfied by the choice of trial functions, 
W(x, y), but if they can be, the resulting solution will usually be im
proved. 

At this point nondimensional variables will be adopted; that is, 

x v 
*=- . y = f (22) 

ai 6i 

, A two-term trial function will be taken as 

W(x, y) = AiX1(x)Yl(y) + A2X2(x)Y2(y) (23) 

Xi(x) = etux4 + a3ix
3 + a2\X

2 + a\\x + 1 (24a) 

X2(x) = ae2x
6 + a52x

6 + a 4 2 * 4 + a32x
3 + x2 (246) 

Yi(y) = /34iy4 + foiy3 + / W 2 + Pitf + l (24c) 

Y2(y) = /362y6 + /352y6 + i342y4 + (332y3 + y 2 (24d) 

where Ai, A2 and the ay and /3y are arbitrary constants. The ay can 
be chosen in such a manner that six boundary condition equations 
(20), (21a) and (216) are satisfied exactly. Performing the necessary 
substitutions yields 

2(fei' - k2>) 
an : 

fei'fe2
/ + 4(fei' + fe2') + 15 

(25) 
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Table 1 Frequency parameters u>a2 \fp~ID for simply supported plates having parabolicaliy varying rotational contraints on two 
opposite edges (N = order of determinant, using exact solutions) 

«. 
6 

K0a 
D l 2 3 

N 

4 12 

Ritz 
method 

0 (all sides simply supported, [1]) 

0.1 19.757 

1 19.915 

10 21.236 21.235 

100 25.802 25.799 

°0 (two opposite sides clamped, [26]) 

{11TL = 19.739) 

19.757 

19.915 

21.235 

25.799 

(28.951) 

19.765 

20.114 

24.068 

28.193 

0.5 

0 (all sides S.S., [1]) 

0.1 12.341 

1 12.372 

10 12.621 

100 13.320 13.320 13.320 13.319 

•c (two opposite sides clamped, [27]) 

(,1.25 ff = 12.337) 

12.341 12.344 

12.372 12.401 

12.621 12.975 

13.319 13.598 

(13.688) 

0 (all sides S.S., [1]) 

0.1 49.405 

.1 49.914 

10 54.388 54.223 

100 74.241 74.223 

oo (two opposite sides clamped, [27]) 

(5JT = 49.348) 

49.405 

49.914 

54.387 

74.223 

(95.256) 

49.428 

50.981 

71.545 

91.890 

where 

"21 = , , , ., ( a n - 2) 

" 3 1 = 

" 4 i = 

0:32 = 

"42 = " 

Kl' + 5 

- a n 

- 1 - " 2 1 

2(fei/ - M) 

&i'fe2' + 8(fei' + k2 ') + 63 

fei' + 7 

« i ' + 9 

" 5 1 = - " 3 2 

" 6 2 = - 1 - tt42 

("32 ~ 2) 

« l ' = 
D D 

(25) 
(Cont.) 

The fty can be chosen so as to approximate the remaining two 
boundary condition equations (21c) and (21d). Two possible proce
dures are as follows: 

1 Boundary collocation at selected points along the edges y = 
±bi. 

2 Setting the integrals of equations (21c) and (21d), integrated 
along the edges y = ±61, equal to zero. 

The approximate eigenvalues (and nondimensional frequencies) 
and eigenfunctions (and amplitude ratios A2M1) are determined from 
the Ritz minimizing equations 

dI(W) 
0 (i = 1, 2) (26) 

E x a m p l e 2: S i m p l y S u p p o r t e d P l a t e W i t h B o t h 
U n i f o r m and N o n u n i f o r m , R o t a t i o n a l Cons tra in t s 

Let the uniform spring coefficients along the edges x = ±a i remain 

as k\ and hi, and choosing the nonuniform coefficients as in the pre
vious example to vary parabolicaliy, that is, in terms of the present 
coordinates, 

K1(x)=K2(x)=K0(al*-x*) (27) 

where, again, Ko is a constant. Satisfying boundary conditions (21c) 
and (21d) exactly at the points (x, y) = (0, ±61) determines the ft;-

where 

821 = - 2 ^ ^ , 
K 0 + 5 ' 

ft - 9E°±1 
O42 ^ = , 

Ko + 9 
6si = 011 = 062 = 

Ko - — ~ — , 

34i = - 1 - 02 

062 = 

?32 = 0 

- 1 - . 

,bi 
(28) 

At this point all the constants save Ai and Ai in equations (23) and 
(24) are determined. Substituting equations (23) into (26) yields the 
a characteristic determinant in the form 

= 0 (29) 
( i n ~ flVu) (L12 ~ fiVia) 

symmetric (L22 - fi2 ^13) 

where £2 is the nondimensional frequency parameter given by 

fi = u>a2 VpTD (30) 

and Lij and Jy are simple polynomials involving X, the a;;- and the 0y 
and are given in detail in reference [28]. 

N u m e r i c a l R e s u l t s and D i s c u s s i o n 
The problem of the simply supported rectangular plate having 

parabolicaliy varying rotational constraints on two opposite edges was 
solved using both the exact solutions to the differential equation and 
the Ritz method. In the latter approach the present problem is a 
special case when «i = «2 = 0in the preceding two sections. 
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Table 2 Frequency parameters for plates having two opposite edges clamped 
and parabolically varying rotational constraints on the simply supported edges 
(Ritz method) 

a. 
6 

1 

0 . 5 

* from [26] 
** from [27] 

K0a
3 

O 

0 

0 . 1 

1-1
 

10 

100 

oO 

0 

0 . 1 

1 

10 

100 

oo 

» jiMmiinminuMfc 

( 2 8 . 9 5 1 ) * 

2 8 . 9 6 9 

29 .219 

32 .179 

35 .379 

( 3 5 . 9 9 2 ) * 

( 2 3 . 8 1 4 ) * * 

23 .844 

23 .876 

24 .136 

2 4 . 5 6 1 

(24 .56 ) * * 

In Table 1 numerical results for the nondimensional frequency 
parameter a>a2 V/o/D a r e presented for three aspect ratios—a/b = 
1,0.5, and 2. The nondimensional spring stiffness parameter Kna3/D 
is also varied between its limiting values of 0 and °>. The former limit 
corresponds to the problem of all sides simply supported, the most 
simple, classic case having an exact solution. The latter limit yields 
two opposite sides clamped, also having a relatively well-known exact 
solution. 

The method using exact solutions is seen to converge rapidly as the 
order of the truncated determinant is increased, yielding at least five 
significant figure accuracy for the frequencies from second-order 
determinants. The second-order determinant (29) arising from the 
Ritz method is seen to yield less accurate results, with accuracy de
creasing as either Koa3/D or a/b increases. The Ritz method yields 
upper bounds on the frequencies, as it is to be expected. The two 
procedures discussed previously for determining the constants /3;;-
yielded virtually identical results when the boundary points (3c, y) = 
(0, ±6/2) (see Fig. 3) are used for the collocation. The frequency pa
rameters are independent of Poisson's ratio. 

Table 2 displays numerical results for the case when k\ = ki= °>; 
that is, a rectangular plate having its edges x - ±a/2 clamped, while 
the remaining two are simply supported and have parabolically 
varying rotational constraints. The results are obtained by the Ritz 
method and, again, do not depend upon Poisson's ratio. Comparisons 
are once again made with limiting cases of K$a3/D = 0 (simply sup
ported edges only) and •= (all four edges fully clamped) for which re
sults are available in the literature cited. 
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The Steady-State Response of a 
Rotating Damped Disk of Variable 
Thickness 
The stress distribution and steady-state response of a rotating damped annular disk of 
variable thickness are determined by means of the matrix method. The equation of equi
librium and the equations for the flexural vibration of the rotating disk are written as a 
respective coupled set of first-order differential equations by use of the matrices of the 
disk. The elements of the matrices are calculated by numerical integration of the equa
tions, and the stress components and the driving-point impedance and force transmissibi-
lity of the disk are obtained by using these elements. The method is applied to free-
clamped rotating disks with linearly, exponentially, and hyperbolically varying thickness 
driven by a harmonic force at the free outer edge, and the effects of the angular velocity 
and the variable thickness are studied. 

Introduction 
In the past, failure of rotating disk wheels due to flexural vibration 

has frequently occurred in rotodynamic machinery such as steam 
turbines and gas turbines. In 1924, Campbell [1] studied vibration 
problems of steam turbine disk wheels and recommended some pro
tective measures. Lamb and Southwell [2], and many other authors 
[3-6] analyzed the flexural vibrations of rotating uniform disks the
oretically. For rotating nonuniform disks, Ehrich [7] analyzed the 
vibration modes by a matrix method, and Kirkhope and Wilson [8], 
and Kennedy and Gorman [9] studied nonuniform disks subjected 
to centrifugal and thermal stresses by the finite-element method. The 
steady-state response of damped circular plates has been extensively 
studied by Snowdon [ 10,11]. However, all of these studies have been 
based upon the classical plate theory in which the rotatory inertia and 
shear deformation of the plate are not taken into account. 

This paper applies the matrix method to an analysis of the stress 
distribution and the steady-state vibration of a rotating damped disk 
of variable thickness in response to a sinusoidally varying force. The 
Mindlin theory [12,13] is adopted for the analysis of the vibration of 
the disk, in which both of the rotatory inertia and shear deformation 
are taken into consideration. The radial displacement and the cen
trifugal stress are written in a matrix differential equation and the 
equations of flexural vibration of the rotating disk are expressed as 
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a coupled set of first-order differential equations by use of the transfer 
matrix. The elements of the matrices are determined by numerical 
integration of the equations. From the matrices thus obtained and 
the boundary conditions, the centrifugal stress components, the 
driving-point impedance, and force transmissibility are determined 
numerically for free-clamped disks excited along the free outer edge. 
In this paper, Young's modulus and the shear modulus of internally 
damped disks are assumed to be complex quantities. This assumption 
has been justified by the results of experimental measurement 
[14]. 

By the application of the present method, the centrifugal stress 
distribution and the steady-state response of rotating annular disks 
of linearly, exponentially, and hyperbolically varying thickness are 
calculated numerically, and the effects of the angular velocity and the 
variable thickness on the vibration of the disks are discussed. 

Centrifugal Stress Distribution of a Rotating Annular 
Disk 

When an annular disk rotates at constant velocity fi, the equation 
of equilibrium of the forces in radial direction can be expressed as 

d 
— (hror*) - hag* + pQ2hr2 = 0 (1) 
dr 

where p is the mass per unit volume, h is the thickness, and the polar 
coordinates (r, 6) are taken in the neutral surface of the disk. The 
radial and circumferential stress components are given by 

E Idu* 

.dr 

du* 

-+ v-

<T0* 

l - v 2 \ 

E I --
o\v + " 

1 — v2 \ dr 

(2) 
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in t e rms of radia l d i sp lacement it*, where E is Young 's modulus , and 
v is Po i s son ' s ra t io . W h e n t h e inner edge (r = a) is c lamped and t h e 
ou t e r edge (r = b) is free, t h e b o u n d a r y condi t ions are wr i t t en as 

u* = 0 a t 

o>* = 0 a t 
(3) 

U p o n e l imina t ing o$* from (1) and (2), t h e following ma t r ix differ

en t i a l e q u a t i o n is der ived: 

v 

V 

1 l~i>2 

.90 V2 

9o 0 

A 2 J? J 
(4) 

where the s y m b o l ' denotes differentiation with respect to ri, and where 

t h e following d imens ion less variables are in t roduced: 

• ? < -
1 lhaV 

Qo = T2\T 
lph0b' 

D0-
12(1 - v2). 

a n d 

u = — , (o>, (To) = 
bhl 
D0 

( < 7 r * , (Tf l* 

(5) 

(6) 

w h e r e ho is t h e th i ckness a t t h e inner edge. 
Since t h e exac t so lu t ion of (4) canno t usual ly be ob ta ined in a 

conven ien t form for a nonun i fo rm disk, t h e equa t ion has to be in te 
gra ted numerica l ly on [/3,1] with u = 0 and an appropr ia te ly assumed 
s t a r t i ng va lue crr(/3) for the radia l s t ress a t t h e c lamped inner edge. 
T h e numer i ca l in tegra t ion should be r epea t ed unt i l t he rad ia l s t ress 
o> (1) becomes zero in value a t t h e free outer edge. 

T h e e q u a t i o n s governing ax isymmetr ica l v ibra t ions of a ro t a t i ng 
disk sub jec ted to centr i fugal s t resses can be wr i t t en as 

+ -dr 

dMr* 

dr - + -

r 

M* 

1 d , 
+ IrhtTr 

r dr' 

dW*\ „ 

•Mo* 
- Qr* + C, 

dW* 

dt 

d\pr* 1 

: ph 
d2W* 

dt 12 
ph'c 

dt2 

d2i/v* 

dt2 (V) 

where C\ and C2 are t h e viscous damping coefficients wi th respect to 
t h e t rans la t iona l a n d ro ta t ional mot ion of the disk, respectively. T h e 
c o m p o n e n t s of t h e m o m e n t a n d shear ing force are given by 

M* :M^ 
dr 

+ v 
tr' 

M,f D\v 
di/v* i/v* 

dr 

Qr* = KGhUr* + 
dW 

dr 
(8) 

in t e rms of the t ransverse deflection W* and t h e angular ro ta t ion \pr * 

of t h e normal to t h e neu t r a l surface in radial direction. T h e quan t i t y 
K is the shear coefficients which assumes usually the value 7T2/12, and 
D is t h e f lexural r igidi ty of in terna l ly d a m p e d disk expressed by 

Eh3 

D-
12(1 - j/2) 

(9) 

Young ' s m o d u l u s and t h e shear m o d u l u s of t h e in terna l ly d a m p e d 
disk are cons idered to be t h e complex quan t i t i e s 

E = E(l+j5E) G = G ( 1 + ; 5 G ) (10) 

where E a n d G express t h e real p a r t s of E a n d G, respect ively, a n d 

b~E a n d 8Q a re c o n s t a n t s r ep resen t ing t h e ra t ios of t h e imaginary t o 

t h e real p a r t s of t h e m a t a n y frequencies co. T h e s t eady-s t a t e deflec

t ion , s lope, bend ing m o m e n t , and shear ing force of t h e disk dr iven 

by a s inusoidal ly vary ing force F* a t t h e outer edge are wr i t t en as 

Do, 
(Mr*, Mg*)=~ (Mr, M0)e'" 

b 

(11) 

i/-r* = \pT^at; W* = bWei" 4 

D o , 
p * -Fe>" 

where 

V " D 0 "' T V ph0b -t 

(11) 

(Cont.) 

(12) 

a n d t h e var iables Mr, Mo, Qr, . . . w i t h o u t t h e as ter isk * are t h e re
spective dimensionless quant i t ies . Upon eliminating Me* from (7) and 
(8), t h e Mind l in equa t ions can be wr i t t en as a ma t r ix differential 
e q u a t i o n as follows: 

d 

dt) 
\Z(V)\ = {U(V)}{Z(V)\ (13) 

by us ing t h e s t a t e vector |Z(?j)| = \MrQrtprW}T and the coefficient 
m a t r i x [{/(?/)] wi th the e l emen t s 

Uu = 

u22 = 

1 - v 

V 

(1+JSE. 

C / l 2 = l 

1-v2 

T 
- < ? o X 2 d 3 - 2 i f 2 X , Uu=0, 

(TAI+JSG) 

(l+jSE)(l+jda + ko(Xr)d2' 

1 , , , o> , 1 +JSg) 
o"> + «o 1 1, 

1 + J5G + k0<Tr \ v t\ I 

a+j8G)d \ , 11-v d'\ 
Ui3 = ; {ar + 1 or 

1 + JOG + k0<Tr I \ V dj 

( X 2 d + 2 ; X f 1 ) ( l + ; 5 G ) 

l /ai = • 

Uu = - • 

1 

(l+jSE)d3 

l / « = 0, f/42 

1 + ; ' 5 G + k0<jr 

Uw. = 0, U33 = 

ko 

f/34 = 0, 

(l+j&G)d' 
I/« - 1 , Uu=0 (14) 

where f i , ^2, a n d ko a re t h e d imens ionless p a r a m e t e r s expressed as 

6 2 d „ C 2 

f i r2 2y/phoDo' • " 2y/ph0D0 

2go 
ko '• 

K(l - v) 
(15) 

A n a l y s i s b y U s e o f t h e T r a n s f e r M a t r i x 

Since t h e analytical solution of (13) cannot be obtained for rota t ing 

disk of var iab le th ickness , t h e t ransfer m a t r i x a p p r o a c h is a d o p t e d 

he re . In genera l , t h e s t a t e vector \Z(ri)) is expressed as 

\Z(v)\ = [T(u)]{Z(/S)| (16) 

by using t h e t ransfer ma t r ix [T(rf,] in radia l direction. F r o m (13) and 
(16), t h e following equa t ion is derived: 

d_ 

drj 
[T(V)] = luminn)] (17) 

For nonuniform disk, the mat r ix [T(t/)] is obta ined by integrating (17) 
numer ica l ly . S ince t h e m a t r i x [U(i])] a n d also t h e t ransfer m a t r i x 
[T()))] are complex quant i t ies , [T(r])] should be calculated numerically 
in p rac t ice by t h e equa t ion 

ci TR(V) 

dr) 177(7/) 

UR(V) l / / (u) 

-UM) UR{T))\ 

TR(7)) 

T/(IJ)J 
(18) 

which is ob ta ined by dividing t h e matr ices [[/(?))] and [T(t))} in to t h e 
rea l a n d imag ina ry p a r t s , respect ively. T h e mat r i ces [TR(T))\ a n d 
[ ^ / ( T / ) ] a re o b t a i n e d by in tegra t ing (18) numer ica l ly on [ft 77] u n d e r 
t h e ini t ial va lue . 
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([1]: unit matrix) 7W)1 = fl' 
TAP)] [o. 

In the case of a free-clamped annular disk, the boundary conditions 
are written as 

ypr=W=0 at t| = (3 

Mr = 0, Qr = F at v = 1 

by which (16) is written as 

(19) 

(20) 

Tn Tu 
T21 T22 

Tai T32 

T41 T42 
(i) 

MA 

Qr\ w 
(21) 

with only the elements of [T(TJ)] necessary for the calculation. By 
solving (21), unknown quantities \MrQr}TW) and {\prW}T(i) at both 
edges are obtained in the following form: 

and 

The steady-state responses of the disk are determined by (16), (22), 
and (23). The normalized driving-point impedance at the free outer 
edge is determined by 

Z(b) 

jwM 
\2W(l) Cd-ijdn 

(24) 

T V 
|0Q,(j8)| 

(25) 

N u m e r i c a l C a l c u l a t i o n s and D i s c u s s i o n s 
In this section, the present method is applied to free-clamped an

nular disks of variable thickness of the following three profiles: 
An Annular Disk of Linearly Varying Thickness. 

h = h0\l-\l 
hAIr — a 

ho)\b - a, 
(26) 

An Annular Disk of Exponentially Varying Thickness. 

h = h0(h1/h0y
,-a^b-a) (27) 

An Annular Disk of Hyperbolically Varying Thickness. 

h = M'7a)- ,0&<'(/,l/ , ,° , (28) 

and the axisymmetrical responses to a harmonic force are calculated 
numerically. Here, h i is the thickness at the outer edge. In the nu
merical calculations reported here, the transfer matrix is obtained 
by integrating (18) numerically by the Runge-Kutta-Gill method with 
step size 1/50, which assures sufficient accuracy in practice. For metals 
and nonmetals, the assumption that bg is nearly equal to &a in value 
through a broad frequency range is well justified from the results of 
experimental measurement [14]. Though the dynamic moduli and 
damping factors depend upon the frequencies for practical materials, 
it is assumed for the calculations presented here that 5E = 8a = 
constant for all frequencies. 

Figs. 1 shows the centrifugal stress distributions of free-clamped 
rotating disks of linearly and hyperbolically varying thickness. The 
disk olhi/ho = 1.0 is a uniform disk. The stress components become 

MT 

{Qr 
= 

\w 
T11 T „ 

T21 T22 

- 1 

(i) 

fol 
U'J 

+r 
W 

_ 
(1) 

T31 T32 

Tu 1 42 (1) 

Tu T\2 

[T21 •1 22 

- 1 

(l) 

0 

U' 

(22) 

(23) 

;p 

5 
& 

Fig. 1 Stress distribution of free-clamped rotating annular disks of variable 
thickness; (a) Radial stresses: (b) circumferential stresses; v = 0.3, /3 = 
0.2 

10 

where M is the mass of the whole disk. The transfer impedance Z(i\) S 
between the driving-point (the outer edge) and a concentric circle of j 10 
any radius is given by replacing W(l) of (24) with W(y\). The force | 
transmissibility of the disk at the clamped edge is expressed in the x 

simple form 

Fig.2(a) 

10J 

10' 

110 

1.0 

10" 

10 12 

Fig.2(/j) 

Fig. 2 Steady-state response of free-clamped rotating disks of variable 
thickness driven by a harmonic force at the free outer edge; (a) Normalized 
driving-point Impedance: (b) force transmissibility; c = 0.3, <5E = <5G = 0.01, 
fi = 0.2, h^ho = 0.5, A 2 = 1.0 
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LINEAR 

EXPONENTIAL 

HYPERBOLIC 

n=fi h/rv= 0-25 
Fig. 3 Profiles of annular disks 

10 12 

Fig.4(a) 

10 12 

Fig. 4(b) 

Fig. 4 Steady-state response of free-clamped rotating disks of exponentially 
varying thickness driven by a harmonic force at the free outer edge; (a) 
Normalized driving-point impedance: (6) force transmissibility; v = 0.3, <5E 

= Se = 0.01, (8 = 0.2, h0la = 0.05, /!,//!„ = 0.5 

Fig. 5(a) 

Fig. 5 Steady-state response of free-clamped rotating disks of linearly ta
pered thickness driven by a harmonic force at the free outer edge; (a) Nor
malized driving-point impedance: (b) force transmissibility; v = 0.3, /3 = 0.2, 
h0/a = 0.1, hi/hB = 0.5, A 2 = 1.0 

smaller, with a decrease of the ratio hjh^. As shown in Fig. 1(6), the 
maximum circumferential stress arises inside the disk and with a 
decrease of the ratio hi/ho, the location of the maximum stress shifts 
outward. The stress components of the disk of exponentially varying 
thickness are close to those of the disk of linearly varying thick
ness. 

Figs. 2(a) and (b) show the normalized driving-point impedance 
and force transmissibility, respectively, of free-clamped rotating disks 
of linearly, exponentially, and hyperbolically varying thickness which 
are driven by a harmonic force at the free outer edge. The distinctive 
resonant and antiresonant peaks appear on these response curves, 
among which the antiresonant peaks vanish on the transmissibility 
curves. Though the magnitude of response curves is not affected so 
much by the nature of the function expressing the profile variation, 
the resonant and antiresonant frequencies become smaller in that 
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Table 1 Resonant and antiresonant frequencies of free-clamped undamped 
disks of variable thickness; v = 0.3, /3 = 0.2, h-,/h0 = 0.5 

h,/b 

Profile 

Linear 

Exponential 

Hyperbolical 

\res. 

2.295 
5,166 
8.215 

11.781 

2.256 
5.056 
8.284 

11.541 

2.124 
4.829 
8.082 

11.066 

Agntip. 

4.248 
7.546 

10.888 
14.237 

4.183 
7.415 

10.686 
13.966 

4.037 
7.147 

10.274 
13.408 

Xyes. 

2.279 
5.011 
7.963 

10.697 

2.241 
4.916 
7.828 

10.537 

2.113 
4.714 
7.564 

10.220 

fiantir. 

4.150 
7.160 
9.974 

12.552 

4.093 
7.059 
9.838 

12.397 

3.962 
6.850 
9.560 

12.073 

\res. 

2.233 
4.661 
7.084 
9.160 

2.198 
4.591 
6.996 
9.068 

2.081 
4.438 
6.831 
8.893 

hjintir. 

3.913 
6.428 
8.606 

10.496 

3.872 
6.367 
8.532 

10.420 

3.774 
6.243 
8.385 

10.263 

(b) il2= 25 

hc/b 

\reB- Xantiv. Xree. \antir. A.res* Xant^r' 

Exponential 

Hyperbolically 

2.679 
5.431 
8.630 
11.910 

2.691 
5.344 
8.469 
11.680 

2.644 
5.174 
8.165 
11.233 

4.427 
7.712 

11.017 
14.342 

4.385 
7.594 
10.825 
14.079 

4.287 
7.362 

10.442 
13.544 

2.654 
5.271 
8.127 

10.818 

2.668 
5.198 
8.005 

10.667 

2.626 
5.052 
7.776 

10.376 

4.319 
7.316 

10.094 
12.649 

4.285 
7.228 
9.969 

12.501 

4.201 
7.053 
9.717 

12.198 

2.588 4.060 
4.915 6.575 
7.243 8.721 
9.278 10.587 

2.607 4.041 
4.865 6.525 
7.167 8.656 
9.195 10.518 

2.574 3.989 
4.765 6.431 
7.032 8.531 
9.042 10.380 

order for disks of linearly, exponentially, and hyperbolically varying 
thickness. The reason for this is that the disk of hyperbolically varying 
thickness is the thinnest, while the disk of linearly tapered thickness 
is the thickest among disks of the specified ratio hi/ho, as seen in Pig. 
3, and therefore the effects of an increase of the flexural rigidity is 
larger than that of the mass. 

Figs. 4 show the response curves of free-clamped disks of expo
nentially varying thickness, where the angular velocity is assigned as 
a parameter. The magnitude of the driving-point impedance and force 
transmissibility of lower frequencies is affected to some extent by the 
angular velocity. The resonant and antiresonant frequencies become 
larger with an increase of the velocity. 

Table 1 shows the resonant and antiresonant frequencies of rotating 
undamped disks of variable thickness. The frequencies of the disks 
of ho/b = 0 present those obtained by the classical theory. With an 
increase of the ratio ho/b, the frequencies become smaller by the effect 
of the rotatory inertia and shear deformation of the disk. 

Figs. 5 show the response curves of free-clamped disks of linearly 
tapered thickness, where the internal damping factors 5E and 8g are 
taken as a parameter. For the disks with large damping factors, the 
distinctive resonant and antiresonant behaviors vanish and the res
onant curves become flat through a broad frequency range. The force 
transmissibility become smaller than unity in value for the disk of OE 
= &G = 1.0, that indicates the possibility of vibration isolation. The 
effects of the external damping factors on the responses are essentially 
the same as those of the internal damping factors. 

Fig. 6 shows the transverse deflections at the first three resonances 
and antiresonances of free-clamped undamped disks of hyperbolically 
varying thickness driven at the free outer edge. In general, the de
flections of the disks are infinite at the resonance, and therefore these 
figures show the vibration modes without presenting the resonant 

(d) (b) 
Fig. 6 Transverse deflections of rotating undamped disks of hyperbolically 
varying thickness; (a) Resonant modes: (b) antiresonant modes; v = 0.3, p 
= 0.2, /i0/a = 0.1, A2 = 25 

deflections. In Fig. 6, the deflections of the first mode are plotted to 
have a unit value at the free outer edge and those of other modes are 
also plotted as unity at the loop near the clamped edge where the 
maximum deflection arises. With a decrease of the ratio hi/ho, the 
deflections near the free edge become larger and the loops causing the 
maximum deflection shift to the free outer edge. The antiresonant 
deflections of these undamped disks are the same as those of the disks 
simply supported at the outer edge. 
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Vibrations of Solid Cylinders 
A series solution of the general three-dimensional equations of linear elasticity is devel
oped and used to find accurate natural frequencies for the vibrations of solid elastic cylin
ders with traction-free surfaces. The series solution is found to converge to accurate 
frequencies with the use of very few terms. Results are given for height-to-diameter ratios 
from zero to two and a frequency parameter oiR/Cs from zero to five and for modes of cir
cumferential order from zero to four. Comparisons of these analytical results with previ
ous experimental results shows excellent agreement. 

Introduction 
A three-dimensional series solution of the vibrations of a solid 

isotropic elastic circular cylinder with traction-free surfaces is de
veloped, and the natural frequencies are evaluated over a represen
tative range of the parameters. The solution includes both axisym
metric and nonaxisymmetric behavior and is evaluated over and be
yond the full range of parameters investigated experimentally by 
McMahon [1]. 

The problem of the vibrating cylinder (or rod) was first investigated 
in terms of the general elastic equations by Pochhammer in 1876 and 
independently by Chree in 1889. An account of this treatment can be 
found in Love [2], The Pochhammer-Chree solution is for an infinitely 
long circular rod which is traction-free on its circumferential 
boundary, but the solution does not permit traction-free ends. Many 
authors have considered approximate solutions which hold when the 
cylindrical solid approaches either a thin disk or a slender rod. These 
approximate solutions are discussed at length in McMahon's [1] 
paper, and he compares the various approximate solutions to his ex
perimental results. 

The solution for the axisymmetric vibrations of free cylinders has 
been presented by several authors. In 1962 McNiven and Perry [3] 
presented a solution based on approximate equations which take into 
account the coupling between longitudinal, axial shear, and radial 
modes of propagation in a rod of infinite length. In 1971 Rumerman 
and Raynor [4] developed frequency spectrum using the Rayleigh-Ritz 
procedure with displacement functions corresponding to pure radial 
and axial modes of the infinite cylinder. In 1972 Hutchinson [5] pre
sented a solution for this problem using the method used in this paper 
and in a 1967 paper [6] for a similar problem. Rumerman and Raynor 
compared their results with those of McNiven and Perry and with the 
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experimental results of McMahon. Their comparison showed good 
correlation with the experimental results of McMahon but differ with 
the results of McNiven and Perry. The results of Hutchinson compare 
in all significant aspects with the results of Rumerman and Raynor. 
A detailed comparison of the axisymmetric solution with the thick 
plate theory developed by Mindlin [7] was made in 1979 by Hutch
inson [8]. The axisymmetric case has therefore, been adequately 
treated in the literature and is included in this paper simply for 
completeness. 

With the exception of approximate solutions which treat the cyl
inder as either a slender rod or a thin plate, the only work on an ana
lytic solution for the nonaxisymmetric vibrations of finite-length free 
cylinders appears to be the 1975 paper by Rasband [9]. Rasband's 
work is an extension of Hutchinson's 1972 paper to the nonaxisym
metric case. Rasband's paper contains no numerical results; although, 
he mentions exploratory numerical computations in which a some
what larger number of terms is required for equivalent accuracy to 
Hutchinson's results. 

In this paper, an approach which is slightly different from Ras
band's and closer to the method in reference [5] is developed. The final 
form for numerical computation is much more concise than Rasband's 
and requires no more terms in each series than in reference [5]. Fur
ther, numerical results over the range of parameters investigated 
experimentally by McMahon [1] show complete agreement with the 
experimental results. 

The method of solution used in this paper has an interesting history 
in that it has apparently been rediscovered a number of times. 
Mathieu [10] first applied the method in 1890 to the in plane loading 
of rectangular plates. Taylor [11] applied the method in 1933 to the 
buckling of clamped rectangular plates. Tomotika [12] applied it in 
1936 to the vibrations of clamped rectangular plates (he did reference 
Taylor's work). Timoshenko [13] in 1938 applied it to the problem of 
transverse loading on a clamped rectangular plate, and in 1944 Pickett 
[14] applied the method to axial compression of circular cylinders. 
The method has been referred to as an "exact" infinite series solution 
by some authors (see, e.g., reference [4]), others because of the trun
cation error prefer to classify it as an approximate solution of the type 
where the differential equation is identically satisfied and the 
boundary conditions approximated. 
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Table 1 Solutions of elasticity equations. J„( ) denotes the nth-order Bessel function of the first kind. Primes denote differentiation 
with respect to the argument. ^„(x) = xJ„-i(x)IJ„(x) — (n+ 1). The dimensionless wave numbers a, d. and 8 and the frequency 
parameter <o are related by a 2 + 52 = «2(1 — 2c)/2(1 — v) and a2 + /82 = to2. Each column represents a solution form 
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The method of solution, as applied to this problem, involves com
bining exact solutions of the governing equations in three series which 
term by term satisfy three of the six boundary conditions. The re
maining three boundary conditions are satisfied by orthogonalization 
on the boundaries. This leads to an eigenvalue matrix the size of which 
is equal to the number of terms in each series. Because many of the 
submatrices in the eigenvalue matrix are diagonal, it can be condensed 
to the size of the number of the terms in one series without performing 
any matrix inversions. The frequencies at which the determinant of 
this condensed matrix is zero are the natural frequencies of the cyl
inder. The solution converges as more terms in the series are chosen, 
and it is shown that a very few terms produce excellent results for the 
lower frequencies. 

F o r m u l a t i o n 
All symbols used are dimensionless. The displacements u, v, and 

w and the coordinates r and z are made dimensionless by dividing by 
the radius. All stress quantities are made dimensionless by dividing 
by the shear modulus. The wave numbers a, /3, and 5 are made di
mensionless by multiplying by the radius. The time-dependence is 
removed by assuming that all displacements and stresses vary sinu-
soidally in phase at the same frequency. The frequency a> is made 
dimensionless by multiplying by the radius and dividing by the shear 
wave velocity. The thickness parameter h is the half height of the 
cylinder divided by the radius (i.e., the thickness-to-diameter 
ratio). 

The solution is formed from a sum of basic solutions which satisfy 
the governing differential equations. The basic solution forms were 
given by Love [2]. They are tabulated in Table 1 in a similar form to 
Rasband's [9] Table 1. The terms in braces in Table 1 represent two 
different solution forms. I will refer to the top term in the braces as 
the "even" solution and the bottom term as "odd" solution. This is 
an arbitrary choice in that for the upper term u, v, ar, ae, 02, and rre 
are even functions of z while and Tsz are odd functions of z. 

The basic solutions are grouped into three series in such a way that 
three of the boundary conditions are identically satisfied term by 
term. The remaining boundary conditions are then satisfied by or
thogonalization on the boundary. To some extent the choice of which 
boundary conditions to satisfy identically and which to satisfy by 

orthogonalization is arbitrary. For the method to work, however, one 
cannot satisfy all of the boundary conditions along one boundary 
identically. Thus it is not possible to satisfy the three boundary con
ditions on the cylindrical surface identically and the end conditions 
by orthogonalization or vice versa. 

The solution form for the radial displacement is 

u = Y,AiUAi + Y,BJUBJ + T.Ckuck (1) 

with similar expressions for the tangential displacement, v; the axial 
displacement, w; and the stresses, oy, erg, <r2, Tr«, TOZ, rrz with the same 
three series of constants A,-, Bj, and Ck-

The functions UAt, us,, and uch are shown as follows: 

uA = [Dl2dJn'(ir)-D2aPJ„'(M] 

UB '• 

UC-

D32a 
cos bz 

sin bz 
-D4aP 

cos (3z 

cos nd 

Jn'(ar) cos n8 

-D,~Jn(M+D62bJi'(br) 
r 

cos az 

sin az 
cos nd 

(2) 

(3) 

(4) 

The indices i, j , and k have been omitted for simplicity. They are 
implied on the terms u, D, a, ft and b in equations (2)-(4), respec
tively. 

The first term in the A series (multiplied by D{> is from column 1 
of Table 1 with a exchanged with b, and the second term in the A se
ries is from column 2 with a exchanged with ft. The first term in the 
B series is from column 1 and the second term from column 2. The 
first term in the C series is from column 3 with a exchanged with /3, 
and the second term is from column 1 with a exchanged for b. The 
other displacement and stress terms are formed in an identical 
manner. 

The introduction of six constants Di-D$ in equations (2)-(4) is 
merely a convenience. Since the u terms are multiplied by arbitrary 
constants, A,-, Bj, and Ck only three constants are strictly necessary. 
The boundary conditions only lead to the relationship between D1 

and T)% Ds and D4, and D5 and D6 . The convenience comes in being 
able to arbitrarily choose convenient forms for, say, D\, D3, and 
D5. 

The constants Di-De and the values of a are chosen so that the 
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following boundary conditions will be identically satisfied: 

Trz {r,6,h) = 0 (5) 

Tr2 (1, 8, z) = 0 (6) 

rsz (r, 6,h) = 0 (7) 

For the A and C series a is chosen as 

JP(x) = Jn'W/x"-1 

SN(x) = sin(x)/x 

(25) 

(26) 

where x is a dummy variable. The reason for these definitions is that 
for x imaginary the functions are still real-valued. That is 

i-ir; 

2i — 1 
n

 7!"< 

i = 0,1, 2,. 

i = 1, 2, 3,. 
«/u = • 2t - 1 . > (8) 

where the upper form is for the "even" solution and the lower form 
for the "odd" solution. This choice makes the A and C terms in rrz and 
Tfe identically zero at z = h. 

For the B series, a is chosen as 

JB(ix) = In(x)/x" 

JP(ix) = In'(x)/Xn-1 

SN{ix) = sinh (x)/x 

(27) 

(28) 

(29) 

a.Bj = zero's of Jn'(otBj) (9) 

This choice makes the B term in rrz identically zero at r = 1. 
The constants DI-DQ are chosen so that the B term in rrz and rgz 

is identically zero at z = h, and the A and C terms in rrz are identically 
zero at r = 1. The constants D\-D^ are 

where i is the modified Bessel function of the first kind. Further 

JB(0) = l/(2nn!) (30) 

JP(0) = l/[2»(n - 1)!] (31) 

SN(0) = 1 (32) 

The necessity for these definitions becomes evident from the re
lationship of the dimensionless wave numbers, a, /3, and 5 with the 
dimensionless frequency w. From Table 1, that relationship is 

a 2 + /32 = a)2 

a2 + 52 = co2 (1 - 2i>)/2(l • 
• » ) 

(33) 

(34) 

Di = PA(PA2 ~ au 2 ) </„'0?A)/COS ( a ^ K p ^ ) " 

0 2 = - 4 0 1 , 1 5 A < V ( 5 A ) / C 0 S (a-A/lMpA^A)" 

£ > 3 = ( « B 2 - f e 2 ) 

I>4 = 

/ • W a s ) 
sin (PBh)/l3B 

cos (f}Bh)/8B 

5B sin (5B / I) / /3B1 . . . , 

COS (0£rt) J 

0 6 = 45A=/n '(5A)/cOs(aAfe)((3A5A)n 

Z>6 = n Jn(fiA)cos (aAh)(PA5A)n 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

The values a are chosen (equations (8) or (9) and are positive-real; 
however, the /3 and 5 may be real or imaginary depending on the value 
of a). Note that /3 and 5 are the arguments of the functions JB, JP, and 
SN. 

In equations (21)-(23) the constants aA, fiA, and 8A have an implied 
subscript, i, and the constants as, (3B, and 5B have an implied sub
script, ;'. The same notation will be true for the subsequent equa
tions. 

Equation (17) is approximately satisfied by setting 

I oz(r, 6, h)rJn(<XBjr) dr = 0 (35) 

The three remaining boundary conditions to be satisfied by or
thogonality are 

where aBj is defined by equation (9). Performing the integration leads 
to the expression 

(16) 

(17) 

(18) 

(19) 

crr (1, 6, z) = 0 

crz (r, B,h) = 0 

Tre (1 , 6, Z) = 0 

Equation (16) is approximately satisfied by setting 

J** it a \ fcos °^ ' z l J o>(l, 6, z){ dz = 0 

o Isin aAiz 
where aAt is defined by equation (8). Performing this integration leads 
to the following form: 

NR 
<HAi + £ bijBj + Cid = 0; i = 1, 2, 3 , . . . NZ (20) 

where NR and NZ are the number of terms chosen in the series in the 
r and z-directions, respectively. The coefficients a;, by, and c; are as 
follows: 

ai = 2h- JP(PA)-JB(8A) • (ft*2 - aA
2) • [(n* - 1) 

+ (2aA
2 - a>2)/2 - fn(5A)} 

+ Ah • JP(8A) • J S ( / 3 A ) • « A 2 • I V - 1) - (3A2 - in(M] (21) 
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where 

aji=2JP(pA)-JP(bA) 
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Equation (18) is approximately satisfied by setting 

(38) 

(39) 

Jo 
Tre(l,8,z) 

AiZ\dz=0 
AiZ} 

(40) cos aAii 

sin aAi; 

where <XAi is defined by equation (8). Performing the integration leads 
to the expression 

aiAi + £ BijBj + did = 0; 1,2,3...NZ (41) 

+ 2 ( f i
2 - a B 2 ) - ^ B 2 / ( / 3 B 2 - a A 2 ) ] 

(8Bh)* SN(8Bh) SN(0Bh1l t (22) 
-cos (fah) cos (/3B/i) J 

c; = 2/m • JB(M [-2JP{8A)tn(PA) 

+ J B ( 5 A ) [(n2 - 1) + ( 2 « A 2 - o)2)/2 - ^ ( 5 A ) ] ] (23) 

where the functions JB, JP, and SN are defined as follows: 

JB(x) = Jn(x)/xn (24) 

where 

&i = - 2hn-JP(M-JB(8A)-tn(8A) • (/3A2 - « A 2 ) 

- 4/m • J P ( 5 A ) - J B ( P A ) - K(PA) • « A 2 (42) 

fiy = 4n[(a B
2 - / 3 B 2 ) / ( 5 B 2 - <*A2) + 2/3B 2 / ( /3B 2 - « A 2 ) ] 

( 5 B / I ) 2 SiV(5B/t) SN(PBh)\ 

-cos (5 B / J ) COS ((3B/I) 
(43) 
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iLflJ lb] Lcj" 

[a] L&J [c] 

LdJ [6] Laj 
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[\c\\ 
• = • 0 
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i = 2h- J S ( ( 3 A ) [ 2 J P ( S A ) [ ( « 2 - 1) - f t * 7 2 - MP A)] 

- n 2 - J B ( 5 A ) - ^ „ ( 5 A ) ] (44) 

Arranging equations (20), (36), and (41) in matrix form gives 

(45) 

The notation, LJ, indicates a diagonal matrix. Because of the diagonal 
matrices, a condensation of the matrix can be performed which re
quires no matrix inversion except the trivial inversion of a diagonal 
matrix. To perform the condensation, solve for C; from equation (41). 
In matrix form, this gives 

| C ) - - L « J - 1 a < J J | A } + [ f i ] { B | ] (46) 

substitution of equation (48) into equations (20) and (36) yields in 
matrix form 

Lo*J \A\ + [b*] [B] = 0 

[a*] (A) + [b*] [B] = 0 

Table 2 Convergence of frequencies for the six lowest odd modes of cir
cumferential order one with v = 0.344, h = 1.0, and an equal number of terms 
In each series 

where 

(55) 

La* j = L«J - L<?J L*J _ 1 

[a*] = [a] - [c] LcJ-i [a] 

[6*] = [b] - lAl I A T 1 [6] 

[&*] = L&J - [c] LcM"1 [6] 

From equation (47) 

\[A\ = - La*]- 1 [6*] |S) 

subsitution into equation (48) gives 

[d] [B\ = 0 

where 

[d] = [b*] - [a]* la*I"1 [h*] 

Note that [d] has a size of NR by NR. 
The solution process is to choose a frequency parameter co, the 

height to diameter ratio, h, and Poisson's ratio, v, compute the coef
ficients in equations (21-23), (37)-(39), (42)-(44), perform the con
densation in equations (46)-(55) and evaluate the determinant of [d] 
(in equation (55)). If the determinant is zero, the frequency parameter 
co is a natural frequency for that value of h and v. In the computer 
program, h and v were chosen and steps were taken in co until the 
determinant of [d] changed sign then regula-falsi was used to de
termine co to any desired degree of accuracy. 

On finding co, the mode shapes are found by solving equation (55) 
for the relative values of |B). \A\ and (Cj are then found from equations 
(53) and (46), respectively. The displacement components are then 
found from summing the terms expressed in equations (2)-(4) times 
their appropriate coefficients (A;, B;, or C;). 

R e s u l t s 

Table 2 shows the convergence of the frequencies as the number 
of terms in the series are increased. The tabulated values are the 
lowest six frequencies for the odd modes of circumferential order one, 
a height-to-diameter ratio of one, and a Poisson's ratio of 0.344. An 
equal number of terms in each series was used for this example. It is 
clearly evident that as more terms are chosen, the frequencies con
verge, and their convergence is to the experimental results found by 
McMahon. It can further be noted that for the accuracy required to 
plot frequency spectrum curves, such as presented by McMahon, use 
of as few as two terms in each series is adequate. 

It was found that for values of the height-to-diameter ratio which 
are different than one, it is desirable to use more terms in the "long" 

Terms 

i 

2 

3 

4 

5 

6 

2.17351 

2.15716 

2.15602 

2.15575 

2.15565 

2.15560 

2.15556 

2.15554 

2 

3.11176 

3.10492 

3.10350 

3.10297 

3.10272 

3.10257 

3.10243 

3.10236 

Frequency 

3 

4.48244 

4.07309 

4.04677 

4.03595 

4.03052 

4.02744 

4.02427 

4.02276 

4.65399 

4.62302 

4.61175 

4.60645 

4.60354 

4.60061 

4.59924 

5.01357 

5.00056 

4.99758 

4.99709. 

4.99692 

4.99681 

4.99676 

5.55055 

5.49844 

5.49733 

5.49699 

5.49684 

5.49672 

5.49666 

Is in 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

Table 3 Convergence of the frequency for the gravest odd mode of cir-
cumferential order one with v 0.344 and h = 
of terms 

NR 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

in radial and axial directions 

1 

5.965 
3.331 
3.251 
3.223 
3.211 
3.206 
3.203 
3.202 
3.201 
3.200 
3.200 
3.200 

NZ 

2 

5.965 
3.322 
3.235 
3.201 
3.184 
3.175 
3.171 
3.167 
3.165 
3.164 
3.164 
3.163 

0.25 as a function of the number 

3 

5.965 
3.321 
3.234 
3.198 
3.181 
3.171 
3.166 
3.162 
3.160 
3.158 
3.157 
3.156 

4 

5.965 
3.321 
3.233 
3.198 
3.180 
3.171 
3.165 
3.161 
3.158 
3.156 
3.155 
3.154 

direction. Table 3 is intended to demonstrate this observation. For 
Table 3, the height-to-diameter ratio was chosen as 0.25. The gravest 
frequency was found for odd modes of circumferential order one and 
a Poisson's ratio of 0.344. It can be seen that for this case, it is prof
itable to have more terms in the radial direction than in the axial di
rection. In fact, the optimum relation appears roughly to be 

NZ^NR-h (56) 

This relationship was used in finding the frequency spectra shown 
in Figs. 1-10. The smallest number was chosen as two and the largest 
found from equation (56) (rounded up to an integer). Thus, for h = 
0.1, NZ = 2, and NR = 20 was used; whereas, for h = 2,NZ=i and 
NR = 2 was used. 

Figs. 1-10 are plots of the frequency spectrum for the odd and even 
modes of circumferential order from zero to four. These spectra are 
for a Poisson's ratio, v, of 0.344 to correspond to McMahon's experi
mental results for aluminum. Note that on these plots, two frequency 
parameter scales are given. The one on the left in the plots is co as 
defined earlier in this paper and as used in Tables 2 and 3. The one 
on the right in the plots is coB which is the frequency parameter as 
defined by McMahon. McMahon normalized his frequency with re
spect to the thin rod velocity rather than the shear velocity as done 
in this paper. The relation between the two is 

wE = co/[2(l + v)]1'2 (57) 

A close comparison of the frequency spectra in Figs. 1-8 shows that 
they are identical with the spectra found by McMahon. Any differ
ences are within the accuracy to which such plots can be made. 

For modes of circumferential order of zero to three, the results 
shown in Figs. 1-8 only slightly extend the range considered by 
McMahon. He considered the range 0.6 <wE< 2.6 and 0 < h < 1.65 
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Fig. 1 Frequency spectra for odd modes of circumferential order zero. 
Dashed lines enclose the region investigated experimentally by McMahon [1]. 
Note: complete agreement was found. 
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Fig. 3 Frequency spectra for odd modes of circumferential order one. Dashed 
lines enclose the region investigated experimentally by McMahon [1]. Note: 
complete agreement was found. 
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Fig. 2 Frequency spectra for even modes of circumferential order zero. 
Dashed lines enclose the region investigated experimentally by McMahon [1]. 
Note: complete agreement was found. 

Fig. 4 Frequency spectra for even modes of circumferential order one. 
Dashed lines enclose the region investigated experimentally by McMahon [1]. 
Note: complete agreement was found. 

whereas the plots shown are for 0 < U>E < 3 and 0 < h < 2. Figs. 9 and 
10 are for circumferential order four and were not reported by 
McMahon. As noted by McMahon, for the odd modes, (Figs. 1, 3, 5, 
7, and 9), there are an infinite number of frequencies corresponding 
to the flexural disk modes which approach zero as approximately 
straight lines with steep slopes. McMahon chose to shown only the 
gravest frequency in this range while I have chosen to omit frequencies 
in this range (small h) which have a slope (y/h) greater than 50. It 
should further be noted that each of these steep curves in the region 
of small h connect (off scale) with the curves shown for larger h. For 
example, in Fig. 3, the second highest frequency shown at small h 
connects off scale with the second highest frequency shown in the 
range h > 0.35. It can also be noted that there are no frequency 
crossings in any of the plots. From my experience no frequency 
crossings should occur when the plotting is done for even and odd 
modes separately. 

McMahon also plotted frequency spectra for steel, v = 0.293. Rather 
than duplicate these results, a more general investigation into the 

changes in the frequency parameter with changes in Poisson's ratio 
was done. The effect of varying Poisson's ratio over its full possible 
range from zero to one half was considered. Since the behavior is 
somewhat unremarkable, I have included only two plots which are 
typical of the changes. Figs. 11 and 12 are for the four gravest 
frequencies for the odd modes of circumferential order one with a 
height-to-diameter ratio of one. Both figures are actually the same 
data plotted using the two different frequency parameter defini
tions. 

Conclusions 
The method developed in this paper produces excellent results with 

a remarkably small amount of computational effort. That is, the 
computed frequencies converge with use of a very few terms in each 
of the series. While the analytic formulation (and computer program 
development) is not easy using this method, the actual computer time 
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Fig. 5 Frequency spectra tor odd modes ot circumterenlial order two. Dashed 
lines enclose the region investigated experimentally by McMahon [1]. Note: 
complete agreement was found. Fig. 7 Frequency spectra for odd modes of circumferential order three. 

Dashed lines enclose the region investigated experimertally by McMahon [1]. 
Note: complete agreement was found. 
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Fig. 6 Frequency spectra for even modes of circumferential order two. 
Dashed lines enclose the region investigated experimentally by McMahon [1]. 
Note: complete agreement was found. 
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Fig. 8 Frequency spectra for even modes of circumferential order three. 
Dashed lines enclose the region investigated experimentally by McMahon [1]. 
Note: complete agreement was found. 

in generating the data is quite small, and the frequencies found check 
completely with McMahon's thorough experimental study. Further, 
the method allows computation of the frequencies to any desired 
degree of accuracy. 
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An Instability Theorem for Steady 
Motions in Free and Restrained 
Dynamical Systems 
The stability of steady motions in dynamical systems with ignorable coordinates is con
sidered. In addition to the original "free" systems "restrained" systems are defined in 
such a way that the ignorable velocities remain constant along all motions; the stability 
behavior of the two systems is compared. A previously established instability theorem is 
generalized and three examples are given. 

1 I n t r o d u c t i o n 
In a recent paper [1] by one of the authors, free and restrained 

systems were defined and some of the results that were obtained 
earlier by Pascal [2], by Stepanov [3] and others, were generalized. 

In particular, an instability theorem was presented, in which the 
behavior of both types of systems was compared. For this theorem to 
hold it was required that a certain matrix B(q) should vanish identi
cally. In the present paper the instability theorem is proven under 
much more general assumptions without the aforementioned condi
tion on the matrix B(q). 

In three examples the stability behavior of free and restrained 
systems is compared. 

2 T h e F r e e and the R e s t r a i n e d S y s t e m 
Consider the Lagrangian 

L(q, t z) = - q T D q + i T B r q + iz^Cz 

- q - T g ( q ) - z r f ( q ) - t / ( q ) (1) 
of a dynamical system, q and z denoting the n vector of "essential" 
coordinates and the m vector of ignorable coordinates. The matrices 
D(q), B(q), and C(q) are nXn,nXm, and mXm submatrices of the 
positive-definite matrix 

A(q); (2) 
/D(q) B(q) 

\BT(q) C(q). 

of kinetic energy. In (1), C/(q) is the potential energy and g(q), f(q) are 
vectors ( n X l and m X 1) which define gyroscopic forces. As shown 
in [1], 
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fl(q, ft = - q r(D - B C - ^ q " + [BC"1 (c + f) - q]T tj - WF(q) (3) 

is the Routhian of the (free) system, obtained by eliminating the ig
norable coordinates, c being the vector of the corresponding momenta. 
The dynamic potential is 

W>(q) = - (c + , ) r C - i ( c + f) + t/(q). (4) 

We assume that there is a steady motion defined by q = 0, q = 0 and, 
without loss of generality, that 1(0) = 0, g(0) = 0. 

In addition to the free system described by (1) we also consider a 
restrained system which differs from the free system in that in it the 
time derivatives of the ignorable coordinates are constant not only 
along the steady motions but along all motions. This is realized by 
means of additional generalized forces acting only in the degrees of 
freedom corresponding to the ignorable coordinates. As shown in [1] 
the motion of the restrained system follows from the Lagrangian 

LR (q, q) = J q̂ Dq- + (BCo^c - g) T5 - WR (q) (5) 

with 

WR(q) = U(q) + 1 rC<rlc - - c^Co-^Co-ic , (6) 

where Co = C(q = 0). Free and restrained systems have the same steady 
motions, however with possibly different stability behavior. 

From the expressions for R (q, q) and LR (q, q), the stability and in
stability theorems given in [1] were deduced. Here a more general form 
of the instability theorem will be given. 

3 T h e Ins tab i l i ty T h e o r e m 
In order to apply the results obtained in [4] to a certain system 

defined by L (q, q), we need to compute its Hamiltonian 

H(q, p) = tf 2(q\ p) + Hi(q, p) + #o(q). (7) 
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We suppose that the system has an equilibrium at q = 0, p = 0. 
Since 

(8) 

this implies that in the corresponding Lagrangian the part linear in 
q vanishes at q = 0. 

In (3) and (5), this means that Bo = 0. Requiring this last condition 
would lead to a considerable loss in generality, since the matrix A(q) 
of the quadratic form defining the kinetic energy and therefore also 
the matrix B(q) are given. However, we can always add an exact dif
ferential to the Lagrangian without changing the equations of motion. 
Thus, by replacing (3) and (5), respectively, by 

/?*(q, q) = -q" T (D - BC-'B^q" 

+ [BC-Mc + I) - g - B0C„-1c] Tq- - WF(q) (9) 

LR*(q, q-) = -qTDq- + (BCo^c - g - B o C o - 1 ^ - WR(q) (10) 
2 

we obtain a new Routhian of the free system and a new Lagrangian 
of the restrained system, for which the terms linear in q vanish at q 
= 0, without initially requiring B0 = 0. 

Prom (9) and (10), the Hamiltonians of the free and restrained 
systems are obtained, respectively, as 

HF* = - |p - BC-x(c + I) + 9 + B0C0-1cjT(D - BC-1BT)"1 

2 

X |p - BC-Mc + f) + g + BoCo-icj + WF(q) (11) 
and 

HR* = - fp - BC0
_1c + g + BoCo-'cFD-1 

X |p - BCo^c + g + BoCo^c) + WR (q). (12) 

In [1] it was shown that 

AW = (VMq) - WF(0)) - (Wfl(q) - WR(0)) (13) 

is at least positive-semidefinite, so that a minimum of WR (q) at q = 
0 implies a minimum of Wf(q) at the same point with the corre
sponding implications on the stability of the steady motions. 

On the other hand, the theorem given in [4] guarantees instability 
if the function Ho(q) in (7) has a maximum. By comparing the mo
menta independent terms HFo* and HRO* in (11) and (12) the fol
lowing can then be proved. 

Theorem. If HFo*(q) has a maximum at q = 0, then the steady 
motion of the free system is unstable and it cannot be stabilized by 
introducing additional generalized forces which maintain constant 
the ignorable velocities. The restrained system is then also un
stable. 

In [1] the theorem was proved for B = 0. Here we give a general proof, 
which holds even when this condition is not fulfilled. Defining 

AH0*(q) = (f lW(q) - HF0*(0)) - (ffflo*(q) - HR0*(0)) 

= AV(q) + AW(q), (14) 

we have 

AV(q) = i (-BC-Mc + I) + g + BoCo" 1 ^ 

X (D - BC-^T)" 1 (-BC-Hc + f) + g + BoCo-1cj 

- - (-BC0
-1c + g + BoCrM TD-1 j-BC0-1c + g + BoCo^c). (15) 

Introducing the abbreviations 

a(q) = C-'Cc + 0 - Co^c, (16) 

b(q) = (D - BC-iB^-M-BC-Mc + f) + g + BoCo"1^,. (17) 

we obtain 

AW(q) = - a T C a , .(18) 

and, after a short calculation, 

AH0*(q) = - (a - C-xBTb)T(C - B ^ ^ B ) (a - C - ^ b ) . (19) 

From (16) and (17) it follows that a(0) = 0 and b(0) = 0, and clearly 
Affo*(q) is positive-semidefinite if the matrix C — BTD_1B is at least 
positive-semidefinite for all q. Since the kinetic energy is assumed to 
be given by the positive-definite quadratic form 

B(q)\ ' 
r(q) C(q)J 

T[D(q) 
\B r ( i 

(20) 

it follows that 

- D - i B x l r / D B' 

.B1 

-D_ 1Bx 

x 
:x 7 ' (C -B T D- !B)x (21) 

is positive-definite in x for all values of the parameter q. The matrix 
C — BTD_1B is therefore positive-definite and Affo*(q) is at least 
positive-semidefinite. 

The positive-semidefiniteness of AHo*(q) means that a maximum 
of i/j?o*(q) at q = 0 implies a maximum of H/;o*(q) at the same point; 
since a maximum of ffo(q) implies instability (see [4-6]), the proof of 
the theorem is complete. 

It should be pointed out that the theorem makes no use of linear
ization; thus the result is valid for arbitrary nonlinear systems, even 
if the linear terms in the equations of motion vanish. 

4 I l l u s t r a t i v e E x a m p l e s 
It is not always readily recognized that the stability behavior of free 

and restrained systems is different in general. This is probably due 
to the fact that in the simple case of a heavy symmetric gyro with the 
spin angle as an ignorable coordinate, the equations of motion of the 
free and the restrained system are exactly the same. In what follows 
three mainly tutorial examples are used to elucidate the differences 
between free and restrained systems. A fourth example more impor
tant for technical applications is mentioned in Section 5. 

Motion in a Central Force Field. The simplest example has one 
ignorable and one essential coordinate. Although such a system is not 
very general, since no gyroscopic forces exist in the reduced system 
(after elimination of the cyclic coordinates) it may very well serve to 
illustrate the different behavior of the free and the restrained sys
tems. 

Consider the planar motion of a point P of mass m in an inverse 
square central force field. Using polar coordinates r, 4>, 

2 r 
(22) 

where the constant 7 > 0 defines the strength of the force field. Clearly 
0 is ignorable and one has 

dL 

yielding the Routhian 

fl(r,r) = - r 2 - W F ( r ) , WF(r) = - — + - ^ — . 
2 r 2mr2 

From (24) one obtains 

„ . .. . 7m c2 27m 3c2 

WF'{r)=-L- - , W y ( r ) = - - - < - + — . 
r z mr6 r6 mr4 

(23) 

(24) 

(25) 

The steady motions are obtained by setting WF' equal to zero; this 
gives 

c2 

r0 = r , (26) 

so that the steady motions are 

r{t) = r0=-^-r, 0(t) = <fc> = - ^ . (27) 
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Fig. 1 Motion of a dumbbell satellite about a planet 

It follows that WV'(ro) = ym/ro3 > 0 so that the dynamic potential 
has a minimum and the steady motion of the free system is stable in 
r, r, 0 as is well known. The equations of motion of the free system are 
obtained from (24) and (23) 

cz . c 
= 0, 0 = — - , 

m2r3 mr2 
(28) 

where the constant c is fixed by the initial conditions. Now consider 
the Lagrangian LR of the restrained system obtained from (22) by 
setting 0(£) = 0 o l n L 

LR(r,f)=^f2- WR(r), WR(r) = - 1 - - •0o2>-2. (29) 

Physically the restrained system could possibly be realized by means 
of additional forces due to jets which would maintain artificially 
constant the angular speed 0. 

Here WR' vanishes for the same value of ro and WV'(ro) = 
— 3ym/ro3 < 0. The dynamic potential of the restrained system has 
a maximum at r = ro. Since there are no gyroscopic forces in the re
strained system HRO* = WR, the maximum of WR implies instability. 
The equations of motion of the restrained system are 

f + ~ - 0o2r = 0, (30) 

It is readily seen that the differential equations for r(t) given in (28) 
and (30) are quite different. While the steady motion of the free sys
tem is stable, the steady motion of the restrained system is unstable 
in the present case. The example shows very well the different be
havior of the free and the restrained system. 

Dumbbell Satellite. The next slightly more general case has one 
ignorable and two essential coordinates. Here the reduced system— 
after elimination of the ignorable coordinate—has two degrees of 
freedom, so that gyroscopic forces may be present. A dumbbell moving 
in a central inverse square force field would be such a system. In order 
to make the example more interesting we will, however, consider a 
dumbbell satellite moving not in a central force field but under the 
action of the gravitational forces of a planet of finite mass which is nq£ 
fixed in space. We shall see that the behavior of such a satellite is to 
some extent different from its behavior in a central force field. 

Consider the planar motion of a dumbbell satellite about a planet, 
described by means of the generalized coordinates, r, 8, 0 as shown 
in Fig. 1. The center of mass of the complete system is assumed to be 
at rest, so that the distance e of the planet (m.3) to the center of mass 
is given by e = vr, v = m/m3. 

The Lagrangian of this (free) system is then given by 

L(r, 8, r, 8, 0) = I [(1 + v) (r2 + r202) + l2(d - 0)2] - U(r, 8) (31) 

with the potential energy 

where 

2 \pi p% 

pi,2 = V / 2 + (1 + v)2r2 T 2(1 + v)lr< 

(32) 

(33) 

with p = Grri3, G being the general gravitational constant. The angle 
0 is obviously ignorable and with 

d0 
: m|[(l + v)r2 + P]0 - I2 (34) 

the Routhian is obtained as 

R(r, 
2 

WF(r, 8) = -

(1 + v)r2 + 
(1 + v)r2 

(l + v)r2 + l2' 
• m2 

cl2 

{l + v)r2 + l2 

' 1 

WF (35) 

m 
2 ^ U + pj' 

(36) 
2 m[(l + v)r2 + I2} 

The steady motions are of course such that the center of mass of 
the dumbbell describes a circle and the dumbbell axis is in the "spoke" 
or "arrow" position. Let us consider here only the arrow position, in 
which the dumbbell axis is tangential to the orbit of its center of mass. 
In this case some intermediate calculations give 

80 = IT/2, r -= 

0o2 = wo2 

ro 

1 + v 
(S7) 

[(1 + v)2 + K0
2]3 '2 ' 

Here u>o2 = p/ro3 is the square of the angular orbital speed which would 
be obtained for the circular motion of a concentrated mass about a 
fixed center of attraction, and «o = Hro. 

For each value of / and r0 a different steady motion is obtained. If 
the dynamic potential Wj?(r, 8) is developed in power series about the 
steady motion one obtains 

Wp(r,0) = WF\r0 + r,- + t 

= or2 + b82 + ft 

- WF\ro, -1 

(38) 

where r = r — ro, 8 = 6 — TT/2 and ft represents the terms of higher 
order in r, 8. Hereby a, b are given by 

pro(l + W W t U + v)W + (1 - 3v)l2} 

2[(1 + v)W + l2]6/2[(l + vWl2} 

b = --mfi — (1 + i>)2/W < 0, 
2 po5 

with 

Po = v ^ 2 + (1 + v)W 

(39) 

(40) 

(41) 

Clearly Wp can be negative-definite or indefinite, depending on 
the sign of the expression in brackets in the numerator of (39). It will 
be negative definite for 

K02> 
(1 + v)2 

3 i / - 1 
> 0, indefinite 

for K0
2 < (1 + p)2/(3v - l)_or v < 1/3 (see Fig. 2). For all values of v and 

Ko2 in realistic problems, WF will therefore be indefinite and from the 
Thomson-Tait theorem we know that the corresponding steady mo
tions are certainly unstable, the number of unstable roots being odd 
[7, p. 161]. On the other hand it may be instructive to examine the 
whole parameter plane, even for values of the parameters which are 
unrealistic from the viewpoint of practicality. We know that gyros
copic stabilization can be possible in the case of negative definite WF-
The linearized equations of motion obtained from (35) are of the 
type 

en 0 

,0 a2i 
+ I0 

1-/3 
0' 

|8 0 + 
0 

,0 
(42) 

where a\, a.% (3, k\, and k 2 are functions of the given parameters. 
If the stability analysis for (42) is done in the usual way it turns out 

that gyroscopic stabilization does indeed occur. The linearly stable 
region is shown as the shaded area in Fig. 2. This is to a certain extent 
surprising, since it is well known that the same steady motion is always 
unstable in the case of a dumbbell moving around a fixed center of 
attraction. 

So far we have only examined the free system. Let us now try to 
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Fig. 3 Euler angles and location of the center of mass 
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Fig. 2 Stability region for the arrow position of a dumbbell satellite (shaded 
area — stability) 

apply the instability theorem and examine the stability behavior of 
the same steady motion for the case of the restrained system. For this 
the function Hpo* is calculated from the modified Routhian 

R*(r,e,r,9)=R(r,e,fJ) + 
cl2 

(l + p)r0
2 + l2 (43) 

The function Hpo*(r, 8) is obtained in the usual way, and it can be 
verified, that this function does not assume a maximum for the steady 
motions under consideration. The instability theorem in its coordi
nate-dependent form (see [6]) can therefore not be applied to this 
problem. The stability analysis of the steady motion for the restrained 
system yields in instability for all values of the positive parameters 
v and KO2-

The Heavy Gyrostat. In both examples previously discussed the 
original systems before the elimination of the ignorable coordinate 
had no gyroscopic terms, i.e., both the vectors f and g in (1) vanished 
identically. We now wish to give an example in which this is not the 
case. Also, in the two first examples the free system was "more stable" 
than the restrained system and this may suggest that this fact is al
ways true; the stability theorem given in [1] and the instability the
orem of the present paper support this thesis. In what follows we give 
an example which shows that this is not necessarily true in general. 

To this purpose let us reconsider the heavy gyrostat already dis
cussed in [1] with the Lagrangian 

L = - Aon2 + - Bo>22 + - Co>3
2 + fecoi - Px0 sin 0 sin 8, (44) 

2 2 2 

and 

oil = i> sin 8 sin <j> + 8 cos < 

0)2 = ip sin 8 cos 4> — 8 sin < 

0)3 = 0 + \p cos 8. 

(45) 

Here A, B, and C are the principal moments of inertia of the main 
body including the rotor mass, 0)1, 0)2, 0)3 are the components of the 

angular velocity of the main body along the principal axes, k is the 
constant relative moment of momentum of the rotor relative to the 
main body and acting along the x -axis, P is the weight, and xo gives 
the position of the center of mass on the principal axis corresponding 
to A (x-axis). The Euler angles (j>, \p, 8 are shown in Fig. 3. Clearly the 
angle \p is ignorable and the vectors f and g are 

/ = • 

0 

—k cos 

k s in d> s in 

(46) 

(47) 

if we set qT = [ip, 8\. It should be observed that here the free system 
already carries a constant speed rotor. By elimination of \p one obtains 
the Routhian and 

WF(4>, 8) = • 
1 (c — k s in </> s in 0 ) 2 

2 C cos 2 8 + (A s i n 2 <j> + B cos 2 <p) s i n 2 B 

+ Pxo s in 4> s in 8, 

with 

c = dL/di/-. 

The gradient of Wp is given by 

dWf s m 0 c o s 0 . . 
= [PXQUZ — ku(c — k s in (j> s in a) 

d(j> u2 

— (A — B) sin 4> sin 8(c — k sin <l> sin 8)2], 

d Wp cos C 

(48) 

(49) 

(50) 

• [PXQU2 s in <j> — ku(c - k s in c/> s in 8) s in ij> 

(A sin2 0 + B cos2 <(> - C) sin 8(c - k sin 0 sin 8)2] (51) 

with 

u = C cos2 8 + (A sin2<£ + B cos2 0) sin2 8. (52) 

Equation (51) is fulfilled identically for all values of (j> if we set 80 -
ir/2. Since the case </>0 = ir/2 was already dealt with in [1], we wish to 
discuss only the case (p0 ^ ir/2 here. Setting (50) equal to zero we then 
obtain 

Px0 = k 
- k i 

A sin2 i + B cos2 <j>o 

+ (A-B) 
— k s in ( 

A s i n 2 (j>a + B cos 2 <£o. 

U s i n g (49) w i t h i^0 = o> o n e o b t a i n s f rom (53) 

s in <£o- (53) 
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sin </>Q ' 
Pxn — kw 

(54) 
w2(A-B) 

Steady mot ions wi th So = TT/2, <I>Q ^ ir/2 a re therefore possible for 

a rb i t r a ry values of </>o if t h e pos i t ion of t h e cen te r of m a s s is p rope r ly 

chosen, p rov ided A =£ B. T h e y co r r e spond physical ly to regular p re 

cessions a n d the i r s tabi l i ty will be discussed in w h a t follows. In t h e 

new var iables </> = </> — <l>o, 8 = 8 — ir/2 we have from (48) 

WF(<I>,6) = --62--<t>2 + n 
2 2 

where ft r ep resen t s t h e h igher -order t e r m s and 

a = u2(C-B), 

/3 = L2 (A - B) + 2cosin0o(A - £ ) ] ' 

A sin 2 <t>a + B cos 2 <l>o 
cos2</>o-

(55) 

(56) 

The function Wp(<j>, 6) is positive-definite if a < 0, (3 < 0 hold simul
taneously, it is negative definite if both inequalities are reversed. If 
both inequalities are fulfilled the steady motion is certainly stable as 
follows from the Lagrange-Dirichlet theorem. 

If only one of the inequalities a < 0, /3 < 0 holds then Wf (</>, 8) is 
indefinite and from the Thomson-Tait theorem on gyroscopic sta
bilization it follows that the steady motion is unstable, since there is 
an odd number of unstable degrees of freedom. 

Let us now fix our attention for example on the case </>n = 0, which 
corresponds to PXQ = kw, and we assume B <C,B < A, (k/w)2 > (A 
— B)B. This steady motion corresponds to a regular precession in 
which the rotor axis describes a horizontal plane through the point 
of suspension. Wp is indefinite and the steady motion is unstable for 
the free system. 

The Lagrangian of the restrained system is easily obtained from 
(44) by setting {[/ = a) constant. The equations of motion of the re
strained system linearized at cpo = 0,8o = 7r/2 are then 

Cit>-(A-B + C) oo8-(A- S)oA/> = 0, 

A6 + (A-B + C)aii-(C-B) a>28 = 0. 

T h e charac ter i s t ic equa t ion is ob t a ined wi th <j> = </>eXi, 8 = 8ext as 

(57) 

AC\A + A2a>2 [~A(A -B)- C(C - B) 

+ (A-B + C)2] + aHA-B)(C-B) = 0 (58) 

and it can easily be verified that all the four roots are purely imaginary 
under the conditions previously assumed. Therefore the steady mo

tion do = 7r/2, 0o = 0 is (linearly) stable for the restrained system and 
unstable for the free system. This shows that the free system is not 
necessarily always more stable than the restrained system as one 
might conjecture. 

5 Conc lus ion 
In the present paper the instability theorem given in [1] is gener

alized. 
The generally different behavior of the free and restrained systems 

is examined in three simple examples. The theorems obtained as well 
as the two first examples suggest that the free system may always be 
more stable than the restrained system. That this is not the case is 
shown by the third example, in which the precessional motion of a 
heavy gyrostat is studied. The same behavior is also found in gyrostat 
satellites [8] where sometimes the steady motion of the restrained 
system is stable and simultaneously that of the free system is unstable. 
Further work will be done on the gyrostat satellite with an inner rotor 
with controlled speed, of which the free and the restrained rotor are 
the two extreme cases. 
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A Stochastic iodel for Predicting 
the Velocity Distribution of Warhead 
Fragments1 

It has been the practice of those who study the velocity of fragments from a warhead to 
average the velocity of the fragment over its path rather than to examine in greater detail 
the underlying stochastic process. In this paper we present a more careful analysis of the 
pertinent statistical process by taking into account the correlations that exist along the 
trajectory of the fragment. One assumes that the fragments generally tumble uniformly 
and that drag coefficient depends only on presented area. This seems to be a good approx
imation in the supersonic regime (from Mach 3 to Mach 6, for example). A brief discussion 
of the case when drag, lift, and gravity effects are all assumed to be present is given. Also, 
we present a new family of "multivariate uniform distributions" geared to the physics of 
the problem. 

1 Introduction 
The classical drag equation, useful in predicting the velocity of 

fragments in air, is given by 

D = i CnpApV2 = -Modu/dt, (1) 

where 

D = drag force 
CD = drag coefficient 

p = air density 
Ap = presented area 

v = velocity at time t 
MQ = mass of fragment 

In a fragment trajectory analysis, such as that which we will be 
considering, the objects tumble in various ways as they proceed along 
their paths. It is too complicated to determine a priori just how they 
will tumble and just what, for that matter, the initial velocity will be. 
When a sample of fragments of identical size and shape is studied, it 
should be possible to procure a distribution of initial velocities and, 
through photography or other means, to obtain the presented area 
of the fragment from point to point along its path. Thus one could 

1 This work was originally supported by the Systems Analysis Group, G10, 
of the Naval Surface Weapons Center. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until March 1,1981. Readers who need more time 
to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, October, 
1978; final revision, December, 1979. 

obtain sample correlations [5, p. 359]. We will assume that the velocity 
is supersonic (from roughly Mach 3 to Mach 6) and, therefore, con
sider that Co is a function of presented area alone, ignoring the de
pendence on Mach number and Reynold's number [1, pp. 243-244]. 
We show, in the subsequent analysis, that we can then, treating (1) 
as a stochastic differential equation, model the process more sys
tematically than has been done heretofore. 

2 Stochastic Analysis for Prediction of Velocity 
(Constant Tumbling Rate Case) 

Using distance r in place of time t as the running coordinate, dif
ferential equation (1) is easily converted into 

dv/dr = - \ CD(Ap)pApv/Mo 

with stochastic initial condition 

V = (J0-

(2) 

(3) 

Condition (3) means that we prescribe a distribution of initial veloc
ities and, considering Ap as the random quantity (itself a function of 
time or, equivalently, distance), attempt to give a distribution of v 
as a function of time or distance. We think of (2), subject to (3), as a 
physical process each of whose realizations is a smooth representation. 
Therefore, when one solves (2), he obtains 

: voexp CcD(Ap(. 
Jo 

s))A„(s)ds/2M0 (4) 

where vr is the fragment velocity at distance r from its initial point. 
Thus vr becomes a realization of a rather complicated random process. 
In a statistical context, (4) can be interpreted in a precise way [11, pp. 
78-88]. 

Next let us expand (4) into an infinite series, obtaining 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 913 
Copyright © 1980 by ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Vr = U0 1 - p J'CD(Ap(s))Ap(s)ds/2M0 

+ P is; CD(Ap(s))Ap(s)ds\ /8M0
2 + (5) 

Now, in a bomb with a thin shell casing of small curvature, it is not 
unreasonable to assume that the fragments, which have relatively 
small content, are essentially planar. Also, depending on the shape 
of the fragment, it may either adopt a stable attitude or tumble 
through the air. The former is quite simply treated, for it is then seen 
that (4) has the solution 

• u0exp (—kr), (6) 

where v0 is a random variable and k = PCD(AP)AP/2M0 is a function 
of the random variable Ap. The situation is even simpler, of course, 
when Ap ceases to be a random variable, i.e., when the fragment in
variably adopts the same attitude. In that case, vr becomes a linear 
function of the random initial speed u0 alone. These cases are rela
tively easy to handle and, therefore, are not addressed in this paper. 
We are interested in the second case, wherein the fragment tumbles 
uniformly along its path and we want to predict statistically what the 
speed ur will be as a function of the distance r from some initial po
sition. For this purpose, we shall introduce a family of "multivariate 
uniform distributions" of sufficient generality for this problem. In 
the literature on multivariate analysis, there is very little mention of 
such distributions. One finds so-called multivariate Beta distributions 
and generalized multivariate Beta distributions discussed, but one 
notes, in every case, that the marginal distributions cannot be adjusted 
to be uniform for every random variable [6, pp. 231-238, 9,10]. 

Such a family is indeed not too difficult to obtain. We first illustrate 
how to derive a bivariate uniform distribution F whose correlation 
coefficient [5, p. 86] 

pF = cov (X, Y)h(X)<j(Y) (7) 

can assume any value between - 1 and 1. To do this, use will be made 
of two extreme distributions both of which are uniform distributions 
in two variates. The first will have a correlation coefficient of 1 and 
the second a correlation coefficient of —1. We make use of the fact 
that, for such distributions, the mass must be concentrated along a 
line [5, p. 87]. Also, we know, in the univariate case, that the uniform 
density is given by [5, p. 106] 

f(A) = 
0, otherwise. 

(8) 

This means that the cumulative distribution function for (8) is 

F(A) = AIAn 0 < A < An (9) 

Let us suppose that Fi(x, y) is to be a cumulative distribution function 
in two variates such that ppv its correlation coefficient, is 1 and such 
that its marginal distribution function on either x or y is given by (9). 
Then, from (9), such will be true if we require that the measure of any 
rectangle in the (x, y)-plane be in direct proportion to the length of 
the line y = x which it contains (see Fig. 1). Since it is necessary to 
normalize by the factor 2~1/2, this means that such a measure equals 
the length of the projection of the segment y - x upon either axis. 

For such a distribution, the cumulative function is well defined and 
is just 

Fl(x,y) = P(X<x, Y<y)-
max, 

x <y 
(10) 

Fi is not an absolutely continuous function, i.e., it is not the integral 
of its second partial derivative, i>2F\/i>xi>y, which, in fact, equals zero 
everywhere except on the line y = x, where it does not exist. From (10) 
it is clear that Fx(x, Amax) = x/Amax and that Fi(Am a x , y) = y/Amm 

so that the marginal distribution functions are those of a uniform 
distribution. Therefore, (10) is a bivariate uniform distribution, and 
it can be shown, from the definition of the Riemann-Stieltjes integral 
[5, pp. 184-188] (generalized to two dimensions), that PF-S.X, y) = 1. 

Fig. 1 Measure of line segment of y = x when p F , = 1 

ix, ui '"max." ' 

Fig. 2 Measure of line segment of y = x when pF2 = — 1 

Next we derive a distribution F2 such that PF% = — 1. For this purpose, 
let us consider the line x + y = Amax , whose slope is —1. Referring to 
Fig. 2, we see that the measure of the rectangle with vertices (0,0), (x, 
0), (x, y), and (0, y) is to be given by the length of the line segment of 
y = Am a x — x contained within the rectangle, projected upon either 
axis and then normalized to 1. We find that the corresponding dis
tribution function is 

F2(x, y) = (11) 
0, y < Am a x - x 

\X + y ~ Amax)/Amax» y — ^max — X . 

Again one sees that F2{x, Amax) = x/Amax and that F2(Amax , y) = 
y/Amax. One can show, also, that PF2(X, y) = — 1. Now let us form a new 
distribution function by mixing (10) and (11). We have 

F(x, y) = ctFiix, y) + (1 - a)F2(x, y), (12) 

where 0 < a < 1. It is seen that (12) is likewise a cumulative uniform 
distribution, expressed as a convex combination of a distribution Fi 
with pp1 = 1 and a distribution F2 with pp2 =

 — 1. In fact, one finds 
that 

PF(X, y) = 2a - 1, 0 < a < 1, (13) 

since the marginal distributions of F\ and F2 are precisely the same. 
We have therefore discovered a one-parameter family of bivariate 
uniform distributions whose correlation coefficient can be adjusted 
according to the value of this parameter. 

Let us now proceed to the trivariate case, i.e., a case in which three 
random variables X, Y, and Z are involved. In this situation, three 
pairwise correlations are to be considered, which represent three 
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constraints, and we would like to form again a basis of functions for 
a general class of trivariate uniform distributions. Since the convexity 
requirement constitutes a fourth constraint, we want a set of four 
functions. For this purpose, let c = (pp{x, y), PF(X, 2), PF(y, 2)) be a 
representative triple of correlation coefficients. Suppose that we can 
obtain four trivariate uniform functions of x, y, and z, Fi(x, y, z), F2(x, 
y, z), F${x, y, z), and F$(x, y, z), respectively, with the properties: cp1 

= (1,1,1), cF2 = ( - 1 , - 1 , 1 ) , cFs = ( - 1 , 1 , - 1 ) , and cFt = (1, - 1 , - 1 ) . 
One then forms the convex combination 

F(x, y,z)= Y. mFAx, y, z), £ a; = 1, a; > 0. (14) 

Once we assume that a fragment tumbles uniformly, it is clear that 
the correlations between presented areas at different points on its path 
must be a periodic function of the path length or separation. In fact, 
it is seen that a correlation coefficient, from a geometrical point of 
view, is simply the cosine of the angle between two given directions 
[8, p. 327]. Also, if we assume, as in the bivariate case, that the mar
ginal distributions of the F;'s in (14) are all identical, then from (14) 
and definition (7), we see that 

PF(X, y) = Y. aiPFjix, y), (15) 

with similar relationships for the pairs (x, z) and (y, z). Then, to 
procure a distribution function F(x, y, z) with assigned correlation 
coefficients PF(X, y), PF{X, Z), and PF(y, z) between presented areas 
at three given points of the fragment trajectory, we form the rela
tions 

PF(X, y) = ott - a2 — a3 + a4 = cos (coidi2) 

PF(X, 2) = a i - «2 + «3 - "4 = cos (02^13) 

PF(y, 2) = «1 + «2 - «3 - «4 = COS (013^23) 
a\ + ai + 0:3 + 0:4 = 1, a; > 0, every i. (16) 

Here <oi, 0)2, and 0)3 are parameters to be determined, and dn, di3, and 
d23 a r e the distances between the three pairs of points mentioned 
above. (16) is a linear system in the a,'s which can be readily solved 
to give 

a i = [1 + cos (coidi2) + cos (w3di3) + cos (a)2di3)]/4 

a2 = [1 - cos (o)idi2) + cos (0)3^23) - cos (o)2di3)]/4 

as = [1 - cos (0)3^23) + cos (co2di3) - cos (u>id\2)]lA 

a4 = [1 - cos (a>3d23) - cos (^2^13) + cos (a>idi2)]/4. 

(17) 

The critical question now arises as to whether or not the a, 's given 
by (17) can be expected to be nonnegative. Otherwise (14) may fail 
to be a distribution function, and it is possible that F would become 
negative. To show that this can happen, note that 

'Xi - mi X2 - m2 X3 - m3' 
E 

0"! 0"2 C3 

= 3 + 2(p23 - P12 - P13) £ 0, (18) 

where m; is the expected value of Xi, ai2 its variance, and pij the 
correlation coefficient between Xi and Xj, as defined by (7). Using 
(18), we see that ai t. —J, for example. It is clear, also, from (17), that 

cos 6s = cos 8\ cos di + sin 6\ sin / (19) 

we see that c = (—J, —J, —J) is a feasible triple of correlations. For this 
set, a?i = —Vs, so that, indeed, the lower bound is attained. Although 
(14) may sometimes cease to be a distribution function in the classical 
sense of the word, there is no reason why we may not employ it. Also, 
one could use multivariate Gaussian processes as approximations to 
the multivariate uniform distributions. These processes would ob
viously have large variances in the cases where the marginals are 
uniform, and they could be used when the distributions are not 
multivariate uniform. It is an open question as to whether or not there 
exist more robust multivariate uniform distributions than the ones 
we are generating here. 

We now form the distribution functions corresponding to Fl: F2, 
F3, and F4, respectively. For i*\, we must build a c.d.f. corresponding 
to mass concentration along the line x = y = 2. As in two dimensions, 
we define the measure of a typical volume element to be the normal
ized length of the segment of the line x = y = 2 which it contains. We 
find that 

F1(x,y,z) = -

x, x < y < z, x < z < y 

y, y < x < z, y < z < x 

z, z < x < y, z < y < x. 

(20) 

For F2, we form the c.d.f. for mass concentration alone the line y 
z = Amax

 — x. This gives us 

U, 2 ^ -Amax ^ 

0, x < Amax - y 

{X + y — A m a x ) / .Amax> 2 ^. y > A m a x — X 

Fi(x, y, z) •• (21) 

L(x + z • x)/AD y >A„ 

F3(x,y,z) = • (22) 

The c.d.f. F3 corresponds to the line x = z = Am a x - y and is 

'0, z < 4m ax - y 

0, y < Am a x - x 

{x + y - Amax)/Amax, 2 > x > An 

, (y + z - Amax)/Amax, x > 2 > An 

Finally, the c.d.f. F4 is found to correspond to x = y = Am a x — 2 and 
is given by 

*max ' y 

•y-

F4(x, y, z) = 

(0, 
0, 

\X T~ Z a m a x . 

y < Amax - 2 

Z — A m a x ~~ X 

)/A„ 
, (y + z - Amax)/A 

y > x > A 

x > y > A 

(23) 
max *• 

m a x — Z. 

A typical diagram, for the case of F3, is shown in Fig. 3. 
Now let us return to our discussion of the problem of assessment 

of fragment velocity. First of all, one needs a model for drag coefficient 
as a function of presented area. A simple model, using a first-order 
Taylor series development, is to assume that C/3 is a linear func
tion 

CD(Ap(s)) = a^Apis) + a2 (24) 

and that a,\ and ai are shape-dependent parameters determined ex
perimentally. Now, taking the expectation of both sides of (5) [6, p. 
104], we have 

uo 1 - P CcDApds/2M0 + p2 C CrCD(Ap(s))A„(s)CD(Ap(t))Ap(t)dsdt/8M0
2 

[ •/o Jo Jo 

P3 J ^ " £ y CD(Ap(s))Ap(s)CD(Ap(t))Ap(t)CD(Ap(u))Ap(u) dsdtdu/48M0
a n3 + . (25) 

we can get similar results for a\, a3, and 0:4. In addition, note, from 
(17), that ai + aj = (1 ± p)/2 when i ^ j , where p is one of the cosines. 
This means, of course, that at most one of the a's is negative. Since, 
as noted previously, the correlation coefficients must satisfy the law 
of cosines in spherical trigonometry, [2, p. 168], namely, 

where a bar denotes expected value. Then, for instance, one finds, 
using (24), that 

CD(Ap(s))Ap(s)CD(Ap(t))Ap(t) 

•• aMP
2is)Ai2(t) + aiaiAp(s)Ap

2(t) 

+ aia2Ap
2(s)Ap(t) + a2

2Ap(s)Ap(t). (26) 
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Fig. 3 Measure of line segment of x = z = Ama, — y for c.d.f. F3 

We are assuming in this paragraph that our stochastic process is 
stationary [11, p. 69], i.e., that our phenomena depend only on the 
separation, or distance, \s — t\. This is a simple consequence of 
tumbling with constant angular velocity, for, in that case, the distance 
between points is clearly all that matters in assessing the relevant 
statistical quantities. In particular, then, the second and third terms 
of (26) should be equal. One now computes a set of sample correlation 
coefficients PF*(Ap(st), Ap(ti)) [5, p. 359] and assumes that pp in (13) 
has the functional form cos (co(s,- — t,-)). Then the parameter to is to 
be determined by solving the nonlinear least-squares problem 

rain £ [pF*(Ap(si), AP(U)) - cos (co(s; - t,-))]2. 
ill 1 = 1 

(27) 

After finding a feasible co-value, a and 1 — a are expressed through 
the equations 

a = [1 + cos (codx2)]/2, 1 - a = [1 - cos (cod12)]/2, 

where d%2 is the separation between any two points on the trajectory. 
Going back to the form for F as given by (12), equation (26) may then 
be computed, appealing to the definition of the Riemann-Stieltjes 
integral [3, pp. 184-188], generalized to two dimensions. Now a very 
interesting, but simple, observation can be made. Using (14) and the 
four functional representations given by (20)-(23), and setting z = 
Amax , we find, as it should, that the two-dimensional marginal c.d.f. 
reduces to the case (12). We can do the same in turn with y = Amax, 
computing the marginal for x and z, and x = Amax , obtaining the 
marginal for y and z. The result is that, when the tumbling rate is 
constant, co = coi = co2 = C03, which is physically clearly the case. The 
frequency of the correlation coefficients should all be the same. This 
means that only one optimization problem need be solved, namely, 
that of (27). Now the third integrand in (25) is found to be 

CD(Ap(s))Ap(s)CD(Ap(t))Ap(t)CD(Ap(u))Ap(u) 

•• a^Ap
2(s)Ap

2(t)Ap
2(u) + ai

2a2AP
2(s)Ap

2(t)Ap(u) 

+ 2a,2a2Ap(s)Ap
2(t)Ap

2(u) + 2aia2
2Ap(s)Ap

2(t)Ap(u) 

+ aia2
2Ap(s)Ap(t)Ap

2(u) + a2
3Ap(s)Ap(t)Ap(u). (28) 

Equation (28) can be computed using (14), together with (17). The 
integrands are seen to involve only linear combinations of cosines, so 
they are easily handled. One would proceed generally, developing 
quadrivariate uniform distributions and higher order multivariate 
uniform processes. Then, since (25) is an alternating series, the re
mainder after a given number of terms is always bounded in absolute 
value by the first term neglected, provided the terms are monotone 
decreasing [12, pp. 293-294]. Thus we keep employing our procedure, 
estimating the moments in our series, at the same time accounting 
for our truncation error. Now, from (4), 

vr' •{->£ CD{Ap(.s))Ap(s)ds/M0 (29) 

which has the same form as (4). It is clear then that the variance of 
vr can be similarly computed. 

One special case arises when one decides only to retain the first two 
terms in (25), considering the remainder to be small. This would mean 
that we have 

Vr 3 U0[l - P(M1M2 + Ml2)>"/2Mo], (30) 

where /iti = E(CD), p-2 = E(AP), and ji12 = cov (Co, Ap). The right side 
of (30) is the linear part of 

v0 exp [-p(nlrt2 + Hi2)r/2M0], (31) 

which bears some semblance to an expression often given in the lit
erature on this subject except for the presence of the covariance term 
jUi2. If the same approximation is invoked for the mean of (29), we 
have 

var vr 3 var (v0) exp [-p(mp.2 + m2)r/Mr,]. (32) 

It follows from (31) and (32) that the coefficient of variation [5, p. 72] 
is approximately constant 

(var vr)
1/2/vr s (var VO)1/2/VQ. (33) 

3 Stochastic Analysis for Prediction of Velocity 
(Nonconstant Tumbling Rate Case) 

In the general case, the situation is governed by a distribution of 
initial angular momenta. Also, due to drag, the rate of tumbling will 
vary along the trajectory. The analysis is still straightforward, but a 
bit more complicated. For one thing, the stochastic process is no longer 
stationary. The co,'s in (17) now depend on the distance traversed. We 
preserve the form of the correlation function except that we introduce 
an analytic expression for the o»,'s in terms of distance. Also, we 
suppose that our observation pairs, in the bivariate discussion, are 
taken at s = 0 and s = s;, where s is the distance along the path. Thus 
we take an initial reading of presented area, together with later 
readings. The co;'s can be developed in a Taylor's series up to a con
venient order term. However, we have observed, in Section 2, that the 
COJ'S should reduce to one quantity co. Therefore, if, for example, we 
expand co up to the second-order term, we have a quadratic expression 
for it, namely, 

co(s) = 60 + bis + b2s
2. 

The optimization problem to be solved is then 

(34) 

min £ [pF*(Ap(0), Ap(s ;)) - cos (co(s;)s;)]2, (35) 
^0,61,62 i = l 

where co(s) is given by (34). The analysis, in essential detail, remains 
the same as in Section 2. Once co(s) is determined, one is forced to 
integrate cosines of polynomial functions of distance. This must be 
done numerically. Also, such parameters as the expected velocity and 
variance are computed, conditioned upon a given initial angular 
momentum. Therefore, the unconditional expected velocity is 

f v(M)dG(M), 
JD 

(36) 

where M represents the initial angular momentum vector, D the do
main of angular momenta, and G the cumulative distribution func
tion. v(M) is expected velocity, given M. Similarly, we have 

v2= f u2(M)dGM, 
JD 

(37) 

where v2(M) is the expected value of the square of velocity for a given 
initial M. 

4 Extension of Analysis to Include Lift and Gravity Effects 
It is important to note that any forces perpendicular to the direction 

of motion will not affect the magnitude of the velocity vector, but only 
its direction. Therefore, if gravity is neglected, our stochastic analysis 
remains unaffected, with distance r being replaced by arc length s. 
As soon as gravity is included, however, the analysis becomes more 
complicated [1, pp. 235-254], and we obtain a coupled pair of differ-
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ential equations, as we shall presently show. Now the magnitude of 
the lift force is customarily given by [1, pp. 235-254] 

(38) 

where CL is the lift coefficient. Referring to Fig. 4, let j be a unit vector 
pointing upward and i a unit vector perpendicular to it, as indicated 
(we restrict attention here to planar motion). Let the origin of coor
dinates be at the initial position of the fragment, so that, at time t = 
0, x(0) = 0 and y(0) = 0. The initial velocity components are assumed 
to be vx = vox and vy = voy, respectively. 

The vector equation of motion is then 

1 „ . „ Vxi + Oyj, 1 . 2 Vyi-Vxj 
--CDpApV2 + -CLpApv

2 

2 v 2 v 

- Mogj = Mo(i>xi + i,yj). (39) 

When (39) is expressed as a pair of differential equations, we have 
MQ0X = - \ pApv(CDux - CLuy) 

M0Vy = - I pApv(CDVy + CLvx) - Mog. (40) 

It is possible to solve (40) numerically for vx and uy, using Runge-
Kutta methods [4], Knowing the statistical distributions for Co, CL, 
and Ap, we would sample from these distributions. Then one could 
attempt to obtain distributions for vx and uy by Monte Carlo methods. 
Other than that, no further methodology is presently available for this 
general case. 

In case the aerodynamic forces dominate the gravity force, one can 
analyze the pair v = (vx, vy) and produce reasonable approximations 
for the expected value of the vector and for the correlation matrix 
JB(VVT). This we can do by appealing to the method of Picard for 
successive approximations [7, pp. 105-111]. It turns out that, if the 
integrand is Holder continuous, then this method provides a sequence 
of approximants v„ which converge in the mean to the random velocity 
vector v. It also follows that the expected value of v„ converges to the 
expected value of v [7, pp. 58-60]. The procedure is as follows: If we 
can reasonably neglect the gravity term in (40), then we can, as before, 
consider distance to be the independent variable rather than time, 
and the system (40) is converted into 

= -p\Ap\(CDvx -CLvy)/2Mo 
dvx 

ds 

^ = -p\Ap\ (CDvy + CLvx)/2M0, 
ds 

where we shall assume, for example, that 

and 

CD(AP) = a0 + ai\Ap 

CL(AP) = a2 + a3Ap, 

(41) 

(42) 

(43) 

with an, 0,1, 02, and as to be determined experimentally. Note that we 
have now ascribed a sign to the presented area to conform with the 
fact that the sign of the lift depends on the sign of the angle of attack. 
The essence of our method is unchanged except that we now assume 
that —Amax < Ap < Am a x and that presented area is still a uniform 
random quantity. The system (41) can be written in matrix nota
tion 

where 

and 

f = M(S)v, 
ds 

vx(s) 

Vy(s) 

M(s) = -
p\Ap\ ICD(Ap(s)) -CL(Ap(s))\ 

2M0 \cL(Ap(s)) CD(Ap(s))l 

(44) 

(45) 

(46) 

Fig. 4 Fragment trajectory history 

(44) is then converted to integral form 

v ( s ) = v 0 + ( M(x)v(x)dx 
Jo 

(47) 

Letting vi(x) = vo, one then forms the sequence of approximants given 
by 

vn(s) = v0 + fS M(x 
Jo 

)vn-i(x)dx. (48) 

One can successively also compute the expected value of v„ (s) in the 
usual way by interchanging the operations of integration and expected 
value in (48) after applying the expected value operator. One can 
likewise compute the covariance matrix of v„(s) by making use of 
E(vn (s)vn

 T(s)) and the expected value of v„ (s). As mentioned before, 
the expected values of these approximants must converge to the de
sired parameters as n tends to infinity. We again can make use of the 
multivariate distributions which we have developed. 

5 Summary 
We have presented an algorithm for computing the first two sta

tistics of the remaining speed vr along a curved trajectory when the 
effect of gravity is ignored. The idea is to take account of as many 
moments as are necessary in order to appraise the relevant statistical 
parameters. The algorithm has the advantage of simplicity of im
plementation, since only one optimization problem need be solved 
and integrations over the trajectory involve only those of linear 
combinations of cosine functions. When gravity is included in the 
analysis, a coupled pair of differential equations is obtained, and it 
appears that the solution to the system must be obtained by Monte 
Carlo methods, together with Runge-Kutta procedures. In the special 
case where the gravity term can be neglected, we have provided a 
Picard approximation procedure for analyzing velocity. 
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Partitioned Transient Analysis 
Procedures for Coupled-Field 
Problems: Accuracy Analysis 
Partitioned solution procedures for direct time integration of second-order coupled-field 
systems are studied from the standpoint of accuracy. These procedures are derived by 
three formulation steps: implicit integration of coupled governing equations, partitioning 
of resulting algebraic systems and extrapolation on the right-hand partition. It is shown 
that the combined effect of partition, extrapolation, and computational paths governs 
the choice of stable extrapolators and preservation of rigid-body motions. Stable extrapo-
lators for various computational paths are derived and implementation-extrapolator 
combinations which preserve constant-velocity and constant-acceleration rigid-body mo
tions are identified. A spectral analysis shows that the primary error source introduced 
by a stable partition is frequency distortion. Finally, as a guide to practical applications, 
the advantages and shortcomings of five specific partitions are discussed. 

Introduction 
Dynamic problems in applied mechanics often involve two or more 

distinctive subsystems that are tightly coupled. The computerized 
analysis of such systems generally involves two distinct phases. A 
spatially discretized model is produced through finite-element, 
boundary-element or finite-difference techniques. The resulting 
equations of motion are then solved by direct time integration. 

Often the response characteristics of the component (single-field) 
subsystems are markedly different. As examples of this situation we 
can cite fluid-structure, soil-structure, and certain structure-structure 
interaction problems. This difference may be due to material prop
erties, different spatial discretization techniques, localized non-
linearities, boundary-layer effects; or be even induced by computa
tional manipulations. 

For coupled systems befitting the preceding description, it is nat
ural to think of tailoring the time integration procedure to subsystem 
response features. An effective way of implementing this idea is to 
view each single-field subsystem as a computational entity, which is 
treated by an appropriate time integration program module ("ana
lyzer"). The time-advancing process results from coordinating the 
execution of the analyzers in sequential or parallel fashion. Field 
coupling effects are incorporated through cyclic information transfers 
based upon appropriate extrapolation formulas. Solution procedures 
based on this approach were called partitioned transient analysis 
procedures (or simply partitioned procedures) in [1]. In that paper, 
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a general partitioning procedure for treating second-order coupled-
field equations of motion was presented. 

Rational selection of a specific partitioning procedure among 
competing ones demands a fairly deep understanding of numerical 
stability and accuracy characteristics. In [1], a general stability 
analysis technique was developed to eliminate case-by-case consid
erations. This technique has provided a basis for uniform evaluation 
on grounds of stability, which is critical in the initial method-design 
stages. 

Once satisfactory stability requirements are achieved, it remains 
to assess accuracy. Understanding of this subject has so far been based 
largely on numerical experiments [2-7]. This paper endeavors to fill 
the void by developing an accuracy assessment theory. More specif
ically, the following three points are addressed: (a) strong interde-
pendency of accuracy, extrapolator formula, and computational se
quence details; (b) preservation of rigid-body motions under parti
tioning; and (c) incremental effect of partitioning on numerical 
damping and frequency distortion measures. We view these three 
aspects as providing sufficient grounds for a comparative assessment 
of competing stable partitioned procedures. 

Partitioned Integration Overview 
This section provides a quick review of partitioned integration 

procedures for the class of mechanical systems considered in [1]. It 
is included to make this paper reasonably self-contained. 

We consider dynamic systems governed by the second-order 
equations of motion 

Mii + Oil + Ku = f (1) 

where M, D, and K are mass, damping and stiffness matrices, respec
tively, u is the state vector of generalized displacements and I the 
corresponding applied force vector; dot superscripts denote temporal 
differentiation. 
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Table 1 Examples of partitions for two-field problems 

Element-by-Element 

J<2 = 

0 0 0 

2 Jly
bb Jiby 

2 K y b Kyy_ 

DOF-by-DOF 

^ 2 = 

"0 0 0 

0 0 0 

0 0 K 
~yy_ 

Staggered 

^ 2 = 

"0 0 

0 0 

_2 K y b 

0 

0 

0 

St 

K 
~xx 

~*x 

0 

JS = 

Coupled Fie ld 
i f fness-Matr ix 

a 

K k 
~xb 

£bb+ ^bb 

Hyb 

+ l2 

0 

hy 

^yy_ 

As a first step in the partitioned treatment of (1), the entire system 
is time-discretized by an m-step implicit integration formula of linear 
multistep type 

: 5wn + h" 

• 5 f tw„_ ; - ) (2) h£ = £ (otjyin-j 
7 = 1 

In (2), w stands for both u and u, w„ = w(£„) at sample times tn; aj 
and ft are coefficients characterizing the integration formula used, 
8 is a generalized time stepsize and hJJ is a historical vector. Insertion 
of (2) into (1), followed by various algebraic manipulations detailed 
in [8], yields the implicit difference equations: 

Eu,j = g„ 

E = M + oD + <52 K 

g„ = 5 2 f „ +M(h^+5h^ ) 

(3) 

The second step is to partition the algebraic system (3a) as fol
lows: 

Eiu„ = g„ - E2u„ 

Ei = M + 5Di + 5 % 

E2 = 5D2 + <52K2 (4) 

D = Dx + D2 

K = Ki + K2 

Note that the mass matrix M is not partitioned, which is crucial to 
the success of these methods. 

The third and final step is to select an extrapolator formula for the 
lira appearing on the right-hand partition of (4a): 

Eiu„ = g„ - E2u£ (5) 

where up denoted predicted value in terms of past computed solu
tions. 

Specific partitions result from choosing "block patterns" for ma
trices Di, D2, Ki, and K2 tailored to the problem under consideration 

(and perhaps to available software). To illustrate this point, Table 
1 catalogs four potentially useful partitions of the stiffness matrix K 
for a coupled mechanical system consisting of two fields: x and y, 
which interact through a boundary b. 

E f f e c t of Computa t iona l P a t h and E x t r a p o l a t o r 
S e l e c t i o n 

In reference [8] we discussed the organization of the time-advancing 
calculations and identified four "computational paths," which were 
labeled (0'), (0), (1), and (2). Paths differ according to the way in which 
auxiliary quantities such as velocities are calculated. In [1] it was 
shown that computational paths can have a significant effect on the 
stability of partitioned solution procedures, and that this effect is tied 
up with the selection of extrapolators. For examples, when the trap
ezoidal integration rule is used in conjunction with the last-solution 
extrapolator, 

U„ = Ura-l (6) 

the solution remains stable if the velocity is computed by integrating 
the acceleration that is in turn obtained from the equations of motion. 
On the other hand, if the velocity is computed from the difference 
formula (2a), the solution becomes unstable. In terms of the no
menclature of [8], these two cases correspond to the (CO') and the 
(Cl)-computational path, respectively, as summarized in Table 2. 
[The letter prefix identifies the choice of auxiliary vector in reducing 
(1) to a first-order system: C = conventional, J - Jensen; this choice 
has no effect on stability]. 

Combinations of different extrapolators and computational paths 
will give rise in general to different characteristic equations, even if 
all other factors (integration formula, partition) remain the same. This 
has major implications as regards stability and accuracy. To study 
these effects, we introduce a fairly general class of extrapolators: 

< = £ (otjun-j + Sftura-y + 52yjiin-j) (7) 

where aj, $j, and 7 ; are extrapolation coefficients. This class is 
broader than that considered in [1], which did not account for his
torical derivative terms u„_/, iin-j. 
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Table 2 Computational path-dependent formulas for partitioned procedures (EiU„ = g„ — E2u
 p„) 

Computational 
Path 

(CO1) 

(CI) 

(C2) 

(JO) 

Computational Sequences 

a a n = (M + « £ ) h u
n + 6 M h*n + 62 f n 

" "n = £-; (an - i2 £ > 

6 * n T 6 y-n + t n 

a-d same as (CO') , e skipped 

a-c same as (CO') 

d U n = ( f l n - h 0
n ) / 6 

e skipped 

a o = M hu' + <s hv + a2 f 
^ n ~ - R - n - n 

b-c same as (CO1) 

d *n - i n \ ^ n 

e * n = 6 in + ^ n 

Recommended P red i c to rs , u? 

m 
\ " ^ 

J = l 

m 

2) V [ " a j V j ^ ' W ^ n - j 

+ « 2 ( B . 1 / B 0 - a i ) u n = 1 ] + 

m 

m 

> [ - a . U . + 6 (B 76 - o.) u 

j = l 
2 

+ 6 B . / B u . ] 
V PO - n - j J 

m 

j = i 

t This extrapolator is recommended for implicit-explicit procedures when accuracy, including rigid body motions, becomes 
important. In this case the stability limit is somewhat reduced. 

The characteristic matrix equations for the four computational 
sequences of Table 2 can be derived by seeking nontrivial solutions 
of the form 

Ufc : x*uo=(r3fuo (8) 

The resulting formulas are collected in Table 3. An undamped 
system (D = O) is assumed for simplicity; the damped case can be 
handled in a similar fashion; for derivation details, see Appendix A 
of[ l ] . 

Numerical stability requires that the characteristic equation roots 
z; have no positive real parts, i.e., Re (z;) < 0. This imposes in turn 
constraints on the selection of extrapolators for each path; recom
mended extrapolators are listed in Table 2. For the important case 
of the trapezoidal integration rule, stable extrapolators are listed in 
Table 4. 

Remark. If partitioning is performed at the differential equation 
level as opposed to the difference equation level stressed in this paper, 
viz., 

M u + Dxu + K tu = f - D2ii - K2u (9) 

the following characteristic equation results if D = 0: 

det |/>2M + 52<r2Kx + 52(<r2e0 + paex + p2e2)K2| = 0 (10) 

This is independent of the computational path. It can be proved that, 
when the trapezoidal rule is used, the differential partitioning pro
cedure (9) is stable provided the extrapolator is chosen in the form 

h2 

uip) = "n- i + hiin-i + — ii„_i 
4 

(11) 

in which u and ii are computed by differentiation formulas regardless 
of the implementation paths adopted. The above extrapolator for the 

differential partitioning procedure (9) is identical to that of path (C2) 
for the algebraic partitioning procedure (4) (see Table 4). It therefore 
appears as if partitioning at the difference equation level provides 
superior flexibility of implementation because we can then choose 
various computational paths while taking care of stability through 
an appropriate extrapolator. This flexibility is lost in differential 
partitioning. 

Preservation of Rigid-Body Motions 
The spatial convergence of nonconforming finite-element models 

has been traditionally probed with Irons' patch test [9], which among 
other things verifies whether rigid-body displacement fields are 
preserved. Similarly, when considering candidate partitioned inte
gration procedures for structures experiencing large rigid-body mo
tions, it is important to understand which combinations of partition, 
extrapolator and computational path preserve such motions. 

The maximum order of accuracy attainable with A-stable inte
gration formulas of the type (2) is two (Dahlquist's theorem). This 
means that constant-velocity and constant-acceleration rigid-body 
motions can be traced exactly if the system is treated as one entity. 
What happens if a partition is introduced? Then that formal order 
of accuracy is generally lost for solution components belonging to a 
partition boundary, unless special safeguards are taken. It turns out 
that the combined characteristics of the computational paths and the 
predictor forms play a decisive role for the preservation of rigid-body 
motions. This aspect is examined in detail for the important case of 
the trapezoidal rule. 

Rigid-body motions u of a flexible structure satisfy 

Ku = 0 

Introducing the partition (4e) yields 

Kiu = -K2u 

(12) 

(13) 
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Table 3 Computational path-dependent characteristic equations (D = O) 

Computational 
Path 

(CO') 

(CI) 

(C2) 

(JO) 

Charac ter is t i c equation 

|p 2 M + 62 o2 K1 + 62 (eo p + o2 - p Ar,,)J<2 - 6 4 ( e 1 o + e2 p) K^1 K, | = 0 

|p 2 M + 62 a2 K_1 + 52 (a e + a2 - o *m + p e1) K,2 - 64 e? K 2 M"1 £ | = 0 

|p 2 M + S2 o2 K_T + 62 (a2 eQ + p o e1 + p2 eQ) K_2 | = 0 

|xm p2 M + 62 Xm o2 K } + 6 2 ( o 2 Xm + e p a + e ] P2) K.2 - «4 o e2 K,2 M"1 K | = 0 

/ m 

P(X) - 2 a j ^ 
1 j=o 

In the above equat ions, 1 fl—^ • 
p, o, e, and e? are \ o(x) - } p. X J 

given by: j • r r ' J 

I m 

K(-el-e2> - Z W V ^ 
V j=l 

X = (1 + z) / ( l - z) 

(M + S2K{)Un = d2tn + M(lln-i + 20U,,-! 

+ 52U„-:) - 52K2u^_t (15) 

For constant-acceleration rigid-body motion, we must have 

Mil* = ffc, k = 0,l...n (16) 

Inserting (16) into (15) and accounting for (14), it follows that 
preservation of rigid-body motions demands that either K2U„ = 0 or 
that the following predictor be used: 

u£ = u„_i + 26u„-i + 26-2ii„-i (17) 

This is the second extrapolator formula given for path (0') in Table 
3. 

Remark 1. If one insists only on exact preservation of constant-
velocity rigid body motions, for which u„ = 0, the following predictors 
can be used: 

u£ = u„_i + 2<Sii„_1 

"n = U„_l + 2<Su„_i + 52U„_! 

Remark 2. Both the element-by-element and node-by-node 
partitions preserve any rigid-body motions because these two parti
tions satisfy the rigid-body conserving identity 

Kiu„ = K2u„ = O (19) 

For these partitions, the last-solution extrapolator u£ = u„-i is op
timally stable for path (00 and preserves rigid-body motions. For 
other computational paths, the equivalent predictors listed in Table 
2 retain these properties. 

Remark 3. The last-solution extrapolator, although stable, dis
torts constant velocity and constant-acceleration rigid body motions 
for the DOF-by-DOF and staggered partitions. This effect is illus
trated in Fig. 1 for a two-degree-of-freedom problem. This distortion 
can only be eliminated by iterating at each time step to conver
gence. 

Remark 4. The accurate extrapolator (17) gives rise to numerical 

Table 4 Stable extrapolators for trapezoidal rule Integration 

Computational Path 

(CO1) 

(CI) 

(C2) 

(00) 

Stab le Ex t rapo la to r 

( V i * 

n \ 2 

uf = tj , + h ti„ •, 

2 

—n —n- 1 —n- 1 4 -m- 1 

Mj = V l + 2 V l 

* This e x t r a p o l a t o r i s e x t e n s i v e l y used i n [ 1 ] . 

t App l i cab le s t r i c t l y to i m p l i c i t - e x p l i c i t p a r t i t i o n s w i t h somewhat 
reduced s t a b i l i t y l i m i t s , e . g . , ui • h < 1 . 5 7 f o r DOF-by-DOF 
I - E p a r t i t i o n s . m 

I n t e g r a t o r : u n = u_n_1 + 6 ( i n + u n . 1 ) , 6 = j 

Ex t r apo la to r Form:. yP - u . + B d u . + i * u . 

Now equation (13) implies that 

(M + 52KX) u = (M - (52K2)u (14) 

If computational path (00 is followed, the following difference 
equation holds (cf. Table 2): 
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path (0) distorts rigid-body motions other than constant-displacement 
for the DOF-by-DOF and staggered partitions. 

So far we have focused our attention on the construction of stable 
and accurate extrapolators and on conditions for preserving rigid-
body motions. The remainder of the paper will be devoted to the ex
amination of the "incremental" effect of partition on algorithmic 
accuracy. 

Effect of Partitioning on Algorithmic Accuracy 
The conventional Fourier technique for assessing accuracy of in

tegration formulas for second-order systems proceeds as follows. First, 
the homogeneous difference equations are decoupled by projection 
on normal coordinates. Second, the frequency distortion and nu
merical damping of an uncoupled difference equation subjected to 
harmonic input of frequency to are presented as functions of the 
normalized sampling frequency coh. This procedure is not immedi
ately applicable to the partitioned difference equations (4ft), however, 
because these are not generally diagonalized by the normal modes of 
the semidiscrete equations (1). 

We shall instead use a limit differential equation approach to assess 
the frequency-dependent accuracy of various partitioned procedures, 
assuming that the solutions can be expanded in Taylor series up to 
the order of the integration formula. This approach has been exten
sively used for the evaluation of artificial viscosity [10,11]. It will be 
shown that the limit differential equations for the partitioned dif
ference equations display a frequency distortion effect as primary 
error source due to partitioning. 

When the trapezoidal formula is used in conjunction with path (CO') 
and the previous solution vector u„_i is used as the extrapolator, the 
following limit differential equation results for D = 0: 

JM--« 2 K 1 + -«2K2|u + Ku = 0(63) (19) 

Note that the mass matrix is considerably modified whereas the 
stiffness matrix is not, and also the absence of perturbation terms 
associated with the velocity vector u. We therefore conclude that the 
primary "incremental" algorithmic error caused by partitioning is 

Table 5 Test on rigid-body motion preservation (trapezoidal rule) 

Procedure 

Node-by-Node 

Impl icit-Expl icit 

Element-by-Element 

Implicit-Explicit 

DOF-by-DOF 

Implicit-Explicit 

Staggered 

Implicit-Implicit 

Element-by-Element 

Implicit-Implicit 

Computational Paths 

(CO1) 

Any+ 

Any 

A 

A 

A 

(CI) 

Any 

Any 

V 

V 

A 

(C2) 

Any 

Any 

V 

V 

A 

(JO) 

Any 

Any 

D 

D 

A 

Any = any rigid-body motion; A = preserves constant acceleration (free fall); V = preserves 
constant velocity; D = distorts all but constant displacement. 

Remark: For all computational paths, only stable predictors are used (see Table 1 or 2). 

0 10 20 30 

TIME 

Fig. 1 Distortion of constant-velocity rigid-body response of free-free bar 
for the DOF-by-DOF and staggered partitions 

instability for paths other than (0')- Thus stability and accuracy (as 
far as preservation of rigid-body motions is concerned) are not gen
erally equivalent attributes for partitioned integration. 

The main findings of this study are summarized in Table 5. Clearly 
path (0') is the choice when accurate representation of constant-
acceleration rigid-body motions (e.g., free-falling structures) is im
portant, and a DOF-by-DOF partition is used. The price paid for this 
formulation is the need for additional calculations, such as solving 
for accelerations, in the advancing step [8]. If the accuracy require
ment is relaxed to preservation of constant-velocity rigid-body mo
tions, then either path (1) or (2) is acceptable for those partitions 
(because predictors (18a) and (186) are stable for those paths, cf. 
Table 2), and the computational effort is accordingly reduced. Finally, 
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manifested in the frequency distortion. The amount of distortion can 
be obtained from the limit characteristic equation, 

det M - -62Ki + is2K2 | Q2 - &2K 
o o 

•• 0 , Q = wS (20) 

The two limit cases for (20) are: K2 = 0 (fully implicit integration) and 
K2 = K (fully explicit integration). These correspond in turn to the 
trapezoidal rule and central difference formula, respectively. It is well 
known that these two formulas introduce no numerical damping. 
Moreover, the central difference formula shortens the period whereas 
the trapezoidal rule elongates it by an amount roughly twice as big; 
this can be immediately deduced from (20). That the frequency dis
tortion is also the primary algorithmic error due to partitioning can 
also be shown to be true for other, numerically damped, integration 
formulas. (The demonstration relies on the fact that nonzero odd-
derivative residual terms in the Taylor series occur beyond the order 
of the integration formula truncation error.) 

As noted previously, the matrix equation (19) is not generally di-
agonalizable by the natural modes of the original equations of motion. 
To assess the accuracy performance of various partitions we can ex
ploit, however, the fact that the frequency error due to partitioning 
emanates from partition boundaries. This enables us to construct a 
two-degree-of-freedom model system from which the magnitude of 
this error as a function of the time stepsize can be appraised. The 
free-vibration equations of this system are 

i + a 

1 o 
0 

1 
0 + 

1 + -
1 

a 

- 1 

- 1 

1 

u ^ 0 (21) 

with appropriate initial conditions. Equations (21) can be interpreted 
as axial equations of motion for a fixed-free bar discretized into two 
elements whose length ratio is ha. 

For the foregoing two-DOF system the partition-caused artificial 
frequency, distortion can be asymptotically estimated (for fl « 1) from 
equation (20). Alternatively, the distortion can be computed exactly 
from the characteristic equation for the partitioned difference 
equations (see Table 3). As the calculations by the two approaches 
have shown no discernible difference, we present the results obtained 
by the latter approach. 

Figs. 2(a) and 2(b) show the frequency distortion of the low and 
high frequency components for the equal-length case a = 1. For this 
case the node-by-node implicit-explicit partition is the most accurate, 
followed by the element-by-element, the DOF-by-DOF, and the 
staggered partition. As the element length ratio (roughly square of 
the frequency ratio) is decreased, however, an intermediate value of 
a is reached at which the element-by-element procedure becomes 
more accurate than the node-by-node procedure (see Fig. 3). If the 
length ratio is further decreased, the low (high) frequency error ap
proaches that of fully explicit (implicit) formula, respectively, as ev
idenced by Fig. 4. The increase in the frequency ratio weakens the 
coupling effect between the two modes. 

From the foregoing accuracy analysis of the model system it can 
be seen that accuracy of solution components far from the partition 
boundaries is largely controlled by that of the integration formulas 
used. For solution components at or near the partition boundaries, 
the element-by-element and the node-by-node partitions enjoy a 
somewhat higher accuracy than either the explicit or the implicit 
formula itself in the sense that the frequency distortions are less than 
those of the fully explicit (implicit) integration formulas (see Figs. 
2 and 3). On the other hand, for the DOF-by-DOF and the staggered 
partitions the accuracy of the boundary solution components is in
ferior to that of the fully explicit (implicit) formulas. 

Conclusions 
The material covered herein complements an earlier paper [1], 

which was devoted to the general categorization of partitioned inte
gration procedures. The present paper expands on stability and ac
curacy as properties strongly related to the choice of extrapolation 

LOW-FREQ PHASE SHIFT ERROR OF TWO-DOF EXAMPLE, a = 1. 

INTEGRATION FORMULA: TRAPEZOIDAL RULE, PATH (0') 

PREDICTOR: 

Z 
o 
IS 
o ° 
E-

Or o 
W ™ 

FREQUENCY RATIO> 1.4H 

LEGEND 
a = FULLY IMPLICIT 
o = STAGGERED I-1 
a = NODE-BY-NODE I-
+ = ELEM-BY-ELEM I-
x = DOF-BY-DOF I-E 
o= FULLY EXPLICIT 

2»10 10"' 
CIRCULAR SAMPLING FREQ uh 

Fig. 2(a) Distortion of low-frequency root of model problem (21) as function 
of sampling frequency, for « = 1.0, trapezoidal integration rule with last-
solution extrapoiator, and specific partitions 

HI-FREQ PHASE SHIFT ERROR OF TWO-DOF EXAMPLE, a = 1. 

INTEGRATION FORMULA: TRAPEZOIDAL RULE, PATH (0') 

PREDICTOR: u j - V l 

fc. 

LEGEND 
a = FULLY IMPLICIT 
o = STAGGERED I-1 
a = NODE-BY-NODE I-E 
+ = ELEM-BY-ELEM I-E 
x = DOF-BY-DOF I-E 
o = FULLY EXPLICIT 

10"' Id 
CIRCULAR SAMPLING FREQ uh 

Fig. 2(b) Distortion of high-frequency root of model problem (21) as function 
of sampling frequency, for a = 1.0, trapezoidal Integration rule with last-
solution extrapoiator, and specific partitions 
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LOW-FREQ. PHASE SHIFT ERROR OF TWO-DOF EXAMPLE, a = 0 . 1 

INTEGRATION FORMULA: TRAPEZOIDAL RULE. PATH (0') 

PREDICTOR: u j ^n -1 

HI-FREQ PHASE SHIFT ERROR OF TWO-DOF EXAMPLE, a = 0 . 1 

INTEGRATION FORMULA: TRAPEZOIDAL RULE. PATH (0') 

*10 10 1C 
CIRCULAR SAMPLING FREQ ah 

Fig. 3(a) Distortion of low-frequency root of model problem (21) as function 
of sampling frequency, for a = 0.1, trapezoidal Integration rule with last-
solution extrapolator, and specific partitions 
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LEGEND 
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« = FULLY EXPLICIT 
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Fig. 3(b) Distortion of high-frequency root of model problem (21) as function 
of sampling frequency, for a = 0.1, trapezoidal Integration rule with last-
solution extrapolator, and specific partitions 

formula and computation path; two aspects that were only briefly 
commented upon in [1]. The information presented here may be used 
as an initial guide in method selection process. It should be noted, 
however, that the selection of a partitioned procedure over another 
may be based on nonalgorithmic considerations. Thus the availability 
of computational tools for treating certain subsystems of the overall 
problem (e.g., finite-element structural analyzers, boundary-integral 
analyzers for infinite domains, etc.) may naturally dictate the use of 
certain partitions. 

We have summarized in Table 6 general algorithmic characteristics 
of five partitioned solution procedures. Prom an unconditional sta
bility viewpoint the implicit-implicit partitions (staggered and ele
ment-by-element partitions) would be preferred. This would be the 
case if the envisioned integration stepsize is large compared to the 
shortest characteristic time of each subsystem, as usually is the case 
in tracing late-time responses. 

Implicit-explicit partitions are desirable if subsystems display 
widely different response characteristics and stepsizes are comparable 
with shortest characteristic times of one or more subsystems. They 
offer the advantage of computational simplicity for the explicitly 
treated subsystems. From an applications viewpoint the element-
by-element partition appears most natural for finite-element 
discretizations, but can become cumbersome for extensively con
nected partitions (e.g., volume-coupled finite-element models). The 
node-by-node partition appears to require additional implementation 
effort, as "boundary nodes" must be appropriately labeled. It becomes 
attractive, however, when the number of boundary unknowns is 
considerable. The DOF-by-DOF partition, although less accurate than 
the previous ones, may be advantageous when the explicit-implicit 
partition is to occur within each element or node point of a finite-
element or finite-difference model. An example would be the com
putational separation of translational and rotational degrees of 
freedom in lumped-mass finite-element models. 

We now summarize our main findings. 

LOW-FREQ PHASE SHIFT ERROR OF TWO-DOF EXAMPLE, a = 0 , 0 2 

INTEGRATION FORMULA: TRAPEZOIDAL RULE. PATH (0') 
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PREDICTOR: u 
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LEGEND-
a = FULLY IMPLICIT 
o = STAGGERED I-1 
A=NODE-BY-NODE I -E 
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x = DOF-BY-DOF I-E 
o = FULLY EXPLICIT 

T r 
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, , , I , I r: 
2M0 10 
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Fig. 4 Distortion of low-frequency root of model problem (21) as function 
of sampling frequency, for a = 0.02, trapezoidal integration rule with last-
solution extrapolator, and specific partitions 
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Table 6 Attributes of different partitioned procedures 

Part i t ioned Procedure 

Element-by-Element 

I-E 

Node-by-Node 

I-E 

DOF-by-DOF 

I-E 

Staggered 

1-1 

Element-by-Element 

I - I 

Boundary 
Rigid-Body 

Motions 

Exact 

Exact 

Exact only 
for 

Path (CO') 

Inexact 

Exact 

S t a b i l i t y + 

(See Ref. 1) 

2 / SL 

2/uBM 

Z/uD0F 

Stable 

Stable 

Remarks 

o Natural p a r t i t i o n fo r coupled 
f i n i t e element programs 

o I n e f f i c i e n t for problems with 
many boundary unknowns 

o E f f i c i en t for problems with many 
boundary unknowns 

o Modularization impaired because 
of implementation d i f f i c u l t i e s 
w i th in i m p l i c i t in tegrator 

o Allows degree-by-degree i m p l i c i t 
( e x p l i c i t ) in tegra t ion w i th in 
each f i n i t e element 

o Accuracy loss may be a problem 
o A t t rac t i ve for coupling f i n i t e 

element and boundary integral 
codes 

o No loss of accuracy due to 
pa r t i t i on ing 

o Natural p a r t i t i o n fo r coupled 
f i n i t e element program 

UH1 ' WRM> MD0F designate the maximum frequency of the e x p l i c i t l y par t i t ioned domains. 

For a given integration formula, stability and accuracy of parti
tioned integration procedures are affected by the interaction of the 
computational path and selected extrapolator. The user is free to 
select partition-type, computational path, and extrapolator from 
many possible combinations. Such versatility is an important at
tribute of the present formulation: implicit time-discretization, al
gebraic partitioning, and extrapolation. It is not shared by the "dif
ferential partitioning" formulation: partitioning at differential 
equation level, extrapolation, and time discretization, which was used 
in [2-6]. 

Possible distortion of rigid-body motions due to partitioning can 
be prevented for most partitions if the computational path (CO') in 
conjunction with a stable extrapolator is adopted. This is not the case 
when the differential partitioning approach is used except in the case 
of element-by-element and node-by-node partitions. 

The primary error due to partitioning is manifested in frequency 
distortion for solution components adjacent to a partition boundary. 
Partition-caused numerical damping is of secondary importance. In 
particular, for integration formulas which possess no numerical 
damping, such as the trapezoidal and the central difference formulas, 
partitioning introduces no additional numerical damping if the ex
trapolator is judiciously selected. 
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Soma Results on the Nature of 
Eigenvalues of Discrete Damped 
Linear Systems 
An analysis of the conditions under which the modes of a damped linear lumped parame
ter system are either all critically damped, overdamped or underdamped is presented. 
These conditions are derived from the definiteness of certain combinations of the coeffi
cient matrices. Some results concerning the completeness of the eigenvectors are stated. 
The conditions are compared to previous results and their usefulness is illustrated by nu
merical examples. 

Introduction 
In the case of a single-degree-of-freedom damped linear system 

described by the scalar equation 

mx + ex + kx = 0 

where m, c, and k are the mass, viscous damping constant and spring 
stiffness, respectively, it is well known that the nature of the solution 
is determined by the damping ratio 

f = 
l / cWmU/a 

2 \ml \k 
This ratio is then used to characterize critical damping (f = 1), ov-
erdamping (f > 1), and underdamping (f < 1). Thus the nature of the 
solution is known by examination of the coefficients c/m and k/m 
without solving the differential equation. The intent of this paper is 
to provide similar criteria for multidegree-of-freedom systems de
scribed by the matrix differential equation 

Mx + Cx + Kx = 0 (1) 

where M, C, and K are n X n symmetric matrices and x is an n -di
mensional vector. It is assumed that M and K are positive-definite 
and C is positive-semidefinite. 

In previous work Duffin [1] defined an overdamped system in terms 
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of a function of the quadratic forms of the coefficient matrices. More 
recently, Nicholson [2] defined an underdamped system in terms of 
the eigenvalues of the mass, damping, and stiffness matrices. Muller 
[3] responded to Nicholson's work and defined an underdamped 
system in terms similar to Duffin's and derived a sufficient condition 
in terms of the definiteness of the coefficient matrices. 

The conditions of Duffin and Nicholson require substantial cal
culations to check. What is offered here are uniform definitions of the 
four possible classifications of viscous damping and some conditions 
involving the coefficient matrices which require less computation. 
Also, a comparison is made between the results stated here and those 
of Duffin and Nicholson. It is shown that the result here is equivalent 
to that of Milller's in the special case when the damped system is di-
agonalized by the undamped modal matrix. 

Definitions 
For simplicity let us consider the transformation x = M_ 1 / 2y, where 

M 1 / 2 denotes the positive-definite square root of the positive-definite 
matrix M. Then equation (1) becomes 

y + ey + Ky = 0 (2) 

where C = M~l/iCM~1/2 is positive-semidefinite and K = 
M~1/2KM~1/2 is positive-definite. Note that C and K reflect the ge
ometry of the system as well as the values of the system parameters. 
As usual the eigenvalues of (2) are taken to be the 2n roots of the 
polynomial equation 

|A 2 /+AC + KI = 0 (3) 

where |-| denotes the determinant. More precisely they are the 2ra 
latent roots of the X-matrix [4] 

£>2(A) = A2/ + AC + K. 

We will further assume that the system is asymptotically stable in the 
sense that all motions exponentially decay to zero. 
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Following the definitions stated for the single-degree-of-freedom 
system we choose to define the various types of viscous damping in 
terms of the critical damping matrix defined and denoted by Cc — 
2K1'2 as follows: 

Critical Damping: The system described by equation (2) is criti
cally damped if C = Cc. 

Overdamping: The system described by equation (2) is over-
damped if C — Cc is positive-definitive. 

Underdamping: The system described by equation (2) is un
derdamped if Cc - C is positive-definite. 

Mixed Damping: The system described by equation (2) is said to 
have mixed damping if C - Cc is indefinite. 

Results 
With these definitions we will show that, based on the definiteness 

of C — Cc, statements can be made about the nature of the eigenvalues 
(and hence the solutions) which are direct analogies to the sign of f-1 
in the one-degree-of-freedom case. 

Critically Damped Systems. We will first show that if equation 
(2) is critically damped then there are at most n distinct negative real 
roots of equation (3) and no complex roots. Hence each of the modes 
of the damped system behaves in a critically damped manner. 

To illustrate this let C = 2K1/2 = Cc and relabel y as x in equation 
(2) and obtain an expression of the form 

x + 2K"1'2* + Kx = 0. (4) 

Let S be the orthogonal undamped modal matrix and let x = Sy. Then 

(4) becomes 

y + 2STK1'2Sy + STKSy = 0. (5) 

Now STKS = A is a diagonal matrix with positive entries along the 
diagonal. From matrix theory [5] we have 

STRWS = A1/2, (6) 

which is also a diagonal matrix. Equation (5) now becomes 

y + 2A1/2y + Ay = 0, (7) 

which is a diagonal system. The ith equation of (7) is 

yt + (2K^)uyi + Wayi = 0, (8) 

where Aij denotes the i-jth element of the matrix A. Hence the 
discriminant of the characteristic equation for equation (8) is 

( 2 A 1 / 2 , i )
2 - 4 A , i = 0 (9) 

Therefore each root of (3) is a repeated negative real number. Since 
similarity transformations such as S preserve eigenvalues we have 
that (2) has at most n negative real eigenvalues and no complex ei
genvalues. 

We also note here that since Cc = 2K1/2 is diagonalized by S, a 
necessary condition for (2) to be critically damped is for the damping 
matrix C to be diagonalized by the undamped modal matrix, that is 
for CK = KC [6]. 

Underdamped Systems, Next we will show that if equation (2) 
is underdamped the eigenvalues of (2) are all complex and appear in 
conjugate pairs with negative real parts. This corresponds to all modes 
of the system oscillating in damped harmonic motion. 

To show that this is the case we proceed from the definition noting 
that from [4, p. 10] if the matrix A is real, symmetric, and positive-
definite then qTj4q > 0 for all nonzero complex vectors q. Hence the 
definition of underdamping demands that 

s r ( 2 £ i / 2 - C)x > 0 

for all nonzero complex vectors x. This yields 

2xTKl'2x>xTGx. (10) 

The matrix C is taken to be positive-semidefinite so squaring (10) 
yields 

4 (x T K 1 / 2 x) 2 >(5 T Cx) 2 (11) 

The Cauchy-Schwarz inequality with norm and inner product defined 
via the usual scalar product of two vectors is 

( q T r ) 2 < q ' r q r T r . 

With q = x and r = K1/2x we obtain, since K1/2 is real symmetric, 

( x ^ ^ x ) 2 < xTx xTKx. (12) 

Combining inequalities (11) and (12) yields 

(xTCx)2 - 4xTx xTKx < 0. (13) 

If we multiply D2W on the right by the eigenvector x and the left by 
xT we obtain 

X2xTx + XxTCx + xTKx = 0, (14) 

which is a scalar equation in X with solution given by 

2xTxX = - x T C x ± {(xTCx)2 - ixTxxTKxY'2. (15) 

Inequality (13) implies that the discriminant in (15) is negative. All 
the quadratic forms in (15) are real numbers, hence all the eigenvalues 
have nonzero imaginary parts and appear in conjugate pairs. This also 
shows, of course, that all the eigenvectors of an underdamped system 
are complex. The real part of X is negative or zero via the definiteness 
condition on C. Zero is excluded as a possibility by the assumption 
of asymptotic stability. For a convenient criterion for asymptotic 
stability, see Walker and Schmitendorf [7]. 

Overdamped Systems. If equation (2) is overdamped then the 
eigenvalues of equation (2) are all negative real numbers, and none 
of the modes oscillate. 

To see this result we note that if C — 2K1/2 is positive-definite then 
there exists a positive-definite matrix P and positive scalar eo such 
that 

C = 2 ^ / 2 + eoP (16) 

Motivated by the discriminant in equation (15) we define the scalar 
form 

D= (yTCy)2-4yTyyTKy 

for all nonzero complex vectors y. Substituting (16) into this form we 
define the scalar function of the scalar variable £0, by 

D(e0) = {yT(2K^2 + e0P)y]2 - 4y7 'y yTKy 

for all nonzero complex vectors y. For 6 such that 0 < e < £0, and for 
a fixed D, define D(e) by 

D(e) = 4(yTK1/2y)2 + 4cyTK1'2y yTPy + e2(yTPy)2 - 4yTy yTKy, 

(17) 

and note thatD(eo) > D(e). Differentiating (17) with respect to e for 
a fixed P yields 

— (D(e)) = 4yTK1'2y yTPy + 2e (yTPy)2. (18) 
de 

Now note that if C - 2K1/2 is positive-definite then D'(e) > 0 for all 
nonzero complex vectors y, since K1?2 and P are positive-definite and 
e > 0. In particular then D'(e) > 0 for all eigenvectors of (2). 

Consider next, D(e) defined on the set of all eigenvectors of (2) 
which we denote by x. When e = 0, C = 2K112 and from [6] the damped 
modal vectors are the eigenvectors of K. Thus 

£1(0) = 4[(xTK1'2x)2 - xTx xTKx] 

= 4[(X1/2x:r
x)2 - xTx(XxTx)] 

= 4[X(xTx)2 - XOc'̂ x)2] = 0 

where X is the eigenvalue associated with the eigenvector x. We have 
D'(e) > 0 for all e > 0, therefore D(e) > 0 for all e > 0 on the set of ei
genvectors of (2). But, £0 may be arbitrarily large so that the discri-
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minant of (15) is always positive. Hence, the eigenvalues of (2) must 
be real as must the eigenvectors for an overdamped system. The sign 
of the eigenvalues follows from the assumption that C is positive-
definite. We see that for the overdamped case none of the modes os
cillate. 

Mixed Damped Systems. For the special case that C is diago-
nalized by the undamped modal matrix (CK = KC) we will show that 
equation (2) exhibits mixed damping if and only if there is at least one 
real root and at least one complex conjugate pair of roots of equation 
(3). One of the modes of the damped system will oscillate and at least 
one will not. 

This result follows from the diagonalization of equation (2). Since 
CK = KC, there exists a transformation U such that UTU = / and Ac 

= UTCU and A^ = UTKU are both diagonal. If we let y = Ux in 
equation (2) we have the expression 

x + Ac x + Aft x = 0. 

Recalling equation (6), we have 

C - Cc ~ Ac - 2Ak
1'2, 

(19) 

(20) 

where the tilde denotes similarity equivalence [5]. The right-hand side 
of expression (20) is diagonal. If it is indefinite we must have at least 
one value of i such that 

( A C - 2 A A
1 / 2 ) , V > 0 , (21) 

and at least one other value of i such that 

( A C - 2 A A
1 / 2 ) I I < 0 . (22) 

The ith pair of eigenvalues of (19) are found from 

(A„)» , [(Ac)u
2 - A{Ak)uY/2 

A; ± 
2 2 

Clearly if (21) holds X is real and if (22) holds X is complex with neg
ative real part. Hence, at least one mode of (3) will oscillate and at least 
one mode will not. The proof in the opposite direction is straightfor
ward. 

Discussion of Results 
Except for the mixed damping case the foregoing relationships 

between Cc and C are, in general, only sufficient to determine the 
nature of the resulting solutions. However, all of the relationships just 
stated become both necessary and sufficient for the special case that 
(2) is diagonalized by the undamped modal matrix. 

Duffin's definition states that an overdamped system is one such 
that 

(xTCx)2 > 4xTxxTK'x 

for all real x. This inequality holds on the set of eigenvectors of (2) if 
C — Cc is positive-definite. In this sense Duffin's definition, though 
harder to check, is equivalent to the definition of overdamping stated 
here. Lancaster [4] proves that, if a system is overdamped, the 
X-matrix defining the system must be of simple structure, meaning 
that the eigenvectors form a complete set, and hence, span an n-
dimensional vector space (theorems 4.4 and 7.3 of [4]). By following 
the proof of Lancaster it can easily be shown that if C — Cc is posi
tive-definite then the eigenvectors of (2) are complete. Hence, in terms 
of the definition offered here, a system which is overdamped has a 
complete set of eigenvectors associated with it regardless of the 
multiplicity of its eigenvalues. 

Nicholson's definition of underdamping [2] states that the system 
is underdamped if all the modes of (2) are underdamped. He then 
states that a sufficient condition for (2) to be underdamped is for 

c i<2fem i / 2 -

where ci is the largest eigenvalue of the matrix C and km is the 
smallest eigenvalue of the matrix K. This requires substantial cal
culation to check because it involves finding the eigenvalues of both 
C and K. Muller [3] improves this result and extends it by showing 

that a sufficient condition for (2) to be underdamped is for AK — C2 

to be positive-definite. 
It can easily be shown that Miiller's condition is equivalent to the 

one stated here if C and K commute. This is seen by assuming that 
2^1/2 _ c is positive-definite. Since 2K1'2 and C are both positive-
definite 2K1/2 + C is also positive-definite. Using two well-known 
results (a) that the product of two positive-definite matrices is posi
tive-definite if and only if they commute; (fa) if C and K commute, 
then so do C and K1/2) we have 

(2K-1/2 _ c) (2X1/2 + c) = 4K- 2CK1'2 + 2K1 /2C - C2 

= (2K1'2 + C) (2K1'2 - C) 

= AK- C2; 

which is positive-definite. Recalling that if A and B are positive-
definite matrices, then A < B implies A112 < B112 [8], we see that 
Miiller's result and our result are equivalent if CK = KC. 

Examples 
Several two-dimensional examples serve to illustrate the validity 

of the foregoing results. 
The definiteness of C — Cc can easily be checked by examining the 

determinant of each of its minors. The square root of K can be found 
by finding the eigenvectors and eigenvalues of K and using (6), 
Newton's method or a generalization of Newton's method given in [9]. 
For an easier first check one can look at the definiteness of C2 — AK, 
since C2 - AK > 0 implies C - Cc > 0, AK - C2 > 0 implies Cc - C > 
0 and C2 = AK implies C = Cc. However, if C2 — AK is indefinite Cc 

— C should still be checked since it yields stronger results than those 
based on the definiteness of C2 — AK. 

Critical Damping. Consider the system described by equation 
(2) with 

K-
'2.5 1.25' 

.1.25 1.25. 

which is positive-definite. Then 

f3 1 
2Ki/2 = 

1 2 

is also positive-definite. The associated eigenvalue problem is then 

f[X2 0 

l lo x2 + 
3X 

X 2X + 
2.5 1.25' 

1.25 1.25. 
x = 0 

The characteristic equation is 

X4 + 5X3 + 8.75X2 + 6.25X + 1.5625 = 0, 

which has the following roots: 

XliZ = -0.690983005, 

^3,4 : -1.809016994. 

Thus there are at most re = 2 negative real roots as was predicted. 
For the last two examples consider the physical example illustrated 
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in Fig. 1. Here, Xi and x2 are the displacements from equilibrium of 
masses m\ and m2 which are taken to be unity for simplicity. 

The equations of motion for this system are 

1 

0 

0 

1 
i + 

Cl + C2 

- C 2 

-C.2 

c2 

x + x = 0 

The most interesting case for this problem is one in which the C ma
trix is not diagonalized by the undamped modal matrix transforma
tion. Hence we will choose parameters such that CK ^ KC. 

Overdamping. Suppose ci = 5, c2 = 4, k\ = 2, and k2 = 1 then 

9 - 4 

-4 4 
and K = 

3 - 1 

- 1 1 

so that 

4K-
85 

- 4 8 

-48' 

28 

which is positive-definite so that C — 2KXI% is positive-definite and 
the system is overdamped. The characteristic equation is 

with roots 

X4 + 13X2 + 24X2 + 13X + 2 = 0 

Xi = -0.266 

X2 = -0.532 

X3 = -1.294 

X4 = -10.907 

which are all negative real numbers in agreement with our results. 
Underdamping. Next, let ci = 2, C2 = 1, k\ = 4, and k2 = 1 so 

that 

and K 
5 - 1 

- 1 1 

Then 

4K - C2 = 
10 

0 

which is positive-definite, so that 2K1 / 2 - C is positive-definite and 
the system is underdamped. The characteristic equation is 

X4 + 4X3 + 8X2 + 6X + 4 = 0 

which has roots 

Xi,2= -0.337 ±0.8326; 

X3,4 = -1.66 ± 1.481) 
where j = -v/^T. All the roots are complex conjugate pairs with neg
ative real parts as was predicted. 
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The method of point-to-point mappings has been receiving increasing attention in recent 
years. In this paper we discuss instead dynamical systems governed by cell-to-cell map
pings. The justifications of considering such mappings come from the unavoidable accu
racy limitations of both physical measurements and numerical evaluation. Because of 
these limitations one is not really able to treat a state variable as a continuum of points 
but rather only as a collection of very small intervals. The introduction of the idea of cell-
to-cell mappings has led to an algorithm which is found to be potentially a very powerful 
tool for global analysis of dynamical systems. In this paper an introductory theory of cell-
to-cell mappings is offered. The theory provides a basis for the algorithm presented in 
[14]. In the first half of the paper we discuss the analysis of cell-to-cell mappings in their 
own right. In the second half the cell-to-cell mappings which are obtained from point-to-
point mappings by discretization are examined in order to see what properties of the 
point mapping systems are preserved in the discretization process. 

1 Introduction 
Consider a dynamical system governed by 

x(t) = F(t,x(t)) (1) 

where x is a real-valued iV-vector and F is a real-valued vector func
tion. If the system is periodic so that F is explicitly periodic in t, then 
one may in principle integrate the equation over one period to relate 
the state of the system at the end of one period to the state at the end 
of the next period. Viewed in this manner, the governing equation for 
the system takes on the form 

x(n + 1) = G(x(ra)) (2) 

A point x(«) in the state space is mapped by G after one period into 
a point x(n + 1). Such a point-to-point mapping dynamical system 
is called a point map or a Poincare map in the mathematical literature. 
In recent years this method of point mapping has been receiving in
creasing attention as an attractive tool for treating nonlinear dy
namical systems. The general method dates back to Poincare [1] and 
Birkhoff [2]. In the past 20 years or so it has received a great deal of 
mathematical development; see, for instance, [3-6], Recently this 
theory has been applied in [7-11] for studying certain strongly non
linear mechanical systems under periodic parametric excitations. By 
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this approach various interesting bifurcation phenomena and other 
nonlinear features can be studied in a very effective manner. It is also 
strongly believed that since the point-to-point mapping method is 
extremely well suited for computer adaptation, there could be a much 
greater development of the methods in the coming years, particularly 
for the purpose of studying nonlinear systems. 

Point mapping dynamical systems have some peculiar features of 
their own. One is the possible existence of a cascade of bifurcations 
from periodic motions into periodic motions of ever higher periods 
leading to a seemingly chaotic motion [6]..Then there is the matter 
of the existence of homoclinic and heteroclinic points which make the 
numerical determination of the global behavior extremely difficult 
[12]. Another remarkable feature is that a motion which seems to be 
chaotic at one scale would exhibit a definite structure when a finer 
scale is used [13]. Features like these are most interesting and chal
lenging but also vexing. 

Here, one is tempted to take a somewhat more simple-minded but 
perhaps also more realistic point of view. This is concerned with the 
question of how fine a scale one is allowed to use in specifying a state 
variable. From the point of view of physical measurement, there is 
a limit of accuracy of measurement, say h. Two values of a state 
variable differing by less than h cannot be differentiated and for 
practical purposes they have to be treated as same. Also, from the 
point of view of computation, one is limited by the numerical precision 
to incur roundoffs. From both points of view one cannot really hope 
to deal with a true continuum of a state variable, but rather is forced 
to deal with only a large but discrete set of values for each of the state 
variables. This leads to the idea of considering a state variable not as 
a continuum of points but as a collection of cells. This consideration 
provides basically the motivation for the study of the present 
paper. 
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2 Ce l l - to -Ce l l M a p p i n g D y n a m i c a l S y s t e m s 
Let the coordinate axis of a state variable xi {i = 1, 2 , . . . , N) be 

divided into a large number of intervals with an interval size hi. The 
interval Zi of the *,•- axis is defined to be one which contains all X, 
satisfying 

(Zi - y2)hi £ xi < (Zi + y2)hi (3) 

Here, by definition Z, is an integer. A JV-tuple Zi, i = 1,2 JV, is 
then called a cell vector of the state space and is denoted by Z.1 A 
point x(xi,i = 1,2,...,N) belongs to a cell Z(Zt = 1,2 Af) if xi 
belongs to Zi for all i. Each cell is now considered as an entity and the 
state space is regarded as a collection of cells. Viewing the system in 
this manner and using an appropriate rule to identify x(n) and x(re 
+ 1) with corresponding cells Z(n) and Z(n + 1), one can associate to 
the point-to-point mapping (2) a cell-to-cell mapping C 

Z(n + I) = C(Z(n)), ZM + 1) = d(Z(n)) (4) 

where it is implied that C maps a set of integers to a set of integers. 
For convenience, we refer to (4) as a cell-to-cell mapping dynamical 
system and refer to C as a cell-to-cell mapping, or simply a cell 
mapping or a cell map. 

Such a reformulation from a point mapping to a cell mapping, while 
interesting by itself, will be merely an academic exercise if it does not 
lead to any practical advantages. In a companion paper {14] we shall 
demonstrate the utility of cell-to-cell mappings by offering a com
putational algorithm which can be used in a very effective way to 
study the global behavior of nonlinear systems. That algorithm is 
however based upon the properties of cell-to-cell mappings. Therefore, 
we shall first carry out a theoretical study of cell-to-cell mappings in 
this paper in order to provide a basis for [14] and other develop
ments. 

We first describe in Section 3 periodic motions and periodic cells 
of cell mappings, bifurcation phenomena, and domains of attraction 
of periodic cells. The development given in this section is valid for 
systems of any dimension. In Section 4 we study one-dimensional 
systems in order to gain a better appreciation of the properties of cell 
mapping dynamical systems. A similar study of two-dimensional 
systems is presented in Section 5. Cell mappings are studied in their 
own right in Sections 4-5. In Sections 6-8 we study the relation be
tween cell mappings and point mappings assuming that the cell 
mappings are in fact derived from the point mappings by some ap
propriate process of discretization. Here our main purpose is to see 
what properties are preserved, what properties are lost, and what new 
properties are introduced in going from a point mapping to a cell 
mapping. 

3 P e r i o d i c Mot ions , B i f u r c a t i o n , a n d D o m a i n s of 
A t t r a c t i o n 

In this section we discuss some basic concepts of cell mapping 
systems. First, let us identify cells with points of a Euclidean space 
with integer-valued Cartesian coordinates. Let e; be a unit vector in 
the direction of the Zi- axis. It can also be regarded as an JV-tuple of 
integers (0,0,. .0,1,0,. .0j with unit 1 at the ith position. A cell vector 
Z can can then be written as 

Z=ZZiei (5) 

A cell Z' is said to be a contiguous cell to Z in the Zi -direction if 

Z' = Z ± e,-. (6) 

The mapping of contiguous cells may be characterized by the local 
increments of the mapping C. The forward increment vectors of C at 
Z are defined as 

AyC(Z) = C(Z + ej) - C(Z). (7) 

1 Since Z is often used to denote the set of integers, we shall use whenever 
possible Z and Zi to denote the cell vector and its components. 

The backward increment vectors of C at Z are defined as 

VyC(Z) = C(Z) - C(Z - e,). (8) 

Consistency of course requires 

A/C(Z) = y,-C(Z+e,) . (9) 

A/C(Z) + A*C(Z + ej) = AfeC(Z) + A;C(Z + ek). (10) 

The components of the increment vectors at Z will be written as 
Ay(Z,C) and Vy(Z,C) respectively. Hence, 

Ay(Z,C) = C,-(Z+ey)-Ci(Z), (11) 

Vy(Z,C) = C , ( Z ) - C ; ( Z - e ; ) . (12) 

Equilibrium Cell. A cell Z* which satisfies 

Z* = C(Z*) (13) 

is said to be an equilibrium cell of the system. An equilibrium cell is 
said to be isolated if none of its contiguous cells is an equilibrium cell. 
One notes that Z* + ej is an equilibrium cell if and only if 

C(Z* + ej) = Z* + ej = C(Z*) + ej (14) 

This implies 

AjC(Z*) = ej or A,v(Z*, C) = «,v (15) 

Similarly, Z* — ej is an equilibrium cell if and only if 

VjC(Z*) = ej or VW(Z*, C) = 8,-j (16) 

Interpretation of (15) and (16) is simple. If and only if the increment 
vector AjC(Z*) is equal to the unit vector ej, then Z* has a contiguous 
equilibrium cell at Z* + ej. It has a contiguous equilibrium cell at Z* 
— ej if and only if the backward increment vector Vj C (Z*) is equal 
to ej. The conditions for Z* to be isolated are therefore 

AjC(Z*) 9* ej and VjC(Z*) ^ ej for all ,7 = 1, 2 JV. (17) 

If Aij(Z*, C) happens to be a unit matrix, then all the forward con
tiguous cells of Z* are equilibrium cells. If V;7(Z*, C) happens to be 
a unit matrix, then all the backward contiguous cells of Z are equi
librium cells. 

Core of Equilibrium Cells. Often one finds equilibrium cells 
which are contiguous. The largest collection of such contiguous 
equilibrium cells2 is said to form a core of equilibrium cells. The size 
of the core is defined to be equal to the number of cells in the core. 

Periodic Motions. Let Cm denote the cell mapping C applied m 
times with C° understood to be the identity mapping. A sequence of 
K distinct cells Z*{j), j = 1, 2 , . . . , K, which satisfy 

Z*(m + 1) = Cm(Z*(l)), m = l , 2 K - l 

Z*(l) = C*(Z*(1)) (18) 

is said to constitute a periodic motion of period K of the cell mapping 
C. For ease of reference we call such a motion a P-K motion and each 
of its elements Z* 0 ) aperiodic cell of period K or simply aP-Kce(l. 
According to this definition an equilibrium cell is of course a P — 1 
cell. 

The increment vectors of a cell mapping C may be generalized for 
the mapping Cm. We define forward and backward increment vectors 
o f C m a t Z a s 

AyCm(Z) = Cm(Z + ej) - Cm(Z) (19) 

VjCm(Z) = Cm(Z) - Cm(Z - ej) (20) 

Their corresponding components are 

Aij(Z, C") = (C"(Z + ej))i - (C"(Z))i (21) 

2 Sometimes, one finds equilibrium cells which are near to each other but not 
exactly contiguous. In such cases we refer to them, in a general term, as a cluster 
of equilibrium cells. 
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V;;(Z, C") = (Cm(Z)); - (Cm(Z - ej))i (22) 

Now we can study the condition for two contiguous cells to be pe
riodic cells of equal or different periods. Let Z* be a P — ifi cell and 
(Z* + ej) beaP — K2 cell. Let L be the least common multiple of i f i 
and if 2. 

L = kiKi = k2K2 

We can then evaluate AjCL(Z*) 

AjCL(Z*) = C * * (z* + ej) - C*i*i (Z*) = Z* + ej - Z* 

(23) 

leading to 

AjCL(Z*) = e j (24) 

Thus (24) is the necessary condition for Z* to be a P — ifi cell and (Z* 
+ ej) to be a P — if2 cell. In the sufficiency direction one can show 
that if (24) is true and Z* is a P - K1 cell, then Z* + ej is a P - K2 cell 
where if 2 is a positive integer factor of L. The condition (24) may also 
be written as 

V J C i (Z* + ej) = e j (25) 

We can also use the increment vectors to indicate the separation 
between two periodic motions. Let Z*(j), j = 1, 2,. . . , if 1 be the P — 
ifi cells of a P - if 1 motion. Let Z**0'), j = 1, 2 if 2 be the P -
if 2 cells of a P - if 2 motion. Z* 0') satisfies (18) with if = if 1 and Z** 0') 
satisfies (18) with if = if 2. We have of course 

CK!+m (Z*(l)) = Cm(Z*(l)) 

cK2+m (z**(l)) = Cm(Z**(l)) 

(26a) 

(266) 

Again letL be the least common multiple of K\ and if 2. Assuming now 
that Z*(l) and Z**(l) are contiguous so that 

Z**(l) - z * ( l ) = ej 

Then one can show that 

(27a) 

Z**( / ) -Z*0 ' ) = AjCJ-Hz*(l)), ; = 1 , 2 , . . . L (27b) 

Z**(l + L) - Z*(l + L) = AjC /-(Z*(l)) = ej (27c) 

The concept of an isolated equilibrium can also be generalized for 
P — if cells. A P — if cell Z* is said to be an isolated P — K cell if none 
of its contiguous cells is a P — if cell. By conditions (24) and (25) a P 
— if cell Z* is isolated if and only if 

AjC*(Z*) ^ eJ: VjCK(Z*) * ej for all J=l,2,...N (28) 

A P — if cell Z* is said to be an isolated periodic cell if none of its 
contiguous cells is a periodic cell, of any period. It requires that 

AjCkK(Z*) ^ ej and VjCkK{Z*) ^ ej 

for all J=l,2,...,N and all k = 1, 2, . . . (29) 

The concept of a core of equilibrium cells can also be generalized. 
A collection of contiguous P — K cells with all the contiguous P — K 
cells included is said to form a core ofP — K cells. The size of the core 
is the number of the cells in the core. Similarly, a collection of con
tiguous periodic cells of all periods with all the contiguous periodic 
cells included is said to form a core of periodic cells. Again, the size 
of the core is defined to be the number of the cells in the core. 

We can also introduce a notion which describes one-step mapping 
local behavior of a P — if cell. Let Z* be such a P — if cell. Let the 
norm of a cell vector Z be defined as 

If 

mi 

\\AjCK(Z*)\\ > 1 

(30) 

then Z* is said to be forward-repulsive in the J-direction. Simi
larly, 

||A,/CX(Z*)|| = 1 forward-neutral in the J-direction 

||AjCK(Z*)|| = 0 forward-attracting in the J-direction 

| |VjC i f(Z*)| > 1 backward-repulsive in the J-direction 

||VjCK(Z*)|| = 1 backward-neutral in the J-direction 

||VjCK(Z*)|| = 0 backward-attracting in the J=direction 

Bifurcation. The discussion of contiguous periodic cells is con
nected with bifurcation phenomena. Consider a cell mapping system 
which depends upon a parameter a 

Z(n+ 1) = C(Z(n), a) (31) 

where a is a real-valued parameter. C can take on only integer values. 
Thus, as a varies, each component of C either remains unchanged or 
suffers a jump of integer number of units. We say C is a contiguous 
function of a if as a varies the jumps C; can take are only +1 or —1. 
In the following discussion we assume C to be a contiguous function 
of a. 

Let Z* (a) be a P - 1 cell which may depend upon a. Assume that 
for a < a\ 

A;C(Z*(a)) ^ e;, V ;C(Z*(a)) ^ e; for all j = 1, 2 , . . . , N. 

(32) 

Then according to (17), Z* (a) is an isolated P — 1 cell. If as a increases 
across a i , one of the A;C(Z*(a)) and VyC(Z*(a)), say AjC(Z*(a)) (or 
VjC(Z*(a))), becomes ej, then the contiguous cell at Z* + ej (or Z* 
— ej) becomes now a new P - 1 cell. We say that at a = ct\ a bifur
cation from a P — 1 cell to a P — 1 cell has taken place at Z* in the 
J-direction. At a still higher value of a, say ai, another bifurcation 
from P — 1 to P — 1 might take place at Z* (a) in another direction. 
If, as a increases further, one of the increment vectors, say AjC(Z*(a)) 
(or VjC(Z*(a))), changes from ej to a vector different from ej, then 
we have the phenomenon of disappearance of a contiguous P — 1 
cell. 

Consider next, the more general case. Let Z* (a) be a P - if 1 cell and 
L be a multiple of ifi . If as a increases across a\, AjCL(Z*(a)) (or 
VjCL(Z*(a))) changes from a vector different from ej to ej, then a 
new P — if 2 cell at Z* (a) + e j (or Z* (a) — ej) comes into being at a 
= ai where if 2 is a positive integer factor of L. Here, we say that a 
bifurcation from P — if 1 to P — if 2 has taken place at a = a\. 

It might be appropriate to remark here that the forward and 
backward increments play a similar role in stability and bifurcation 
analysis as the Jacobian DG(x) does for a point mapping system, 
[10]. 

Domains of At t ract ion. Finally, we define the domains of at
traction for cell mapping systems. A cell Z is said to be "r-steps re
moved from aP — K motion" if r is the minimum positive integer such 
that C(Z) = Z*0') where Z*(j) is one of the P-K cells of that P -
if motion. In other words, Z is mapped in r steps into one of the P — 
K cells of the P — K motion and any further mapping will lock the 
evolution with this P — if motion. 

The set of all cells which are r steps or less removed from a P - if 
solution is called the "r-step domain of attraction" for that P — if 
motion. The total domain of attraction (or simply the domain of 
attraction) of a P — if motion is its r-step domain of attraction with 

4 One-Dimensional Cell-Mapping Dynamical 
Systems 

We shall discuss in this section a sample one-dimensional cell 
mapping system in order to illustrate the concepts introduced in 
Section 3. The mapping C is shown graphically in Fig. 1(a). Here we 
note that Z* = - 3 , - 2 , 6 are P - 1 cells. Z* = 6 is an isolated P - 1 cell 
while Z* = - 3 and Z* = - 2 are not. As by (15) AC(6) ^ 1, VC(6) ^ 
1, AC(—3) = 1, and VC(—2) = 1. Here we drop the subscript J because 
we are dealing with a one-dimensional case. The two cells at Z* - —3 
and Z* = - 2 form a core of 2 P - 1 cells. There are P - 2 cells at Z* 
= 4, 5, 7, and 9. The pair Z* = 4 and Z* = 9 form one P - 2 motion 
while Z* = 5 and Z* = 7 form the other P — 2 motion. There are P — 
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Fig. 1 An illustrative example of one-dimensional cell-to-cell mappings 

Fig. 2(1)-2(6) Various patterns of trajectories around the origin for two-
' H^) dimensional linear cell-to-cell mappings 

3 cells at Z* = 3, Z* = 11 and Z* = 13 to make up a P - 3 motion. Z* 
= 4 and Z* = 5 form a core of 2 P - 2 cells. Z* = 3,4,5,6, and 7 form 
a core of 5 periodic cells. 

Within the domain — 5 < Z < 16 as indicated in Fig. 1, one-step 
domain of attraction for Z* = — 3 consists of only one cell at Z* = —4. 
The one-step domain of attraction for the P ~ 1 cell at Z* = —2 is 
empty. The one-step domain of attraction for the P - 1 cell at Z* = 
6 consists of one cell Z = 1. The two-step domain consists of Z = —1, 
1,14. The 3-step domain - 5 , -1 ,1 ,14 ,16 . The P - 2 motion (Z* = 
4 and 9) has Z = 2, 8,10 as its one-step domain of attraction. The P 
— 2 motion (Z* = 5 and 7) has no domains of attraction of any steps. 
The P-3 motion {Z = 3,11 and 13) has Z = 0 and 12 as its one-step 
domain of attraction, and Z = 15 added for its 2-step domain of at
traction. These results are shown schematically in Fig. 1(6) where each 
circled number indicates the number of steps it takes to map a certain 
nonperiodic cell into a periodic cell. In this paragraph, when we list 
the cells in the domains of attraction, we have not included the peri
odic cells themselves. 

5 Two-Dimensional Linear Cell-to-Cell Mappings 
Next, we examine the properties of two-dimensional systems in 

order to gain further insight to the cell-to-cell mappings. We shall 
confine our investigation to linear systems and we are particularly 
interested in comparing the properties of cell mapping with those of 
point mapping systems. 

Consider a linear two-dimensional cell mapping system 

Z(n + 1) = HZ(rc) (33) 

(34) 

(35) 

Z1(n + l) = HnZ1(n)+H12Z2{n) 

Z2(n + 1) = H2iZ1(n) + H22Z2(n) 

where Hn, Hi2, H2i, and H22 are all integers. Let 

A = trace H = Hn + H22 

B = det H = HnH22 - H12H21 

Z* = 0 is an equilibrium or a P - 1 cell. An analysis can be carried out 
to study the trajectories around the equilibrium cell at Z* = 0. Here 
a trajectory from Z means the sequence of cell vectors C*(Z), k = 1, 
2 , . . . . The development is very similar to that given in [10] for two-
dimensional point mapping systems, except that now A and B are 
necessarily integers. The general nature of the trajectories around Z* 
= 0, hence the character of Z* = 0, is entirely determined by H and 
in particular by A and B. We describe the character of the trajectories 
around Z* = 0 by studying various typical cases according to the 
values of A and B. For comparison the reader may wish to refer to Fig. 
6 of [10] which classifies the P - 1 points for point mapping sys
tems. 

1 A =. 0 and B = 0. Both eigenvalues of H are zero. Also by Cayley 
Hamilton theorem H2 = 0. This means starting with any cell, 2 steps 
of mapping will take this cell to the P - 1 cell at the origin. Thus the 
whole cell space is the 2-step domain of attraction of Z* = 0. Thus Z* 
= 0 is indeed a very strong attracting cell. For an example, take 

H : 
2 1 

- 4 - 2 , 

or, in component form, 

The evolution pattern is shown in Fig. 2(1). All cells at Z = (a, - 2 a ) 
are mapped into Z* = 0 in one step. AH cells at Z = (b,a — 26) with 
different values of b are mapped into Z = (a, — 2a) in one step and 
into Z* = 0 in the second step of mapping. 
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We note here that for point mapping systems the case A = 0 and 
B = 0 implies an asymptotically stable P — 1 point at the origin. 

2 A = 1 and B = 0. The eigenvalues of H are 0 and 1. The pattern 
of evolution is as follows. Besides the P — 1 cell at Z* = 0 there are P 
— 1 cells at Z* with components Z\* and Z%* which meet the condi
tion 

Zl*:Z2*=H12:-(Hn-l) 

Any other points are mapped into one of these P — 1 cells in one step. 
Thus this case is characterized by (i) the existence of infinite number 
of P - 1 cells and (ii) each one of these cells has a one-step domain 
of attraction and the collection of these one-step domains of attraction 
exhausts the whole cell space. For an example, consider 

H = 
2 - 2 

The evolution is shown in Fig. 2(2). All cells at Z* = (2a, a) are P -
1 cells and all cells at Z = (2a + b, a + b), b = ± 1 , ± 2 are mapped 
into the P — 1 cell at Z* = (2a, a) in one step. 

For the point mapping system the case of A = 1 and B = 0 corre
sponds to a borderline case between an asymptotically stable node 
and a saddle point. 

For other typical cases we list below 11 additional ones: 

Z(») one finds the center point xw )(«) of the cell Z(n). Evidently the 
components of x^Hn) are given by 

XiWHn) = hiZdn) (36) 

Next, one evaluates 

xW'(ra + 1) = G(x<d>(rc)), or x^Hn + 1) = G;(x<d>(n.)) (37) 

The cell in which x (d )(« + 1) lies is then taken to be Z(n + 1). This 
process of discretization defines a cell mapping C in the form of (4). 
In component form we have 

Z ; ( n + l ) = Ci(Z(n)) = Int fG,-(x«>(n))+i 
hi 2 

(38) 

where x(rf,(rc) is related to Z(n) through (36) and Int (y) denotes the 
largest integer, positive or negative, which is less than or equal to 

y-
Once the associated cell mapping has been defined, it is of para

mount interest to find out what local properties of a point mapping 
system near its periodic points are carried over to the associated cell 
mapping system and what properties are not. For this purpose we 

3 A = - 1 and B = 0. 

4 A = 0 a n d B = - l . 

5 A = 2 and B = 1. 

6 A = - 2 a n d B = l. 

7 A = 0 and B = 1. 

8 A = - l a n d B = l. 

9 A = l a n d B = 1. 

10 A = 2 and B = 4. 

11 A = 3 and B = 1. 

12 A = l a n d B = - l . 

13 A = 5 and B = 5. 

Example: H = 

All cells are either P — 1 or P — 2. 
/ 3 2 \ 

Example: H = 

1 2\ 

Trajectories: Fig. 2(3). 

Example: H • , 
\-2 -3, 

Example: H = j I. 

Example: H = 

Example: H : 

- 3 -2) 
2 1\ 

1-3 - 1 / 

Example: H = I. 

Example: H = 

Example: H = 

Example: H = 

2 - 1 ' 

- 1 1, 
1 1 

1 0, 
3 1' 

1 2, 

Trajectories: 

Trajectories: 

Trajectories: 

Trajectories: 

Trajectories: 

Trajectories: 

Trajectories: 

Trajectories: 

Trajectories: 

Fig. 2(4). 

Fig. 2(5). 

Fig. 2(6). 

Pig. 2(7). 

Fig. 2(8). 

Fig. 2(9). 

Fig. 2(10). 

Fig. 2(11). 

Fig. 2(12). 

Here we have displayed the qualitative behavior of the trajectories 
for some typical cases. When compared with point mapping systems 
with the same values of A and B the qualitative behavior is more or 
less preserved. However, because a large number of patterns is pos
sible, it is difficult to devise a set of convenient names for classifica
tion. We shall be content to let the pattern tell the character of the 
system. One special feature for cell mapping systems is worthy of note. 
While for linear point mapping systems the center may be surrounded 
by periodic motions of any period or aperiodic motion depending upon 
the specific value of A in the range of — 2 s A £ 2, for cell mapping 
systems only P — 1, P — 2, P — 3, P — 4, and P — 6 motions are pos
sible. 

6 Cell Mapping as a Discretization of a Point 
Mapping 

In this section we consider cell mappings as resulted from discret
izing point mappings according to certain specified rules. Consider 
a point mapping system as represented by (2). For discretizing this 
system we first divide the state space x into a collection of Z cells ac
cording to (3). Within this cell framework the associated cell mapping 
for a point mapping G is defined in the following manner. For a given 

study in the next two sections the discretization of one-dimensional 
and two-dimensional linear point mapping systems. Many new con
cepts will be introduced in the study; it is therefore advantageous to 
begin with one-dimensional systems. 

7 Discretization of One-Dimensional Linear Point 
Mapping Systems 

Let the linear point mapping be given by 

y{n+ 1) = a + by(n) (39) 

It has a P — 1 point3 a t y* = a/( l — b). Let h denote the cell size for 
discretization. Let 

y* T ly* i\ 
Int — + -

(40) 
<h 2/ 

so that y * lies in the Y* cell of the y-axis. Moreover, let us write 

3 For appropriate terminology used here for point mappings, the reader is 
referred to [10]. 
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2(9) 

y(m-l) 

Fig. 2(7)-2(12) Various patterns of trajectories around the origin for two-
dimensional linear cell-to-cell mappings 

y* = hY* + hb, 
2 2 

(41) 

so that hb indicates the location of y* away from the center of the Y* 
cell; see Fig. 3. Next, let us introduce a new variable x with its origin 
of its coordinate axis located at the center of the Y* cell; i.e., 

x(n + 1) = y(n + 1) - hY* 

x(n) = y(ri) — hY* 

In terms of x(n), the point mapping is given by 

x(n + 1) = G(x(n)) = (1 - b)bh + bx(n) 

(42) 

(43) 

This is the point mapping to which we shall apply discretization. It 
is a mapping with a P — 1 point at x * = bh which is locally stable or 
unstable depending upon whether \b \ £ 1 or | 6 | > 1; see [10]. For this 
G we construct its associated cell mapping according to (38). 

Z(n + 1) = CZ(n)) = Int |(1 - b)b + bZ(n) + J| (44) 

It is important to note here that while the original point mapping (43) 
is linear, the associated cell mapping C after discretization is in general 
not a linear one. 

The first question we ask is whether the cell Z = 0 is always a P -
1 cell? The answer is "not always." Z = 0 i s a P — 1 cell if and only if 
C(0) = 0,i.e., 

Org (l-fe)5 + i < l (45) 

Fig. 3 Discretization of a one-dimensional point-to-point mapping 

Fig. 4 Dependence of existence of various P-1 cells on 5 and b 

The possibility of Z = 0 not being a P - 1 cell can be readily seen in 
Fig. 3. If x * is not located at the center of the cell (i.e., 5 ^ 0 ) and if 
the line y(n + 1) = a + by(n) has a very large slope, positive or neg- ~ (~~ + b) < b s^{-+ b) for <5 > 0 (46) 
ative, then the image of the point x(n) = 0 under G could very well 
give a value of x (n + 1) outside the range from —h/2 to h/2, and hence In the b-b parameter plane of Fig. 4 the region where Z = 0 is a P — 
outside the cell Z = 0. Equation (45) may also be written as 1 cell is the central region between the four curves labeled Z = 0. 

- ( - + S) < b < - ( - - + 8) for b < 0 
b 2 • -" b 2 

- ( - - + b) < b < - ( - + 5) for b > 0 
b 2 ~b2 
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In general, in the neighborhood of Z = 0, a cell at Z = M, M ^ 0 will 
be a P — 1 cell if and only if 

5 ( 1 ) 

M £ (1 - 6)5 + 6M + J < M + 1 (47) 

1 + -

1 - -

2(5 - M) 

1 

• s 6 < 1 -
1 

<b s 1 +• 

2(6 - M) 

1 

for M > 0 

for M < 0 (48) 
2(5 - M) " " " " 2(5 - M) 

In Fig. 4 the area between a pair of curves labeled Z = M is the region 
where Z = M is a P — 1 cell. One sees clearly that as b approaches 1 
there will be more and more P — 1 cells surrounding Z = 0 to form a 
core of P — 1 cells. In Fig. 4 the number in circle for each region indi
cates the number of cells in the core of P - 1 cells for that region. The 
precise number of cells in this core of P — 1 cells, to be denoted by S'1 ', 
is given by 

S ( D : Int |5 | 
1 

+ Int 161 +• 
1 

2(1 - 6), 
(49) 

2(1 - b)l 

When 6 is nearly equal to one, S'11 will be rather large, an approximate 
formula for S'1 ' is 

S«> » 1 + 2 Int 
1 

for | 6 - 1 | « 1 (50) 
\ 2 | 6 - 1 | 

We can also consider the conditions on b and 5 in order for a cell 
at Z = Mi to be mapped into a cell at Z = M2. By (44), the conditions 

M2 £ (1 - 6)5 + bMl + i < M2 + 1 (51) 

Some of the results are shown in the various figures of Fig. 5. In each 
figure the different regions are shown in the 6-6 parameter plane to 
indicate to which M 2 cell the cell M\ is mapped. Figs. 5(l)-5(4) are, 
respectively, for M\ = 0 ,1 ,2 , -1 . The area where Mi = M\ indicates 
the region where the cell at Z = M\ is a P — 1 cell. 

Next, consider possible P — 2 cells. Let Z = M\ and Z = Mi be the 
P — 2 cells of a P — 2 motion. They must satisfy 

M2 £ (1 - 6)5 + bMi + h < M2 + 1 

Mi £ (1 - 6)5 + bM2 + i < Mi + 1 
(52) 

Adding bMi to the first of (52) and 6Mi to the second, we can change 
(52) to 

(1 + b)M2 s (1 - 6)5 + 6(Mi + Mi) + V2 < (1 + &)M2 + 1 

(1 + 6)Mi s (1 - 6)5 + 6(Mi + M2) + \ < (1 + 6)Mi + 1 

(53) 

When 6 > 0 or when 6 < - 2 the interval |(1 + &)M2, (1 + 6)M2 + 1| 
and the interval {(1 + 6)Mi, (1 + 6)Mi + 1| cannot overlap. Therefore 
(53) cannot be satisfied simultaneously; hence, there can be no P — 
2 cells. We need only to confine our attention to —2 < 6 < 0 for pos
sible existence of P — 2 cells. 

By examining Fig. 5(1) one notes easily that there is a region where 
the cell Z = 0 is mapped into the cell Z = 1. By Fig. 5(2) there is a re
gion where the cell Z = 1 is mapped into the cell at Z = 0. These two 
regions overlap. The overlapped part is obviously the region where 
a P — 2 motion involving the cells Z = 0 and Z = 1 exists. In Fig. 6 this 
region is shown as the triangular shaped area P1P4P5. Similarly, there 
are regions for other P — 2 motions. They are listed as follows: 

P - 2 Motion: \Z = 0, Z = 1)—Area P1P4P5 
P - 2 Motion: \Z = - 1 , Z = 2)—Area P2P3.P5 

P - 2 M o t i o n : \Z = - 1 , Z = 1|—Area PbP9PwP6 

P - 2 Motion: \Z = - 2 , Z = 2)—Area P5PSPIQPI 

P - 2 M o t i o n : |Z = - 1 , Z = 0)—Area P10P14P11 
P - 2 Motion: \Z = - 2 , Z = lj—Area P10P13P12 

- 0 t> 0 -

3 

- 2 

- 1 

- 0 

— 1 

— 2 

— 3 

-4 

b 

2 -

1 -

0 -

- 1 -

- 2 -

- 3 -

-4 

, 

»2 

1 

5(4) 

-2 

= - 1 

0 

1 ^ 

/ 2 

/ 3 

I 1 < | 

M l = 

^ - 3 

4 : / 

' ' 

- 1 

1 1 

5 S 
S 
1 ' 0 s 

Fig. 5 Conditions on 8 and b for a cell Z = M-, to be mapped into Z = M2 

Fig. 6 Dependence of existence of various P-2 cells on 5 and b 
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The dotted lines in the foregoing list denote other P — 2 motions in
volving cells further away from Z = 0. The pattern is clear. The 
number of possible P — 2 cells increases without limit as b -~> — 1. 

The number of P — 2 cells, denoted by iS(2), may be computed as 
follows: 

(i) For 0 < 6 or 6 < - 2 : 

S<2> = 0. (54) 

(ii) For - 1/4 <151 < 1/4: 

6 < i - - L S<
2> = o 

!_ 1 < 6 < _ l f g(2> = 2 xlnt( ( 1 - 6 ) | 6 | -° i 
2|5| \ 1 + 6 I 

- i < 6 < 0 , s o o - a x h t ) 0 - 5 - ^ 1 " ) (55) 

(iij) For 1/4 < |5| < 1/2: 

1 - -j- < b < 0, S<2> = 0 
2|«l 

1 „,,, T /0.5 + (1 - b)|5| + fa\ 
- 1 < 6 < 1 - - — , S<2> = 2Xlnt — 

2|5| I 1 + 6 / 
6 < - i , sn^xtotl0*-"-™) (56) 

A serarch has shown that there are no other P - K cells with K > 2. 
Therefore, the P — 1 and P — 2 cells together form a core of periodic 
cells. The size of the core is the sum of S'1 ' and S<2>. Let S = S(1> + S<2>. 
The core size approaches infinity as \b\ -* 1. This is to be expected 
because a point mapping system with 6 = 1 has every point as a P — 
1 point and a point mapping system with 6 = — 1 has the origin as a 
P — 1 point and every other point as a P — 2 point. One also notes here 
that there are values of 6 and 8 such that no periodic cells exist or the 
core size is zero. However this could happen only if \b\ > 1, corre
sponding to an unstable P — 1 point at x = 0 for the point mapping 
system. 

Let us denote the size of the core of periodic cells by S(b, 5) to in
dicate its dependence on b and 5. For b > 0 the variation is slight. For 
a given b > 0, S(b,8) changes by no more than one unit in the whole 
range of 8. For 6 < 0 the variation of S(b,8) with 8 is more complicated. 
However, for a given 6, whether positive or negative as long as 161 ^ 
1, there exists a finite number Smax(6). 

S m a x (6)= max S(b,8) (57) 
-0.5sSs0.5 

The existence of a finite maximum possible core size Smax(6) which 
is independent of 8 and independent of the cell size h leads to a most 
important result. As is seen here, a P — 1 point of a linear point 
mapping system is replaced by a core of P — 1 and/or P — 2 cells. In 
other words pseudo periodic cells are introduced by the process of 
discretization. The existence of Smax(6) implies however that if we 
reduce the cell size h to get a finer and finer discretization one can 
expect that the "physical size" of the core [h-S(b, 8)] is bounded from 
above by [h-Smttx (&)]• Therefore, as h approaches to zero, the physical 
size of the, core of periodic cells also approaches to zero. 

The next question is whether the stability character of the P — 1 
point at x* = 0 of the point mapping system (43) is preserved. If 
preserved, in what sense. 

(i) b > 1. Let Z = M be a P — 1 cell at the right edge of the core 
of P — 1 cells, i.e., 

C(M) = Int |(1 -b)8 + bM + i} = M (58) 

but 

C ( M + l ) = I n t ( ( l - 6 ) 5 + 6 ( M + l ) + i | ^ M + l (59) 

Because of (58) and b > 1, Int ((1 - b)8 + b(M + 1) + ij has to be a M 
+ 1. However, C(M + 1) ^ M + 1, therefore, C(M + 1) > M + 1. Thus 
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the cell Z = M + 1 just outside the core is mapped further away from 
the core. One can show a similar result for the cell just outside the left 
edge of the core. The core is therefore a repulsive one for 6 > 1. 

(ii) 0 < 6 < 1 . By (58) and the condition 0 < 6 < l , I n t | ( l - 6)5 
+ b(M + 1) + |) has to be either M or M + 1. However, C(M + 1) ^ 
M + 1, therefore C(M + 1) = M. Thus the cell Z = M + 1 is mapped 
into the core in one step. Similarly the cell outside the left edge of the 
core is mapped into the core in one step. The core is an attracting one 
for 0 < 6 < 1. 

(Hi) — 1 < b < 0. Consider first the case where Z = 0 is the only 
P — 1 cell and there are no P — 2 cells. 

C(0) = Int |(1 - b)8 + i) = 0 (60) 

One can evaluate C(l) and find C(l) has to be either —1 or 0. Similarly, 
C(—1) has to be either 0 or +1 . There are four possibilities. 

(a) C(l) = 0 and C(—1) = 0. This says that the cells just outside 
the core are mapped into the core in one step. 

(b) C(l) = 0 and C(—1) = 1. Again the cells just outside the core 
are mapped into the core in one step or in two steps. 

(c) C(l) = - l a n d C ( - l ) = 0 . S a m e a s i n ( 6 ) . 
(d) C(l) = — 1 and C(—1) = 1. This case is ruled out as we assume 

here nonexistence of P — 2 cells. Therefore, in this case the core is an 
attracting one. 

Consider next the case of a core consisting of P — 1 and P - 2 cells. 
Let Z = Mi and Z = Mz be the two edge cells of the core with Mi > 
Mt. Then 

M2 = C(Mr) = Int |(1 - 6)5 + 6MX + | | 

Mi = C(M2) = Int |(1 - 6)5 + 6M2 + i\ 

Because of (61) a n d - 1 < 6 < 0 , C(Mi — 1) has to be either M2 or Mi 
+ 1 while C(Mi + 1) has to be either Mi or Mi — 1. Again, by con
sidering the four possibilities and recognizing that Z = Mi — 1 and 
Z = Mi + 1 are not P — 2 cells, one can show that the core is an at
tracting one. 

(iv) b < —1. In a similar manner we can show that the core is a 
repulsive one for 6 < — 1. 

Summary of the Main Results. By going from a linear point 
mapping system to its associated cell mapping system, the P — 1 point 
of the point mapping is replaced by a core of P — 1 and P — 2 cells. The 
number of the cells in the core is bounded for 161 ^ 1 and the bound 
depends only upon 6 and is independent of the cell size h. The sta
bility character of the linear point mapping is preserved. An asymp
totically stable P — 1 point of the point mapping is replaced by an 
attracting core of periodic cells for the cell mapping system and an 
unstable P — 1 point of the point mapping is replaced by a repulsive 
core of the cell mapping system. Moreover, as the cell size h ap
proaches zero the physical size of the core also approaches zero. 

8 Discretization of Two-Dimensional Linear Point 
Mapping Systems 

Next, we consider two-dimensional linear point mapping systems 
and its associated cell mapping systems. Consider 

lxi(n + 1)V = [1 - hu, -hn \ I8ihi\ lhn hi2\ lxi(n)\ .^. 

\x2(n + 1)} \ -hu, 1 - hu) \8ihij \h2i h22j \xi(n)J 

where |5i | s 1/2,[52| s 1/2. This linear point mapping system has a 
P — 1 point at a point (8ihi,S2h2). Since we are only interested in the 
connection between the qualitative behavior of this system and that 
of its associated cell mapping, we shall assume that the x-coordinate 
system is already such that matrix H is in its canonical forms; see p. 
267 of [10]. Of the three canonical forms we shall discuss only one case 
here for which H in its canonical form is diagonal. For simplicity we 
shall also take hi = h2 = h. The point mapping is then given by 

xi(n+ 1) = (1 -6 1 )5 1 / i + 61xi(re) (63a) 

x2(n + 1) = (1 - b2)82h + b2x2(n) (636) 

Here, we have written hu and hu as 6i and 62, respectively. The two 
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equations are uncoupled. The discussion given in Section 7 for one-
dimensional linear point mapping systems is then applicable to each. 
The associated cell mapping4 is given by 

Zdn + 1) = Ci(Zi(n)) = Int |(1 - &i)5i + bxZx{n) + i) (64a) 

Z2{n + 1) = C2(Z2(n)) = Int |(1 - b2)82 + b2Z2(n) + J) (646) 

A P - 1 cell for Cx and a P — 1 cell for C2 leads to a two-dimensional 
P - 1 cell for C. A P - 1 cell for d and a P - 2 cell for C2, a P - 2 cell 
for Ci and a P - 1 cell for C2, and a P - 2 cell for d and a P - 2 cell 
for C2 will all lead to a two-dimensional P — 2 cell for C. If Si is the 
number of cells in the core of periodic cells for (64a) and S2 the 
number for (646), then the two-dimensional cell mapping will have 
a core size equal to d X S2. Also, the physical size of the two-dimen
sional case approaches zero as h approaches zero. 

Let us now define a core of periodic cells to be attracting if it is at
tracting in both directions, and to be repulsive if there is one direction 
in which the core is repulsive. With these definitions at hand, it is then 
easy to show that if | b \ | < 1 and \b2\ < 1, then the two-dimensional 
core of periodic cells is an attracting one. If \b\\ > 1 or \b2\ > 1, then 
the core is a repulsive one. Thus the stability character of the point 
mapping systems is preserved in the associated cell mapping sys
tems. 

When the H has complex and conjugate eigenvalues, the canonical 
form may be put in the form 

The associated cell mapping for this case is very interesting but is also 
very complex. Therefore this case will not be discussed in this intro
ductory paper. The results will be given in a separate paper where a 
very detailed study of two-dimensional systems will be presented. It 
suffices to say here that again there are pseudo periodic cells intro
duced by the discretization into a cell mapping. The pseudo periodic 
cells increase in number as a2 + /32 -»• 1 but for a given set of a and (3, 
a2 + /32 5̂  1, there is an upper bound on the number of pseudo peri-

4 Again, we emphasize that the associated cell mapping system to a linear 
point mapping system is in general not linear. 

odic cells. Also the stability character of the point mapping system 
is preserved in the cell mapping systems. 

9 A Concluding Remark 
It might be appropriate to remark here in concluding the paper that 

it is intended only to be an introduction to the theory of cell mappings. 
Many important theoretical questions remain to be studied and ap
plications other than that given in [14] are to be explored. 
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An Unravelling Algorithm for Global 
Analysis of Dynamical Systems: An 
Application of Cell-to-Cell Mappings 
A new method is offered here for global analysis of nonlinear dynamical systems. It is 
based upon the idea of constructing the associated cell-to-cell mappings for dynamical 
systems governed by point mappings or governed by ordinary differential equations. The 
method uses an algorithm which allows us to determine in a very effective manner the 
equilibrium states, periodic motions and their domains of attraction when they are 
asymptotically stable. The theoretic base and the detail of the method are discussed in 
the paper and the great potential of the method is demonstrated by several examples of 
application. 

1 Introduction 
For dynamical systems subjected to periodic excitation, it is possible 

in principle to reformulate the governing equations in the form of 
point-to-point mappings of Poincare. 

x ( « + 1) = G(x(re)) (1) 

In recent years Poincare maps have seen increasing applications in 
many fields of engineering and science [1,2]. They have been used in 
[3-5] to study certain nonlinear mechanical systems under parametric 
excitation. 

In analyzing a strongly nonlinear system, one is often interested 
in the global pattern of its motions in addition to the local behavior 
around its equilibrium states and periodic motions. However, for most 
nonlinear systems and for nonlinear point mapping systems (1) in 
particular, even seemingly very simple ones can have extremely 
complicated global behavior and they are in general very difficult to 
analyse. Moreover, there does not seem to be a general and standard 
method available for such global analyses. The most effective way at 
the present time is probably still the straightforward numerical 
evaluation to compute the motions and then to infer some global 
properties of the system from the numerical results. This procedure 
is however, very time-consuming and inefficient unless one is only 
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to prepare a Discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, May 
1980; final revision, June, 1980. Paper No. 80-WA/APM-27. 

interested in a very limited scope of the global picture. It is for this 
reason that any new method which could facilitate the study of the 
global behavior of strongly nonlinear systems would be most wel
come. 

In this paper we present such a method of global analysis. The 
method will be discussed first in the context of point-to-point map
ping systems. It is based upon the idea of cell-to-cell mapping, a 
theory of which has been presented in [6]. Through a process of 
discretization a point mapping system is replaced by a cell-to-cell 
mapping system 

Z(n + 1) = C(Z(re)) (2) 

Where C is the mapping and the components of Z take on only integer 
values. Using this idea of cell to cell mapping, an algorithm has been 
devised which allows us to determine in one run of "computing" all 
the periodic cells and all the domains of attraction of the periodic cells 
in the region of the state space which is of interest to us. Since this 
method of global analysis and the theory of cell-to-cell mappings are 
both new subjects of development, many novel concepts and new 
terminology are necessary. The reader is referred to [6] for any terms 
which might be unfamiliar to him and which are not explained in this 
paper. 

In Section 2 we discuss briefly the cell-to-cell mappings and explain 
a set of terminology which is used repeatedly in the paper. In Section 
3 the basic idea of the algorithm of global analysis is discussed first 
and specific methods of implementing the algorithm will be presented. 
We then illustrate the method by applying it in Section 4 to a simple 
two-dimensional point mapping system for which we have a reason
ably complete understanding of its global behavior. In Section 5 we 
apply the method to the point mapping of a mechanical system with 
a single degree of freedom which is known to have very complicated 
global behavior. 
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The application of the algorithm need not be restricted to point 
mapping and cell mapping systems. In Section 6 we show how the 
application may be extended to dynamical systems governed by 
nonlinear ordinary differential equations. 

Being intended as an introduction to a new method, the paper does 
not pretend to present all aspects of the method in the most elegant 
and definitive form. Many further developments await. We do hope 
to show here that the method is very effective and has merit. More
over, it is particularly tailored for computer usage and, therefore, its 
utility could be expected to increase with the advancement of com
puter development. 

2 Cell-to-Cell Mappings 
An JV- dimensional state space is divided into a large number of 

cells. Each cell is identified by an N- tuple of integers. The evolution 
of the dynamical system is then recast in the form of a cell-to-cell 
mapping. Such a cell-to-cell mapping is denoted by (2) where Z is the 
JV- dimensional cell vector whose components can take on only integer 
values. For the philosophical and scientific basis of such a reformu
lation the reader is referred to the discussion given in the introductory 
section of [6]. 

Periodic Motions and Periodic Cells. Let Cm denote the cell 
mapping C applied m times with C° understood to be the identity 
mapping. A sequence of K distinct cells Z*(j), j = 1, 2 , . . . , K which 
satisfy 

Z*(m + 1) = Cm(Z*(l)), m = l,2,...,K-l, 

Z*(l) = C*(Z*(D), (3) 

is said to form a periodic motion of period K. For convenience we call 
such a motion a P-K motion. We call each of its elements Z*(j) ape
riodic cell of period K or simply a P-K cell. A P — 1 cell may also be 
regarded as an equilibrium cell under the cell mapping C. 

Domains of Attraction. A cell Z is said to be "r-steps removed 
from a P-K motion" if r is the minimum positive integer such that 
Cr(Z) = Z*(/) where Z*(j) is one of the P-K cells of that P-K motion. 
In other words, Z is mapped after r-steps into one of the P-K cells of 
the P-K motion and any further mapping will lock the evolution of 
the system in this P-K motion. The set of all cells which are r-steps 
or less removed from a P-K motion is called the "r-step domain of 
attraction" for that P-K motion. The total domain of attraction, or 
simply the domain of attraction of a P-K motion is its r-step domain 
of attraction with /•-*=>. 

One of the main purposes of any global analysis is to determine the 
domains of attraction. 

3 An Unravelling Algorithm of Global Analysis 
In this section we describe the basic idea of the algorithm which 

allows us to determine the periodic cells and their domains of at
traction in a very effective manner. The algorithm will be explained 
using one-dimensional cell-to-cell mappings but it will be seen later 
that its application is not limited to one-dimensional systems. 

Consider a one-dimensional cell mapping (2) where the state cell 
vector Z becomes now an integer scalar. Before discussing the algo
rithm let us first introduce a most important and necessary concept 
of a "sink cell." 

Sink Cell. For most physical problems once the state variable 
exceeds a certain positive or negative magnitude, one is no longer 
interested in the further evolution of the variable. This implies that 
there is only a range of the value of the state variable which is of 
practical interest to us. In terms of cells of the state variable, it means 
that one is only interested in cells lying between a lower limit cell Z<L> 
and a upper limit cell Z<u>. Let JVC = Z<[" - Z<« + 1. Then Nc is the 
total number of cells one is actually interested in. Let us call these cells 
the "regular cells." We take the view that once the evolution of the 
system takes it to a cell Z < Z ( L ) or Z > Z(t/>, then we are no longer 
interested in its further evolution. This notion allows us to introduce 
a sink cell which is defined to be a very large all encompassing cell 
containing all the cells Z with Z < Z<L> or Z > ZW>. Viewed in this 
framework, the total number of cells one is concerned with will always 

be finite although it could be and usually will be huge. Moreover, for 
convenience one can relabel all the regular cells by positive integers, 
1, 2 , . . . , Nc. The sink cell can be labelled as the Oth cell. In the re
mainder of this section we shall assume that any cell mapping C under 
discussion has been so standardized that the cell designation uses only 
non-negative integers with Z = 0 to be the sink cell. Then for mapping 
between regular cells we have 

Z(n + 1) = C(Z(n)) f o r Z ( n + l ) , Z(n) = 1, 2 , . . . , JVC (4) 

This mapping is supplemented by two additional rules of mapping: 

(i) If Z(n) = 1 ,2 , . . . , JVC and C(Z(n)) < 1 or C(Z(ri)) > Nc, then 
Z(n + 1) = C(Z(ra)) is set equal to zero. 

(it) C(0) = 0. This second rule says that the sink cell is a P - 1 cell 
and, therefore, once the system is mapped into the sink cell it stays 
there. 

Once it is recognized that the total number of cells involved, the 
regular cells and the sink cell, will be finite, several far-reaching 
consequences follow. These make the proposed algorithm workable 
and efficient. 

(i) By definition the sink cell is a P — 1 cell. 
(ii) Among the regular cells there could be periodic cells belonging 

to various periodic motions. The number of the periodic cells could 
be very large but it cannot exceed JVc.The periodic motions can have 
various periods but the period of any periodic motion cannot exceed 

(Hi) The evolution of the system starting with any regular cell Z 
can lead to only three possible outcomes: 

(iii-1) Cell Z is itself a periodic cell of a periodic motion. The 
evolution of the system is simply a periodic motion. 

(iii-2) Cell Z is mapped into the sink cell in r-steps. Then the cell 
belongs to the r- step domain of attraction of the sink cell. 

(iii-3) Cell Z is mapped into a periodic cell of a certain periodic 
motion in r-steps. Thereafter, the evolution is locked into that periodic 
motion. In this case the cell belongs to the r-step domain of attraction 
of that periodic motion. 

To delineate the global properties of a cell Z we introduce three 
numbers. They are the group number Gr (Z), periodicity number 
P(Z) and the steps number S(Z). To each existing periodic motion 
we assign a group number. This group number is then given to every 
periodic cell of that periodic motion and a}so to every cell in the do
main of attraction of that periodic motion. The group numbers, pos
itive integers, can be assigned sequentially as the periodic motions 
are discovered one by one during the global analysis. Obviously, there 
will be as many group numbers as there are periodic motions. Each 
group has an invariant set in the form of a periodic motion which has 
a definite period. A periodicity number equal to this period is assigned 
to all the cells in the group. If a cell Z has a periodicity number P(Z) 
= K, then the cell Z is either a P-K cell itself or it belongs to the do
main of attraction of a P-K motion. The steps number S(Z) of a cell 
Z is used to indicate how many steps it takes to map this cell Z into 
a periodic cell. If Z happens to be a periodic cell then S(Z) = 0. In this 
manner the global properties of a cell Z is entirely characterized by 
the numbers Gr (Z), P(Z), and S(Z). The purpose of our global 
analysis is to determine these three numbers for every regular cell 
when the cell mapping C(Z) is given. 

Now we are ready to describe the algorithm of the proposed global 
analysis which will be seen to be an extremely simple one. Four one-
dimensional arrays will be used. They are C(Z), Gr (Z), P(Z), and 
S(Z) with Z = 0,1, 2 , . . . , JVC. C(Z) is the array which defines the cell 
mapping, i.e., a cell at Z is mapped into cell C(Z). Z = 0 is used as the 
sink cell; therefore, C(0) = 0. The other three arrays give the group 
number, the periodicity number and the steps number for each cell 

1 We note here that when the new framework of finite number of cells is 
adopted, chaotic motions no longer have meaning. One must accept the situation 
of not having chaotic motions but only having P — K motions with possibly very 
large K. 
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as explained in the last paragraph, except that the group number Gr 
(Z) will be used for an additional purpose to be explained shortly. 

The algorithm involves essentially calling up a cell and then having 
it processed in a certain way in order to determine its global character. 
To be viable and efficient it should have the capability of distin
guishing three kinds of cells. Belonging to the first kind are the cells 
which have not yet been called up by the program. They will be called 
virgin cells. All Gr (Z), Z = 0 , l , 2 , . . . , Nc, are set to zero at the be
ginning of a run of the program. Therefore, a virgin cell Z is charac
terized by having Gr (Z) = 0. Cells of the second kind are those which 
have been called up and are currently being processed. They will be 
called cells under processing. If we adopt the rule that a virgin cell 
once called up will have its group number reassigned as —1, then all 
the cells under processing will be characterized by having —1 as their 
group number. Here the number —1 is simply used as a symbol of 
identification. Finally there are cells of the third kind. They are the 
cells whose global properties have been determined and whose group 
numbers, periodicity numbers and steps numbers have all been as
signed. They will be called processed cells and they are identified as 
having positive integers as their group numbers. In this manner Gr 
(Z) serves also as an identification flag of processing before it is per
manently assigned. 

In processing the cells we make repeated use of sequences formed 
by the mapping. Starting with a cell Z, we form 

Z — C(Z) — C2(Z) -> . . • Cm(Z) (5) 

Such a sequence will be called a mth-order processing sequence on 
Z. In the algorithm we process the cells in a sequential manner, Z = 
0 ,1 , 2 , . . . , Nc- The idea is to begin with a virgin cell Z and examine 
the processing sequence Cl(Z) as defined by (5). At each step in 
generating this sequence there are three possibilities: 

(i) The newly generated element C'(Z) is such that Gr (C'(Z)) 
= 0 indicating that the cell C'(Z) is a virgin cell. In this case we con
tinue forward to locate the next cell Cl+1(Z) in the processing se
quence. Before doing that we first set Gr (C'(Z)) = - 1 in order to 
indicate that C'(Z) is no longer a virgin cell but a cell under pro
cessing. 

(ii) The newly generated cell Cl(Z) = Z' is found to have a positive 
integer as its Gr (Z') number. This indicates that C'(Z) has appeared 
in one of the previous processing sequences and its global character 
has already been determined. In this case the current processing se
quence is terminated at this point. Since this current processing se
quence is mapped into a cell with known global properties, the global 
character of all the cells in the sequence is easily determined. Ob
viously all the cells of the present processing sequence will have the 
same group number and the same periodicity number as that of Z'. 
The steps number of each cell in the sequence is simply 

S(C'(Z)) = S(Z') + i-j, j = 0 ,1 , 2 i. (6) 

Once these global character numbers have been assigned, the work 
on this processing sequence is completed and we go back to the cell 
sequence to pick the next virgin cell to begin a new processing se
quence. 

(Hi) The newly generated cell Cl(Z) = Z" is found to have —las 
its group number. This indicates that C'(Z) has appeared before in 
the present sequence. Therefore, there is a periodic motion contained 
in the sequence and, moreover, the periodic motion is a new one. In 
this case again the processing sequence is terminated. To all cells in 
the sequence is assigned now a new cell group number which is one 
larger than the number of groups already determined. Next, it is a 
simple matter to determine the position in the sequence where the 
cell Cl(Z) reappears. Let Cl(Z) reappear in the (J + l ) th position of 
the sequence, i.e., Cl(Z) - C'(Z), j < i. The periodicity of the periodic 
motion is i — j , and all cells in the processing sequence are assigned 
(i —j) as their periodicity numbers. With regard to the steps number, 
we have 

S(Ck{Z))=j-k, k = Q, 1 , 2 , . . . , ; - 1 , 

S(Ck(Z)) = 0, k=j,j+l,...,i-l. 

I Begin j . - / z - 0 , 1 , • • • , N C Y -

S u b r o u t i n e OLDG: fffi — 
Gr(E)<-G 
P(E)<-P 
S(E)*-S4M -<§>-

E-c-C(E) 
Gr(E)-*-G I 
P(E)*P **•' 
S (E)+SW-J 

/ } — * ( Re tu rn j 

S u b r o u t i n e NEWG: 

U e g i n W G*G+1 
E-<-Z 

Gr(E)-KJ 
P(E)*tt 
S(E)*0 

Fig. 1 Flow chart for the algorithm 

Once these global character numbers have been assigned, the work 
on this processing sequence is finished and we go back to the cell se
quence to pick the next virgin cell to begin a new processing se
quence. 

Using these processing sequences starting with virgin cells, the 
whole cell space Z = 0 , 1 , 2 , . . . , Nc is covered and the global character 
of all cells are determined in terms of the numbers Gr (Z), P(Z), and 
S(Z). What follows are some discussions to tie up the loose ends. 

The first processing sequence begins with Z = 0. Since Z = 0 is the 
sink cell and is a P — 1 cell, the processing sequence has only two el
ements (one cell): 

Z = 0, Cl{0) = 0. (8) 

(7) 

Group number 1 is assigned to this sequence; therefore, Gr (0) = 1. 
Periodicity number is 1, P(0) = 1, and the steps number for Z = 0 is 
0, S(0) = 0. This completes the action on this first processing se
quence. 

Next, we go back to the cell sequence to take Z = 1 as the starting 
cell for the second processing sequence. This sequence will terminate 
either because a member C'(l) = 0, i.e., mapped into the sink cell, or 
because the sequence leads to a periodic motion within itself. In the 
former case all cells in the sequence will have the cell group number 
of the sink cell, No. 1. In the latter case a new cell group number, No. 
2, is assigned to all cells in the sequence and the periodicity number 
and the steps numbers are assigned in an appropriate manner as 
discussed in (iii) in the foregoing. 

After completing the second processing sequence, we again go to 
the cell sequence and take the next cell Z = 2. However, before we 
start a new processing sequence with it we have to make sure that it 
is a virgin cell by checking whether Gr (2) = 0 or not. If it is, we start 
the new sequence. If not, we know that the cell Z = 2 has already been 
processed and we go to the next cell Z = 3 and repeat the test proce
dure; 

In Fig. 1 a flow chart is given for the program. One notes here that 
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the procedure is really not a computing algorithm because no com
puting is performed. It is basically an algorithm of sorting and unra
velling. Therefore, it might be appropriate to call it an "unravelling 
algorithm of global analysis." 

In the aforementioned discussion four arrays are used. In actual 
computation it is desirable to combine P(Z) and S(Z) by using the 
integral part and the decimal part of one number to represent each, 
respectively. This reduces the number of arrays required to three. 
Other programmatical improvements are also possible. 

Multidimensional Problems. The implementing program just 
described is given in the context of a one-dimensional cell mapping. 
The application need not be so restricted. Consider, as an example, 
a two-dimensional cell mapping 

! .0 

Z1(n + 1) = CiCZi(n), Z2(n)) 

Z2(n + 1) = C2(Z1(n), Z2(n)) (9) 

Again in practice our interest will be confined to a finite range of cells 
for each cell variable Z\ or Z2. Let the range of interest be covered 
by 

Zi«-> =£ Zi £ Zi<u> 

Z2<
L> ^ Z2 £ Z2<

u> (10) 

Cells within these ranges will be called regular cells. The total number 
of the two-dimensional regular cells is 

Nc = (Zi<u> - Zi<L> + 1)(Z2
(U> - Z2<« + 1) = Ncl • Nc2. (11) 

All the two-dimensional cells outside the ranges of (10) will be lumped 
together as a sink cell. These Nc + 1 cells can then be relabelled as a 
one-dimensional sequence, Z = 0,1,2,... ,NC, according to an ap
propriate relabeling procedure. Once this is done, the algorithm just 
described can be applied immediately. 

Alternately, we can directly work with two-dimensional arrays. Let 
us assume that Z\ and Z2 cell coordinates have been standardized in 
such a way that the cells in the ranges of interest correspond to 

Zi = 1, 2, ,Ncl 

1, 2 , . . . , N2i (12) 

These again will be called two-dimensional regular cells. Accompa
nying these will be the sink cell which will be assigned to be at (0,0). 
The sink cell again will be a P - 1 cell. The cell mapping will map the 
sink cell to itself, and map a regular cell either to a regular cell or to 
the sink cell. To apply the algorithm we need two-dimensional arrays: 
Ci(Zi, Z2), C2(Z1( Z2), Gr (Zx, Z2), P(Zi, Z2), and S(Zh Z2). Apart 
from this difference, the basic unravelling procedure remains un
changed. We note here that according to the present scheme, for 
consistency, C\{Z\, Z2) and C2(Zi, Z2) must be either both nonzero 
or both zero. In the former case the image of (Z\, Z2) under the map
ping is a regular cell while in the latter case the image is the sink 
cell. 

4 F irs t E x a m p l e of A p p l i c a t i o n 
As a first example of application consider the following point 

mapping system. 

xi(n + 1) = Gi(xi(n),x2{n)) = (1 - a)x2(n) 

+ (2 - 2d + <r2)[xi(rc)]2 

x2(n + 1) = G2(x1(n),x2{n)) = - ( 1 - <r)xi(n) (13) 

This example is chosen because of the very simple nature of its non-
linearity and also because its global behavior is reasonably well un
derstood. The mapping has a stable spiral point at (0,0) and a saddle 
point at (1, - (1 - IT)) when 0 < a < 1. We shall use the present 
method to find the domain of attraction of the spiral point at (0, 
0). 

First we find the cell mapping associated to (13) by using the pro
cedure of discretization given in Section 6 of [6]. 

I .5 

Fig. 2 Domain of attraction for the spiral point of (13) at (0,0) obtained by 
the unravelling algorithm; a = 0.1; Wc1 = Nc2 = 101; the total number of 
regular cells 10,201 

Zi(n + 1) = Ci(Z1(n),Z2(ra)) = Int 
[hi 

[(1 - a)h2Z2(n) 

+ (2-2<T + <r2)(feiZ1(«))2] + 1/2 

Z2(n + 1) = C2(Z1(n),Z2(n)) 

Int — [-(i - o-)/nZi(rt)] + y2 
hi 

(14) 

Applying the algorithm to this mapping, we obtain the domain of 
attraction as shown in Fig. 2.2 In the Zi-direction 101 cells are used 
covering x\ from -1.01125 to 1.26125 with an interval size hi = 0.0225. 
In the z2-direction also 101 cells are used covering x2 from —2.26625 
to 1.01625. Thus the total number of regular cells is 10,201. In the 
figure a blank space (instead of a dot) means that the cell at that po
sition is mapped eventually outside of the region shown and, therefore, 
is mapped into the sink cell and is lost. Here we note that while the 
system (13) is a very simple one, yet the domain of attraction has a 
rather complex shape. 

The domain of attraction can of course also be obtained without 
using cell mappings. As described in [7] one can determine the domain 
of attraction by either (1) computing one branch of the separatrices 
from the saddle point located at (1, - ( 1 - a)), or (2) by mapping 
backward (hence expanding) from an assured but small sufficient 
region of asymptotical stability around the spiral point. As a matter 

2 The program used to produce Figs. 2-6 employs a different discretization 
procedure leading to a cell mapping which differs slightly from (14) but differs 
only in that the origin of the x-plane is not necessarily at the center of a Z 
cell. 
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Fig. 3 A cluster of 12 periodic cells near (0,0); the P - 1 cell at (1 , - .9) Fig. 5 15-step domain of attraction for the periodic cells near (0,0); <r = 0.1; 
corresponding to the saddle point of (13); a = 0.1; A/c1 = Nc2 = 101; the total Wc1 = Nc2 = 101; the total number of regular cells 10,201 
number of regular ceils 10,201 

I .0 

I . 5 

Fig. 4 5-step domain of attraction for the periodic cells near (0,0); a -
Wci = Nc2 = 101; the total number of regular cells 10,201 

0.1; 

of fact, such calculations were performed and reported in [7]. Com
paring Fig. 2 given here with Fig. 3 of [7] where a is also taken to be 
0.1, one sees that the present cell mapping algorithm of global analysis 
duplicates excellently the domain obtained by using point mapping 
techniques. Yet, the computer time required for the present method 
is easily one or two orders of magnitude better than that required by 
the point mapping techniques. In general, the two point mapping 
techniques discussed in [7] for determining the domain of attraction 

- 2 . 0 -

I .5 

Fig. 6 25-step domain of attraction for the periodic cells near (0,0); a = 0.1; 
Net = WC2 = 101; the total number of regular cells 10,201 

demand very delicate computer programming. The new unravelling 
algorithm is, however, robust and is very simple to implement. 

Moreover, by using this algorithm we obtain in one computer run 
not only the domain of attraction but also S(Z), the number of steps 
a cell is away from the periodic cells of the domain of attraction. Using 
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that information we can plot the r- step domains of attraction for 
various values of r. For Fig. 3, r = 0. There are 12 cells in a cluster3 

here, consisting of 3 sets of P — 4 motions. These 12 cells form a cluster 
of periodic cells, replacing the single spiral point of the point mapping. 
There is also an isolated P — 1 cell here corresponding to the saddle 
point. Figs. 4-6 show the 5-step, 15-step, and 25-step domain of at
traction. These diagrams indicate how long it takes "timewise" for 
a cell to be attracted to the cluster of periodic cells. It might be added 
here that in Fig. 2 where the total domain of attraction is shown, the 
largest number of steps any cell is away from the cluster is 43. 

5 S e c o n d E x a m p l e of Appl i ca t ion 
As a second example we consider a nonlinear problem of a hinged 

bar under the action of a periodic impact load. The problem was 
treated in [3]. The system is a simple one but because of strong non-
linearity its global behavior is very complicated. The problem does 
have an exact point mapping which governs the dynamic behavior 
completely. The point mapping for a hinged bar which is damped but 
otherwise elastically unrestrained is given by 

1 _ g-2». 
Xi(n +1) = xi(n) a %mxi(n) 

2ji 

1 - e"2 ' ' 
+ — r x2(n) = Gi(x(n)) 

2/x 

x2(n + 1) = - e ~ 2 " « sin x1(n) + e-2»x2(n) = G2(x(n)) (15) 

where x\ and x2 are, respectively, the angular displacement and an
gular velocity of the bar, n is the damping coefficient, and a is the 
impact load parameter. For the derivation of the equations and for 
the general nature of the global behavior, the reader is referred to [3]. 
Here we apply the present algorithm to this problem and show the 
results for a typical case. 

We take fi = 0.1-7T and a = 5.5. Then from Fig. 3 of [3] it is known 
that the origin of the phase plane is an unstable equilibrium point and 
the system has a stable P — 2 motion at 

xi*(l) = 1.27280, *2*(1) = 1.82907 (16a) 

*i*(2) = -1.27280, x2*(2) = -1.82907. (16b) 

Besides these periodic solutions discussed in [3], the system has also 
two "advancing" type of periodic solutions as follows: A point at 

xi* = 0.80063, x2* = -4.51463 (17) 

is mapped in one step into 

xi* = 0.80063 - 2TT, X2* = -4.51463. (18) 

Physically, since the bar is elastically unrestrained, (17) and (18) 
represent the same state of displacement and velocity for the hinged 
bar, although going from (17) to (18) the bar has revolved once in the 
negative direction. Regarding (17) and (18) as the same point in the 
phase plane or, equivalently, taking x\ by modulo 2-7T, the point (17) 
i s a P - 1 point. We call this an "advancing-type" P — 1 point. Sim
ilarly, a point at 

xi* = -0.80063, x2* = 4.51463 (19) 

is mapped in one step into 

xx* = -0.80063 + 2ir, x2* = 4.51463 (20) 

and, therefore, it is also an advancing-type P — 1 point. It can be easily 
shown that these two advancing-type P — 1 points are asymptotically 
stable. Thus we have four asymptotically stable periodic points in 
(16a), (166), (17), and (19) and for each periodic solution there is its 
domain of attraction. 

Using the procedure of discretization as given in Section 6 of [6], 
we can easily construct the cell mapping C corresponding to (15). Once 

Fig. 7 Periodic cells for (15); ju = 0.1?randa = 5.5; Afci = Nc2 = 101; the 
total number of regular cells 10,201 

f 

3 The reader is referred to [6] for the meaning of a cluster of periodic cells. 

Fig. 8 3-step domains of attraction; fi = 0.1ir and a = 5.5; Nc1 = Nc2 = 101; 
the total number of regular cells 10,201 

the cell mapping C has been constructed we can apply the unravelling 
algorithm to determine the global behavior of the system. The results 
are shown in Figs. 7-11. In applying the algorithm to generate these 
particular figures, we have used G2, instead of simply G, to determine 
the cell mapping. This allows us to obtain the domains of attraction 
for (16a) and (16b) separately. For this reason the number of steps 
referred to for Figs. 7-11 should be interpreted accordingly. 

For Figs. 7-11, 10,201 regular cells are used covering —3.14128 s 
xx < 3.14128. and -5.07681 £ x2 < 5.07681 with the cell sizes hi = 
0.062204 and h2 = 0.100531. The part of the phase plane outside these 
ranges with x\ modulo 27r is represented by the sink cell. Fig. 7 shows 
the periodic cells, or the 0-step domains of attraction. Here we find 
that the unstable P — 1 point of (15) at the origin is replaced by an 
isolated P — 1 cell at the origin. In the figure it is designated by the 
symbol "s. "Each of the two P — 2 points of (15), i.e., (16a) and (16b), 
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Fig. 9 5-step domains of attraction; ft = 0.1jr and a = 5.5; Wc1 = NcZ = 101; 
the total number of regular cells 10,201 

is replaced by a core of 2 periodic cells, with the cells in one core des
ignated by the symbol"+" and the other by "0." The advancing-type 
P — 1 points of (15) at (17) and (19) are replaced by two isolated ad
vancing-type P — 1 cells. They are designated by the symbols "x" and 
"z," respectively. 

Fig. 8 shows the 3-step domains of attraction for these four groups 
of attracting cells. In each domain the attracted cells share the same 
symbol with the core cell or cells. In Fig. 8 one also finds a few cells 
which are three steps or less removed from the cell at the origin. They 
correspond to points on a pair of separatrices approaching the un
stable P — 1 point at the origin for the point mapping system (15). 
Figs. 9 and 10 give the 5-step and 8-step domains of attraction. They 
begin to exhibit the complicated interweaving pattern of the global 
behavior. 

Fig. 11 shows the total domains of attraction obtained with this 
application of the algorithm. Of the total 10,201 regular cells, 4324 
cells belong to (16a), 4324 belong to (166), 223 cells belong to (17), and 
223 belong to (19). 17 cells belogn to the P — 1 cell at the origin on 
account of being on the separatrices. 1090 cells are mapped into the 
sink cell and their eventual fate is not determined by this run of un
ravelling. Fig. 11 delineate very nicely the distribution of these four 
domains of attraction. Of course, the domains of attraction for (16a) 
and (166) can be combined into one domain of attraction for the stable 
P — 2 motion which has two cores with two periodic cells in each core. 
Again, we wish to remark that the algorithm is extremely simple to 
apply and that the computer run to generate the data for Figs. 7-11 
was made on a minicomputer PDP-11/60 consuming very little 
computer time. The precise time was difficult to determine because 
of the time sharing aspect of the usage of the computer. It was esti
mated to be of the order of a few second. 

6 Application to Nonlinear Differential Dynamical 
Systems 

In the last two sections we have demonstrated the utility of the 
method by carrying out the global analysis on cell mapping systems 
which are obtained by discretizing point mappings. The application 
of this algorithm is, however, not restricted just to cases of this kind. 
It can also be applied to nonlinear dynamical systems governed by 
ordinary differential equations. Consider first the autonomous sys
tems governed by 

Fig. 10 8-step domains of attraction; fi = 0.17T and a = 5.5; Nc1 = Nc2 = 
101; the total number of regular cells 10,201 

Fig. 11 The total domains of attraction; fi = 0.1ir and a = 5.5; A/c1 = Nc2 

= 101; the total number of regular cells 10,201 

x(t) = F(x(t)) (21) 

We construct a cell mapping for (21) by doing two things. First, we 
divide the state space into cells according to the procedure described 
in Section 2 of [6]. A cell Z = (Z\, Z% . .., ZN) is defined to contain 
all points x = (x\, x2,.. . , XN) which satisfy 

(Zi - V2)hi £Xi< (Zi + y2)ht (22) 

where hi is the cell width in the X{- direction. To get the mapping we 
integrate (21) over a small time interval r by any convenient and ac-
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curate numerical scheme. The cell mapping is therefore obtained in 
following manner. 

(i) For a given cell Z(n) = (Zx(n), Z2(n),.. ., ZNM) we compute 
the Xi coordinates of the center point of the cell and denote them as 
jcfW>(0) 

Xi^(Q)=hiZi(n). (23) 

This point x(d)(0) is then taken to be the starting value of the state 
vector x. 

(ii) The evolution of the system by (21) taking x(d>(0) at t = 0 to 
x(d)(T) at t = T is obtained by numerical integration. The size of T will 
be usually taken to be small but it needs not be the basic time step 
interval At of integration. The vector X(<H(T) could be the result after 
carrying out several steps of integration. 

(Hi) The construction of the cell mapping is completed when one 
identifies x (d)(r) by the cell in which it lies according to (22). This cell 
is denoted by Z(n + 1) and is taken to be the image of Z(n). 

Zi(n+ 1) = C,(Z(n)) = Int r * i W ) ( T ) + % 
hi 

(24) 

We note here that once C has been determined in this manner, we 
have a cell map which governs the global behavior of the system. 

If the nonlinear system is not autonomous but nevertheless is ex
plicitly periodic in t 

x(t) = F(x(t), t), (25) 

the aforementioned procedure of constructing the associated cell 
mapping still applies except that in step (ii) it will be necessary to take 
r, the interval of numerical integration, to be the period of the 
system. 

Once the associated cell mapping to a nonlinear differential dy
namical system has been constructed, the unravelling algorithm can 
then be used to determine the global behavior of the system. Of course, 
it is necessary to define the regular cells which are the cells in the 
ranges of our interest and to introduce a sink cell to take care of all 
the other cells. 

As an example, let us consider the classic problem of van der 
Pol. 

Xl = X-i 

X2 = / i ( l ~Xi2)x2 Xl (26) 

Since the example does demonstrate, we believe, a novel approach 
to nonlinear problems, we shall describe the steps of analysis, not just 
the results, so that a reader can easily duplicate the analysis if he so 
wishes. Let Rx and R2 be the ranges of interest in the x\ and ^ - d i 
rections. Let the total interval numbers used in the two directions be 
iVciandiVC2, i.e., 

Ri = h1Ncl, R2 = h2Ncl (27) 

Consider a regular cell Z(n) = (Zi(n),Z2(n)). Its center position x(c,)(0) 
can be determined by (23). For integration let us use the 4th-order 
Runge-Kutta method. Let At be the single time step of integration. 
We integrate (26) a number of steps, say J-steps, to obtain x (d)(r) 
where T = (At )J. The image cell Z(n + 1) of Z(n) is then determined 
by (24). If C(Z(n)) is not a regular cell then Z(n + 1) is assigned to the 
sink cell. 

The two-dimensional cell array can be converted to a one-dimen
sional array. Let the two-dimensional ranges be 

Zi ( L ) == Zi == Zi<L> + Nci - 1, 

Z2<« £ Z2 =s Z2<
L> + Nc2 - 1. (28) 

The converted one-dimensional array may be defined by 

Z=(Z2- Z2W)Nci + Zx - ZXV) + i (29) 

with Z = 0 assigned to be the sink cell. 
The global behavior of the van der Pol equation is well understood. 

There is a stable limit cycle toward which all the trajectories approach. 

I .o 

Fig. 12 The case fi = 0.1; the curve represents the limit cycle of the van der 
Pol equation; dots represent periodic cells obtained by the present algorithm 
of global analysis; Wc1 = Wo2 = 101; the total number of regular cells is 
10,201 

Fig. 13 The case p. = 1.0; the curve represents the limit cycle of the van der 
Pol equation; dots represent periodic cells obtained by the present algorithm 
of global analysis; « c 1 = Wc2 = 101; the total number of regular cells is 
10,201 

Therefore, the domain of attraction of the limit cycle is the whole 
phase plane except the origin. The limit cycle of (26) should corre
spond to a collection of periodic cells when the global analysis algo
rithm is applied to its associated cell mapping systems. Figs. 12-13 
show the results of such an application. Fig. 12 is for fi = 0.1 and Fig. 
13 is for n = 1.0. In both cases the number of regular cells used is 
10,201 with Ncl = Nc2 = 101. The cell size is determined by hx = 0.05 
and h2 = 0.06; thus the regular cells cover a region —2.525 g xi <2.525 
and -3.03 £ x2< 3.03. The 4th-order Runge-Kutta numerical pro

cedure used for these cases employs a single integration time step At 
= 0.05 and 26 steps of integration (J = 26) are used to create the cell 
mapping, i.e., T = (At) J = 1.30. The dots in the figures signify periodic 
cells. In Fig. 12, for the case ix = 0.1, we find one group of 58 periodic 
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cells forming a "circle" replacing the limit cycle and another group 
of 9 periodic cells forming a core replacing the unstable equilibrium 
point at the origin. In Fig. 13, for the case n = 1.0, we find a group of 
46 periodic cells forming a circle replacing the limit cycle and a core 
of just a single periodic cell replacing the unstable equilibrium point 
at the origin. In the figures we have also shown the limit cycles 
themselves. It is remarkable and satisfying to see the present method 
of global analysis to "duplicate" accurately the limit cycles for both 
cases of widely different values of JX. 

This example is used here merely to show the potential of using this 
unravelling algorithm to deal with dynamical systems governed by 
ordinary differential equations. A great deal of theoretical work re
mains to be done in order to find the best methods of implementation 
for various kinds of problems in this category. 

7 Remarks 
From the examples it can be seen that the method of using cell 

mappings and the global analysis algorithm is a very efficient one. We 
believe that the efficiency results from three factors. 

1 A very efficient algorithm for the desired sorting of an array. 
2 The advantage of discretization. 
3 The method only requires integration over a time interval once 

for all for each cell to obtain the global mapping. Other methods re
quire either long term integration repeatedly even for points in the 
same cell or long term repeated mapping for points in the same cell, 
resulting in a tremendous amount of duplication of effort. 

Of these three factors, it is our belief that factor (3) is the most 
important one. 

In [6] the discretization of linear point maps is discussed in order 
to provide a qualitative appreciation of the consequences of such a 
process. In this paper the applications offered are to nonlinear point 
mappings. One may ask in what way the discretization of a linear point 
mapping is representative for the discretization of a nonlinear point 
mapping. In general, when the cells are small, then in the immediate 

neighborhood of a P-K point the discretization of a nonlinear point 
map is expected to be essentially that of its locally linearized map. A 
complete quantitative study of this question is, however, yet to be 
made. 

Finally, it might also be appropriate to remark here that the cell 
mapping and the new method of analysis can be viewed in another 
context. For dynamical problems (lumped or continuous systems) 
there are three kinds of variables: the independent time variable, the 
independent spatial variables, and the dependent state variables. The 
classical stepwise time integration is a procedure to discretize the 
independent time variable. The finite-element method is a procedure 
to discretize the independent spatial variables. In this spirit the cell 
mapping and the present method of analysis is a procedure to 
discretize the dependent state variables. 
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The Rigid-Wavy-Wall 
Assumption in Interface 
Stability Problems1 

P. B. Joshi2 and J. A. Schetz3 

Introduction 
Hydrodynamic stability of a gas-liquid interface has been studied 

extensively [1-12] due to its applications in a variety of phenomena, 
e.g., the wind generation of ocean waves and liquid film cooling of 
reentry bodies. One of the key assumptions in the analysis [5-9] is that 
the interface behaves like a rigid wavy wall relative to the gas flow. 
Although the rigid-wavy-wall assumption may be appropriate for 
inviscid high-speed gas [6, 7], its validity is difficult to ascertain for 
a viscous, high-speed or low-speed gas [5, 8, 9], The purpose of the 
present investigation was to directly evaluate the effects of relaxing 
the rigid-wavy-wall assumption on interface stability. Therefore, the 
simple case of an incompressible, viscous, laminar flow of a gas over 
a viscous, laminar, liquid layer was considered for detailed study as 
a representative example. Both fluids were assumed to be parallel with 
linear, steady-state velocity profiles. This assumption is felt to be 
justified in this exploratory study by the profound mathematical 
simplifications that result. Also 

1 It is the simplest, physically possible viscous profile. 
2 The Orr-Sommerfeld equation has an exact solution. 
3 The linear stability of a plane Couette flow has been studied in 

great detail, and it has been found to be unconditionally stable. 
Consequently, attention is focused exclusively on the stability of the 
interface during the present work. 

1 This work was supported by the Air Force Office of Scientific Research. Dr. 
B. T. Wolfson was the Technical Monitor. 
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ASME. 
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partment, Virginia Polytechnic Institute and State University, Biacksburg, 
Va. 24061. Fellow ASME. 

Manuscript received by ASME Applied Mechanics Division, September, 
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Problem Formulation 
The steady-state mean flow velocity profiles in the liquid (fluid "1") 

and the gas (fluid "2") have the following dimensionless form: 

ui(0 = 1 + & - 1 < £ < 0 

"2(1?) 
7; + f a 

-z ; 0 < i) < l 

(1) 

(2) 
l + eji 

where £ = y/h and t] = y/b. Also, h and b represent the liquid depth 
and the gas layer thickness, respectively, and y is measured normal 
to the interface. The interface velocity u,y at £ = 7) = 0 made nondi-
mensional relative to ue, is given by 

<FJU/(1 + qi) (3) 

In equations (l)-(3), e = h/8, /.< is the viscosity with jJ = [12/1x1. 
When the steady-state configuration is distributed, the resulting 

unsteady, two-dimensional, incompressible motion is governed by 
the Navier-Stokes equations. Assuming an infinitesimal travelling 
wave disturbance on the interface to be of the form 

ri(x,t) = h exp [ik(x — ct)] (4) 

where k is the disturbance wave number and c denotes phase velocity, 
the x-axis coincides with the interface, and t represents time, the 
corresponding disturbances in the other flow variables (such as ve
locity components) are given by 

qj(x,y,t) = qj(y) exp [ik(x - ct)], j = 1,2 (5) 

and the stability problem reduces to the solution of Orr-Sommerfeld 
equations for gas and liquid, 

^ i i v - 2a1
2./'i" + a i Y i = iaiRityi" - a i ^ i ) ("1 - ci) (6) 

1̂2 - 2a2
2i/'2 + ff2

4i/'2 = ia2R2{ip2 - a ^ W ("2 - c2) (7) 

The governing equations (6) and (7) are subject to the boundary 
conditions 

\M£) = o, fi'(£) = o, £ = - i (8,9) 

<MJJ) = O, IMJ?) = O, 77 = 1 (10,11) 

" h M £ ) -iai&i] = t[\[/2(v) - iaiuz] at £ = 0, 77 = 0 (12) 

uMi"(£) + « i W £ ) ] = £* 2lh(v) + c(22Mv)] at £ = r, = 0 (13) 
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BRIEF NOTES 

«2 
:2fl. 

I^2(l) - a2\j/2(v)\ ~ — 
p «i2fli h"W - <*i W(?)l 

P ffi 

+ fll2^2(j)) - ("2(lj) - 02)^2(1?)) 
ff2 

- | i u ' l M £ ) - W i ( £ ) - c i ) < M £ ) l 

epR; 
[e/tf 2(1?) - / t ^ i ' (£ ) l 

- ^ L 2 l ¥ 2 + ^ - at £ = J? = 0 (14) 

(15) <M£) - i"ai(di(£) - ci) = 0 at £ = 0 

2̂(17) - iai(u2('?) - c2) = 0 at 17 = 0 (16) 

In equations (6)-(16), i/'i and 1̂2 denote amplitudes of the disturbance 
stream function, ct\ = kh and 0:2 = kb are dimensionless wave numbers 
with «i = £Q!2, R\ = uifh/vi and #2 = ueS/v2 denote liquid and gas 
Reynolds numbers respectively, and C2 = uci is the dimensionless 
phase speed in the gas. Further, vi and v<i stand for kinematic 
viscosities of the liquid and gas, respectively. Boundary conditions 
in equations (8)-(l l) express the fact that the disturbance velocity 
components vanish at £ = — 1 and ij = 1. Equations (12) and (13) 
represent the balance of tangential velocity and shear stress, respec
tively, at the interface. The difference in normal stresses at the in
terface equals the surface tension as shown by equation (14). Equa
tions (15) and (16) express the kinematics boundary conditions at the 
interface for the liquid and gas, respectively. It is noted that the 
boundary conditions in equations (12), (14)-(16) are nonhomogeneous 
and the rest are homogeneous. This enables one to convert the 
problem of interface stability to an eigenvalue problem. 

So lut ion of S tabi l i ty P r o b l e m 
Equations (6)-(16) represent the mathematical statement of the 

stability problem. It should be pointed out that the phase speed C2 
has been retained in the gas disturbance terms, and thus the rigid-
wavy-wall assumption has not been made. Had such as assumption 
been invoked, C2 would be set identically equal to zero. Yih [10] has 
considered a somewhat similar problem, but he limited the solution 
to small wave number disturbances for which aiR\ « 1. The general 
solutions of equations (6) and (7) for arbitrary wave numbers and 
Reynolds number are [14], 

<M£) = Ci exp (<*!$) 

+ C2 exp (-<*£) + — f fsinh \ai($ - t)\ Ai \ UW* dt 

+ — C^mh\a^-i)\Ai\^(i)E-\dt (17) 

^2(1?) = C5 exp (aiij) + C6 exp (-0:217) + — I sinh \a2(ri - t)} Ai 
«2 ~V 

\&(i)E+}dt + — C\mh[a2(.v-t)}Aitf2(i)E-]di (18) 
0:2 • - ' 1 * 

where fi(£) = — (aiRi&i') 2 / 3 jcci2 + ja:i.Ri("i(£) — Ci)j with £* such 
that &(£*) = 0. Similarly, f2(j/) = - ( o ^ z ^ ) - 2 ' 3 W + iu^falv) 
— C2)! with fa{rj*) = 0. In equations (17) and (18), Ci-Cg are the con
stants of integration, Ai denotes Airy function of the first kind, and 
E* = exp (± 2wi/3). Introducing the solutions (17) and (18) into the 
boundary conditions (8)-(15), the result is a set of eight linear alge
braic equations with the constants Ci-Cg as unknowns. When these 
constants are evaluated and substituted in equation (16), the result 
is a frequency equation for C\ (or C2) which can be solved for a given 
set of flow parameters (e, p, R\, etc.) and a given disturbance wave 
number a\ (or 0:2). In this sense, the stability problem reduces to an 
eigenvalue problem. The eigenvalue, c.i, was determined via a com
bination of graphical and Newton-Raphson iteration procedures 
which are described in detail in [14]. In general, Ci is complex, and if 
ci = cir + icu, equation (4) shows that cu > 0 corresponds to insta-

T a b l e 1 P a r a m e t e r s for n u m e r i c a l e x a m p l e g a s / l i q u i d 
sys tem: a i r / w a t e r 

Liquid/gas layer thickness, e 
Gas density/liquid density, p 
Gas viscosity/liquid viscosity, p 
Gay Reynolds number, 72 2 
Liquid Reynolds number, Ri 
Weber number, W 
Froude number, F 

4.302 X 10-2 

1.208 X 10~3 

0.263 
338.20 

35.54 
5.46 
0.93 

bility, ci; < 0 corresponds to stability, and Cu 
stability. 

; 0 implies neutral 

R e s u l t s 
Description of Conditions for Numerical Computations. The 

experimental conditions of Craik [5] were employed as a typical case 
for the computation of eigenvalues. Since the analytical model does 
not match the conditions of the experiment perfectly, some of the 
parameters in Craik's investigations were suitably adjusted (see ref
erence [14] for complete details). Table 1 contains the list of various 
nondimensional parameters employed in the numerical computa
tions. 

Examinat ion of the Rigid-Wavy-Wall Assumption. Eigen
values were computed for the conditions listed in Table 1 and various 
stability modes were identified. The details are contained in [14], and 
only the most significant mode, termed the modified Kelvin-Helm-
holtz mode because its speed of propagation is nearly the same as the 
classical Kelvin-Helmholtz mode, is discussed here. The amplification 
curve in Fig. 1(a) shows that this mode is stable for small values of a\ 
and then becomes unstable at large a i . Also included in the figure is 
the amplification curve obtained upon invoking the rigid-wavy-wall 
assumption (i.e., C2 = uc\ ~ 0). A comparison of the two sets of curves 
reveals the following significant results: 

1 The assumption of a rigid-wavy interface relative to the gas has 
no effect at low disturbance wave numbers and affects the neutrally 
stable wave number only slightly. 

2 For wave numbers greater than the neutrally stable value, the 
rigid-wavy-wall assumption results in an underestimation of the 
disturbance amplification rate. 

3 Most importantly, for sufficiently large wave numbers (a\ > 
0.4 in the present case), the rigid-wavy-wall assumption results in the 
prediction of stability when the interface is actually unstable. 
Fig. 1(b) shows that there is no appreciable difference between the 
phase speed curves for the case C2 = 0 and C2 ̂  0 and that the phase 
speed is reasonably constant for all wave numbers (at least up to ai 
= 0.4). The average dimensional value of the phase speed is 16.1 
cm/sec which may be compared with Craink's [5] experimental value 
of 11.9 cm/sec at the onset of instability. This comparison must be 
viewed with caution, however, because computations have not been 
carried out to larger wave numbers at which maximum growth rate 
occurs. It is believed that the modified Kelvin-Helmholtz mode in 
Figs. 1(a) and 1(6) is the same as the one obtained by Bordner, et al. 
[8], using the experimental data of reference [12]. It also appears that 
the mode can be associated with the class C stability of Landahl 
[15]. 

C o n c l u s i o n s 
The validity of the rigid-wavy-wall assumption in problems of in

terface stability has been investigated. As a starting step, an incom
pressible, viscous, laminar gas adjacent to a liquid layer, with both 
fluids having linear velocity profiles, has been considered. The fre
quent assumption of a rigid-wavy interface relative to the gas motion 
was found valid only for very small values of the disturbance wave 
number (a « 1). When the wave number is moderate (a = 0(1)), such 
an assumption not only results in a gross underestimation of the 
amplification rate but can even erroneously predict stability for an 
unstable interface. This conclusion is important, and further research 
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The Helical Coordinate 
System and the Temperature 
Distribution Inside a Helical 
Coil 

C.-Y. Wang1 

I n t r o d u c t i o n 
D u e to its dependab i l i t y and ease of opera t ion , electrical hea t ing 

is now t h e mos t impor t an t means of small scale heating. In many cases 

t h e resistive heat ing e lement is in the form of a helical coil and the hea t 

gene ra t ed is carr ied off by forced convection. Of in te res t is t h e max

i m u m tempera tu re inside the heat ing element, since this is a necessary 

design cr i ter ion. ,. 

Trad i t iona l analysis t r ea t the helical coil as if it were a long straight 

cylinder [1]. T h e effects of curvature and torsion are neglected. In this 

p a p e r we shal l s t u d y w h e t h e r these factors are i m p o r t a n t or no t 

t h rough t h e in t roduct ion of the new helical coordinate system which 

inc ludes t he se effects. 

Fig. 1(b) Comparison of phase velocity curves with and without rigid wavy 
wall assumption 

is necessary to s tudy the effects of curvature of gas velocity profile and 

compress ib i l i ty . 
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The Helical Coordinate System 
L e t t h e cen te r l ine be descr ibed by t h e space curve 

R = X(s)\ + Y(s)j + Z(s)k (1) 

where s represen ts arc length along this axis and i, j , k are un i t vectors 

in Car tes ian direct ions. T h e t angen t T, normal N, and b inormal B can 

be def ined as follows: 

dR l d T 
T = , N = , 

ds x ds 
B = T X N (2) 
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B R I E F NOTES 

2nb 

(a) 
Fig. 2 Helical coils with xa = 0.1, (a) ra = 0.3, (b) ra = 0.05, (c)ra 
0.02, (d) r a = 0.01 

Fig. 1 The helical coordinate system 

Here x is the curvature, and T, N, B are orthogonal unit vectors. The 
Frenet formulas give 

dN dB 
— = r B - x T , — = - T N (3) 
ds as 

where T is the torsion. We then construct a coordinate system (r, 8, 
s) such that any Cartesian position vector x can be expressed as 

x = R(s) + r cos0N(s) + rsin0B(s) (4) 

See Fig. 1. Using equations (2)-(4) we obtain 

dx-dx= (dr)2 + r2(d8)2 + [(1 - xr cos 8)2 

+ T2r2](ds)2 + 2rr2dsd8 (5) 

The description of any point in this system is unique for r < x~l. 
Notice that the last term in equation (5) indicates the nonorthogon-
ality of (r, 8,s). Using x: = r, x2 = 8, x 3 = s, the metric tensors gij and 
g'j can be derived from equation (5). 

* n = g n = l, g22 = r2, g22 = G/r2M, 

gas: „33 = _ 
M' 

g2S = rr2, g2 -T/M 

gi2 = g12 = gis = gw = 0 

G = (1 - xr cos 8)2 + r2r2, M = (1 - xr cos 0)2 

The nonzero Christoffel symbols are 

T22 = —r, F23 = —rr, TS3 • 

(6) 

(7) 

1^£. r2 - 1 
2 dr ' 21 _ r ' 

IG ldG 
..Lr L^±\ r2 

• - - .. . 1 33 

r3 
1 13 

—rr' 
M 

J_dG 
2M dr 

-T dG 

2M d8 ' 

J_dG 
1M d8 

-G dG 

T - J 1 2 3 _ „ , , ^ „ i l 3 3 _ 

2r2M d5 

T dG 

2M d8 
— (8) 

Equations (6) and (8) enable us to write any equation of continuum 
mechanics in helical coordinates. 

The Temperature in a Helical Heating Element 
The tensorial equation for heat conduction is 

... d 2 T „ . dT\ 
glJTn = gll\——-r&-

9_ 
K 

(9) 

where K is the thermal conductivity, which does not vary much with 
temperature T, and q is the internal production heat per volume 

q = q0[l + 8(T - To)] (10) 

Here Qo = I2Ro/V is the Joule heating per volume V due to current 
/ and the resistance RQ at temperature To. S is the temperature 
coefficient of the electric resistivitiy. For pure metals & is essentially 
a constant [1]. 

We shall assume the helical coil is made of a homogeneous metal 
wire of circular cross section with radius a. Let the center line of the 
wire be described by the helix 

bs 

VP^Ti 
: i + c sin VPT^ Fi + 

vw+i2 (ID 

where b and c are constants. The center line lies on the surface of a 
circular cylinder of radius c and the rise angle is t a n - 1 (b/c). The 
curvature and torsion are found to be 

62 + c2 ' b2 + c2 (12) 

Fig. 2 shows some of the geometries with xa = 0.1. It is seen that for 
practical purposes, both xa and ra may be regarded as small. We 
define e and a 

xa = e « 1, ra = ae « 1 (13) 

where a is a constant of order unity. We assume the coil is long enough 
such that end effects could be neglected. This implies the temperature 
can be considered independent of arc length s. We also assume the 
surface temperature on the coil is kept constant at the ambient tem
perature To by forced convection. 

Using equations (6)-(8), equation (9) becomes 

r dr 

d2T I xr cos 8 

orz I 1 — xr cos 

1 — xr cos I 
1 - -

(1 — xr cos 0)2 

l d T 

r d8 

+ 1 + -
(1 - xr cos 8)2, 

Now we normalize the variables to obtain 

d2x I ey cos 8 \ 1 dx 

dr]2 \ 1 — (7/ cos 81 r\ drj 

e sin 8 

-2~Hr2 = - ^ i 1 + 5{T-T^ (14) 

r2 d82 K 

1 — e7] cos I 

1 + -

where 

V X 

(1 — £7J COS 0)2 

a2<?o<5 

(1 — erj cos 0)2 

J_d2x = 

rj2d82 

l d x 

- U + A2x) (15) 

K 
(T - To) (16) 

The boundary conditions are that x be bounded inside the heating 
coil 0 < r) < 1 and that x vanishes on the surface. 

Since t is small, we can expand x in a power series 

X = Xo + «Xi + f2X2 + • 
Equating equal powers of e, we obtain 

_/_d^_ l_d_ J ^ , 

Id?;2 r; dr; T;2 d02 

(17) 

(18) 
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Fig. 3 Percentage increase of maximum temperature (Tma% — 7"0)/( rmax|,= 
- To) - 1 

Lxi = cos 8 
drj 

LX2 
d-n 

+ T] cos2 ,dXo 
d?; 

sin 8 dxo 

?j d8 

[dxi 

d8 

— sm a cos ( 
,dXo ,a2xo 

ae2 

(19) 

(20) 

The boundary conditions are that xo, Xh Xi a r e z e r o on i | = 1 and 
bounded within rj < 1. The solutions depend on whether X is zero or 
not. 

16X2 

37,2Jo(Ar;) 2r,Ji(X) J2(Xr,)} 

Jo(A) Ji(X) J2(X) 

(25) 

(Cont.) 

Results and Discussion 
We note that the constant coefficients in xi and X2 are geometri

cally smaller. This means that the perturbation may be valid for larger 
values of e. In fact, convergence is possible even if e = 0(1). The 
maximum temperature is located slightly off-centered on 8 = 0. The 
percentage increase of a curved coil over that of a striaght coil is quite 
significant (Fig. 3). We see that the maximum temperature increases 
rapidly with curvature. To the order considered, torsion has no ef
fect. 

The helical coordinate system was first attempted by Nicholson 
[3] who erroneously thought the system was orthogonal. It was sub
sequently published (erroneously) in mathematical tables [4]. The 
present work presents the correct version for the first time. This 
system can be applied to other important engineering devices, such 
as helical springs and helical fluid cooling tubes. 
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The Uniformly Heated Coil 
For the uniformly heated coil the local resistance (and thus heat 

production) can be considered independent of local temperature. This 
is true when d(T — T0) « 1 in equation (10). (For pure copper <5 = 
0.004C"1). We set o = 0 in equation (10) or X = 0 in equation (15). 
Equations (18) and (19) yield 

Xo : — - — , xi = — (V ~ T) cos ( 
4 lb 

(21) 

Using these results equation (20) gives 

1 5 
X2 = (1 + 2?72 - 3?;4) + (?)2 - if) cos 28 (22) 

Xo represents the parabolic temperature distribution for a straight 
wire, x i arid X2 are corrections due to curvature. 

The Nonuniformly Heated Coil 
In this case <5 (T - To) is large compared to unity and X 

Equations (18) yields 

Xo : 'Jo (M) 
X2 I Jo(X) 

- 1 

^ 0. 

(23) 

Xo was first obtained by Jakob [2] for the temperature distribution 
inside a straight circular cylinder. He noticed that equation (23) is 
valid for X < 2.4048 which is the first zero of the Bessel function Jo-
If X > 2.4048 or a > 2.4048 (K/q0 8)1/2, the heat generated in the in
terior cannot be dissipated through the walls fast enough. A subse
quent mutual increase in temperature and resistance would lead to 
very high interior temperature. The higher corrections are found to 
be 

Xi 
cos V 
"2X2" 

Vo(X?)) JI(XTJ) 

Jo(X) Ji(X) 

X2 ; 
1 

16X2 

- 2 

3T/2JO(XT)) 

Jo(X) 

1 

XJo(X) Jx(X) 
T)Jl(\t)) -

2Ji(X) 

XJo(X) 
Jo(A»7)] 

Jo(X)j 

(24) 

(25) 

On the Numerical Solution of 
Vol terra Integral Equations 
Arising in Linear Viscoelasticity 

A. Wineman1 

Introduction 
A numerical method for the solution of linear Volterra integral 

equations which arise in linear viscoelasticity has been presented by 
Lee and Rogers [1]. Two results are presented which improve it. 

Method of Solution; Time Selection 
The equations which arise have the form 

J" 
Jo 

f{t)+ \ R(t - s) f(s)ds = g(t), (1) 

where f(t) is to be found, g(t) and R(t) are specified functions, and 
R(t) = dR(t)lds. R(t) is expressed in terms of the usual material 
property functions such as creep or relaxation functions in shear or 
extension. As such, it can be expected to be monotonic. It is assumed 
tha t / ( t ) , g(t), and R(t) are dimensionless. 

Let \tk) = | t i = 0, t% . . ., tk, . . ., tn = t\ denote the set of times 
through tn at which values of the solution to (1), \f(tk)), are to be de
termined. The integral in (1), denoted by / , is defined on a subset of 
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cos 20 

Fig. 3 Percentage increase of maximum temperature (Tma% — 7"0)/( rmax|,= 
- To) - 1 

Lxi = cos 8 
drj 

LX2 
d-n 

+ T] cos2 ,dXo 
d?; 

sin 8 dxo 

?j d8 

[dxi 

d8 

— sm a cos ( 
,dXo ,a2xo 

ae2 

(19) 

(20) 

The boundary conditions are that xo, Xh Xi a r e z e r o on i | = 1 and 
bounded within rj < 1. The solutions depend on whether X is zero or 
not. 

16X2 

37,2Jo(Ar;) 2r,Ji(X) J2(Xr,)} 

Jo(A) Ji(X) J2(X) 

(25) 

(Cont.) 

Results and Discussion 
We note that the constant coefficients in xi and X2 are geometri

cally smaller. This means that the perturbation may be valid for larger 
values of e. In fact, convergence is possible even if e = 0(1). The 
maximum temperature is located slightly off-centered on 8 = 0. The 
percentage increase of a curved coil over that of a striaght coil is quite 
significant (Fig. 3). We see that the maximum temperature increases 
rapidly with curvature. To the order considered, torsion has no ef
fect. 

The helical coordinate system was first attempted by Nicholson 
[3] who erroneously thought the system was orthogonal. It was sub
sequently published (erroneously) in mathematical tables [4]. The 
present work presents the correct version for the first time. This 
system can be applied to other important engineering devices, such 
as helical springs and helical fluid cooling tubes. 
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The Uniformly Heated Coil 
For the uniformly heated coil the local resistance (and thus heat 

production) can be considered independent of local temperature. This 
is true when d(T — T0) « 1 in equation (10). (For pure copper <5 = 
0.004C"1). We set o = 0 in equation (10) or X = 0 in equation (15). 
Equations (18) and (19) yield 

Xo : — - — , xi = — (V ~ T) cos ( 
4 lb 

(21) 

Using these results equation (20) gives 

1 5 
X2 = (1 + 2?72 - 3?;4) + (?)2 - if) cos 28 (22) 

Xo represents the parabolic temperature distribution for a straight 
wire, x i arid X2 are corrections due to curvature. 

The Nonuniformly Heated Coil 
In this case <5 (T - To) is large compared to unity and X 

Equations (18) yields 

Xo : 'Jo (M) 
X2 I Jo(X) 

- 1 

^ 0. 

(23) 

Xo was first obtained by Jakob [2] for the temperature distribution 
inside a straight circular cylinder. He noticed that equation (23) is 
valid for X < 2.4048 which is the first zero of the Bessel function Jo-
If X > 2.4048 or a > 2.4048 (K/q0 8)1/2, the heat generated in the in
terior cannot be dissipated through the walls fast enough. A subse
quent mutual increase in temperature and resistance would lead to 
very high interior temperature. The higher corrections are found to 
be 

Xi 
cos V 
"2X2" 

Vo(X?)) JI(XTJ) 

Jo(X) Ji(X) 

X2 ; 
1 

16X2 

- 2 

3T/2JO(XT)) 

Jo(X) 

1 

XJo(X) Jx(X) 
T)Jl(\t)) -

2Ji(X) 

XJo(X) 
Jo(A»7)] 

Jo(X)j 

(24) 

(25) 

On the Numerical Solution of 
Vol terra Integral Equations 
Arising in Linear Viscoelasticity 

A. Wineman1 

Introduction 
A numerical method for the solution of linear Volterra integral 

equations which arise in linear viscoelasticity has been presented by 
Lee and Rogers [1]. Two results are presented which improve it. 

Method of Solution; Time Selection 
The equations which arise have the form 

J" 
Jo 

f{t)+ \ R(t - s) f(s)ds = g(t), (1) 

where f(t) is to be found, g(t) and R(t) are specified functions, and 
R(t) = dR(t)lds. R(t) is expressed in terms of the usual material 
property functions such as creep or relaxation functions in shear or 
extension. As such, it can be expected to be monotonic. It is assumed 
tha t / ( t ) , g(t), and R(t) are dimensionless. 

Let \tk) = | t i = 0, t% . . ., tk, . . ., tn = t\ denote the set of times 
through tn at which values of the solution to (1), \f(tk)), are to be de
termined. The integral in (1), denoted by / , is defined on a subset of 
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f.R 

Fig. 1 Construction ol f(s) versus Tt(t„ — s) in the Stieltjes integral from 
plots of f(s) and fl(f„ — s) versus s 

the unbounded time axis [0, °>). The selection criterion for times \tk] 
is normally based on the anticipated behavior of the solution and on 
trial and error. 

Let (1) be written as a linear Volterra-Stieltjes integral equation 
in the form 

at)- Cf(S)dR(t-s) = g(t), 
Jo 

(2) 

where / is now defined on a subset of the bounded set [min R is), max 
R(s)]. A graphical interpretation for / is shown in Fig. 1. /(s) and R(tn 

— s) are shown plotted against the variable s. f(s) is also shown plotted 
against R(tn - s). The value of the integral / is the area under the 
f — R graph. 

A numerical approximation for / can be developed using the defi
nition of a Stieltjes integral [2] and the graphical interpretation of Fig. 
1. Let R(tn - tk), (k = 1,2,. . . ,n), be the set of values along the R-axis 
corresponding to times |£*). If the trapezoidal rule is used to approx
imate the integral, i.e., the area under the/(s) - R(tn — s) graph, one 
obtains the same expression as was presented in [1]. In order to obtain 
improved accuracy, a Simpson's rule approximation will be pre
sented. 

Consider first the part of the integral on the interval [R(tn — tk-i), 
R(t,i - tk+i)}. Let H = R(tn- tk) - R{tn - tA- i) and K = R(tn -
tk+i) ~ R(tn ~ tk). As suggested in Fig. 1, neither the time increments, 
tk+i — tk, along the s-axis, nor H and K on the R-axis are expected 
to be equal. Thus Simpson's rule for unequal intervals must be used. 
For the present problem, it is 

X <*+i (H + K) 
f(s)dR(tn -s)« - ~ ~ [K(2H - K)fltk-i) 

tk-i 6HK 

+ (H + Kmtk) + H(2K - H)f(tk+l)\ (3) 

At each time tn, an approximation for the entire integral can be 
obtained using (3). When this is substituted into (2), and the term in 
/(t„).is isolated, the latter can be found. 

At each time tn, there needs to be some restriction on the size of the 
increments H and K. For example, if K/H becomes too large, the 
parabolic interpolation formula on which (3) is based becomes inac
curate. Fig. 1 suggests that on the R-axis, the largest increment is R(0) 
— R(tn — tn-{). One might thus impose the restriction, 

R(0) - R(tn - t„_i) = a{R(tn - t„_i) - R(tn - t„_2)], (4) 

where a is chosen according to the accuracy needs of a particular 
problem. This defines a nonlinear recurrance relation for the selection 
of times \tk\. In particular, it establishes a rational basis for the se
lection of these times in accordance with the time variation of R(s) 
and the integral approximation scheme. 

Note that if the nondimensionalization is such that max R(s)<l , 
then AR = H <1. This insures the avoidance of a large error which 

might arise if the integral is approximated on the t-axis, and t - tn+\ 
— t/, becomes 0(1). 

Estimate of Largest tn 

For the class of problems in which f{t), g(t), and R(£) in (1) are 
monotonic and bounded, an a priori estimate can be made for the 
largest solution time tn. 

Let f°° denote Km fit) as t —• » and introduce the decomposition, 
fit) = / " - Afit). It is assumed that tA/(t)->0 as t—°> and that the 
integrals of Af(t) and t Af{t) on [0,™) exist. Denote these by A [A/] and 
A[tAf], respectively. The centroid of fit), defined by T/ = A[tAf]/ 
A [A/] is a useful measure of the time needed for fit) to reach /" . 
Similar statements hold.for R(t) andg(i) . 

If (1) is integrated on [0,t], and then the decompositions of/, g, and 
R are substituted, it can be shown, after some manipulation, that 

[f°R° - g-]t + C ARit - a)f(a)da ~ f° C ARia)da 

- R° f ' Af(a)da = - f ' Agia)da, (5) 
Jo Jo 

where R° = 1 + R(<») - R(0). Consider the limit as t -» <». It can be 
shown that the convolution integral vanishes. Furthermore, 

/ ° = g " / R ° , R°A[Af] = A[Ag] - fA[AR}. (6) 

Now let (5) be integrated on [0,i], The integrals in fit), Agit) and 
ARit) can be integrated by parts and simplified using (5). In the limit 
as t -» <», one obtains that 

R°A[tAf] = A[tAg]-f~A[tAR] - A[AR]A[Af], (7) 

where the last term arises from the convolution integral. Thus T/ can 
be expressed in terms of git) and R(i) by 

TSAS - f*TRAR + jf An2 - ARAe)IR» 

Tf = _ (8) 
As - f°AR 

where As = A[Ag\, AR = A[AR]. This generalizes a result of Pipkin 

[3]. 

E x a m p l e 
In (1), let R(0 = 0.25 + 0.75 exp (- t /2) and git) = 1.0 - 0.75 exp 

(—1/4). By use of the Laplace transform, it is found that/(J) = 4.0 + 
1.5 exp i-t/4) - 5.25 exp ( - t /8 ) . 

Since Rit) and git) are monotonic, the same could be expected of 
fit) on physical grounds. Using (8) an estimate of the rise time of fit) 
is found to be T/ = 8.67. This suggests that/(£„) will be close t o / " = 
4.0 when tn » 3iy. 

Equation (1) was solved using the method based on (3). Solution 
times tk were determined by (4) with a = 1.2. The initial increment 
R(0) -Rit2- h) = 0.01, which implies t2 = 0.0268. Computation was 
carried through tao = 27.064 ~ 3T/ when /(i90) = 3.824. The maximum 
computational error was 0(10 - 5). 

The method outlined here, or a variation of it, appears to be useful 
in solving equations such as (1). It has been used in some problems 
in nonlinear viscoelasticity [4]. 
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On the Extremal Properties of 
Hamilton's Action Integral 

J. G. Papastavridis1 

This Note examines the sufficient conditions for the extremization, 
in particular the minimization, of the action integral in Hamilton's 
principle for a one-degree-of-freedom nonlinear conservative system. 
It is usually stated in analytical mechanics that the action is actually 
minimized only over a short-time interval. Here the quantification 
of these statements is achieved by obtaining an upper bound for this 
minimizing interval. This is attained by combining results from the 
sufficiency variational calculus theory, with oscillation/comparison 
theorems from differential equations. 

I n t r o d u c t i o n 
The question of the characterization of the extremum in Hamilton's 

principle of "least action," assuming its existence, arises quite natu
rally to the student of analytical mechanics. Its treatment however 
is conspicuously absent from most popular texts,2 and is briefly dealt 
with even in the better expositions.3 To quote Landau and Lifshitz 
[5, p. 2, footnote] " . . . It should be noted that this "least possible 
value" formulation of the principle of least action is not always valid 
for the entire path of the system, but only for any sufficiently short 
segment of the path. The action integral for the entire path must have 
an extremum, but not necessarily a minimum. This fact, however, is 
of no importance as regards the derivation of the equations of motion, 
since only the extremum condition is used." 

This (partly misleading and incorrect remark) implies that the 
length of these segments depends on the particular system's charac
teristics, i.e., its inertia, geometry, and force fields. The reason for this 
is that the equations of motion require only stationarity from the 
Action, i.e., only first variation. The extremality (minimality) though 
is nothing but a condition, and its satisfaction or not has to be de
termined individually, i.e., for every given system or class of systems. 
And this necessitates the study of the Action's second variation.4 

A relatively recent treatment of this problem, essentially an elab
oration of ideas from [6], has appeared in [7]. Both discussions, how
ever, are limited to linear attractive forces; also, both either require 
the explicit solution of Jacobi's second variation (linear perturbation) 
equation, or they invoke special analytical tools.6 

Here an attempt to remove these restrictions is made by first, as
suming a nonlinear force-displacement relation, and second by using 
standard analytical results. In this way the road to further general
izations and extensions remains open; also, in the process some new 
light is shed into the physics of the problem. 

Theory 
Consider a system of mass m, generalized coordinate q = q(t), and 

force Q = Q(q). Then, according to Hamilton's variational principle, 
its equation of motion 

mq = Q(q), ( ( . . . )• = d(. . .)/dt), (1) 

1 Assistant Professor, School of Engineering Science and Mechanics, Georgia 
• Institute of Technology, Atlanta, Ga. 30332. 

2 See, for example, [1]. 
3 For example, [2]; a more extensive discussion is contained in Routh's classic 

treatise [3]. Another notable exception is the (little known in the U.S.) excellent 
textbook of Lur'e [4]; see pp. 649-665. 

4 Compare with the situation in (conservative continuum) statics: equilibrium 
is answered by stationarity, or first variation, of the potential energy, whereas 
stability conditions require extremality, i.e., second variation (at least!). 

5 An application of "Wirtinger's inequality." From older references [8, 9] 
should also be mentioned; their methods and results are equivalent to those 
of [6, 7], 
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is obtained from 

oA(q,8q) = 0, (2) 

where 

A{q)= P l[T(q)- V(q)]dt = action integral, (3) 

T(q) = \mql = kinetic energy, (4) 

Q(x)dx = potential energy, (5) 

and the (isochronous) variations oq(t) satisfy 

8q(t0) = dq(h) = 0, (6) 

for arbitrary times to, tj. 
Now, (2) and the resulting (1) are only necessary conditions for the 

minimum of (3). The sufficient conditions come from the study of the 
second variation of A(q), 82A{q, oq), or equivalently from Jacobi's 
functional 

J(z)= Cti[mz2-(d2V/dq2)z2]dt= f " [mi2 + (dQ/dq)z2]dt. 
Jto Jta 

(V) 
Here 

AA = A(q + dq) — A(q) ( = total variation) 

= oA(q, 5q) + \o2A(q, bq) + 03(oq) 

^l52A(q,Sq) (due to (2)) 

= \J(z), with o<?(t) = z(t). (8) 

The relevant results are contained in the following fundamental 
theorem:6 

In order that the action functional (3), with (6), attain a (relative 
weak) minimum in the class of smooth functions q{t), it is sufficient 
that 

1 q(t) satisfy the Euler-Lagrange equation (1), i.e., that q{t) be 
actual (dynamical) trajectory. 

2 The (strengthened) Legendre's condition hold true at every 
point of the actual trajectory q(t), i.e., 

d2/dq2[T(q) - V(q)] > 0, t0 < t < t : . (9) 

3 The (strengthened) Jacobi's condition be satisfied: the interval 
(to, ti] should not contain any points conjugate to to-

Since 1 and 2 are always satisfied,7 it is clear that the answer to the 
minimum question must come from 3. Now, the Jacobi or variational 
equation associated with (1) is 

z + f(t)z = 0, (10) 

z(to) = 0,z(to) = an arbitrary nonzero constant a, (11) 

where 

fit) = (m-^d2V/dq2 = -{m-l)dQ/dq, (12) 

and both q-derivatives are evaluated at q = q(t), i.e., for the actual 
motion (1); (10) is the Euler-Lagrange equation for oq = z, of J(z) in 
(7). 

Therefore, with At = t\ — to, Jacobi's condition 3 yields 

6 See, for example, [6 or 10]. 
7 Moreover, since d2/dq (T - V) = m > 0, for any q, the minimum is also 

strong (Weierstrass' condition), and further, as a consequence of the (Weier-
strass-Erdmann) corner conditions this strong minimum has to be attained 
among smooth functions. Legendre's condition physically means, that locally 
the action is always a minimum for any force field; this happens because the 
z terms always dominate over the z terms for very short (ti — to)-
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At<f. (13) 

Here r = t\ — to(ii > to), where t\ is the first zero of the solution to 
the initial-value problem (10), (11), z(t), to the right of t0, i.e., h is 
conjugate to to;8 Q (to) and q(ti) are known as conjugate kinetic foci. 
(13) shows that for sufficiently long intervals the action may be a 
maximum, provided that it attains an extremum. 

Since q(t) is unknown, unless one solves the nonlinear equation of 
motion (1) as in [6, 8, 9] further progress toward the application of (13) 
can be made only by utilizing some qualitative (inequality) result 
relating the distribution of zeros of z(t) with the structure of (10), 
i.e., with the general behavior of/(t) . 

This leads naturally to the well-known oscillation/comparison 
theorems for ODEs.9 Their application to the minimum problem 
enables us to state the following basic theorem: Consider the action 
integral (3), with (4)-(6). Left [ta, tb] = I, and ta < t0 < tb. Then 

1 If d2V/dq2 = —dQ/dq < 0 on / , the action's minimum occurs 
for any tx (>to) on / . 

2 If d2V/dq2 = —dQ/dq > 0 on / , the action's minimum occurs 
for any ti (>to) on / satisfying 

At < T, (14) 

where 

T = 7r[m/(d2V/dq2)M]i/2 = ir[m/(-dQ/dq)M]^2, (15) 

and (. . .)M - max (. ..) on / . 
In many cases of interest d2V/dq2 (or dQ/dq) keep a constant sign 

throughout the entire motion. In this case, 1 shows that the action 
is minimized for any t\ (>to), i.e., any At, whereas 2 provides the 
upper bound 

T = min[7r(m/(d2Wd<72))1/2] = min[w(m/(-dQldq)ll2}- (16) 

so long as At < r the action (3) can be guaranteed to be minimized 
by the actual motion (1). 

In the harmonic oscillator case Q(q) = —kq(k > 0), so (16) gives 

T = irim/k)1^2 = half period of free oscillation, (17) 

thus rediscovering the result of [4, 6-9]. 
For the harmonic oscillator with linear friction —fq(f > 0), and 

"damped" action10 

Mq)= C\-np(m-lft)[lmq2-lkq2\dt, (18) 
Jits 

one can easily deduce that: 1 if 4km < f2, then (18) is minimized for 
any t\, and 2 if 4km > f2, then (18) is minimized for any t i satisfying 
At < r, where 

r = (27rm)(4fem - / 2 ) - 1 / 2 

= half period of free (underdamped) oscillation; (19) 

(19) has been derived in [9] by ad hoc means. 

Discussion 
The first part of the theorem states that constant (dQ/dq = 0) or 

repulsive (dQ/dq > 0) forces always minimize the action; for example, 
Q(q) = fi2qn, /3: constant and n: odd. 

The second states that attractive (dQ/dq < 0) forces may minimize 
(3) or not depending on (14)-(16). It also indicates that r is of the 
order of the system's half period of oscillation; if the system cannot 
oscillate r —• °°. 

In (15) and (16) Q(q) is the force applied by the "spring" to the 
particle. If instead, one uses the force applied on the spring Qs = — Q, 
then as the "constitutive" Qs — q diagram shows, one can replace 
(—dQ/dq)M with: 

8 The t\ location is independent of a in (11). If At = T further investigation 
is needed to answer the extremum question. 

9 See, for example, [11, pp. 636-640], or [12, pp. 171-172], 
10 Actually, only the friction need be linear. 

1 The initial slope (dQs/dq)qo for soft springs. 
2 The maximum amplitude slope (dQs/dq)qma for hard springs; 

the energy equation and initial conditions supply qmm. 

The oscillation/comparison theorems methodology is worth ex
tending to several degrees-of-freedom and continuous systems, as well 
as to other mechanics areas, such as elastic stability; [13,14] seem to 
furnish appropriate tools. 

Finally, the interest in extremum principles has been recently re
newed, due to their relations with the "inverse problem" of mechanics; 
see [15]. 

References 
1 Goldstein, H., Classical Mechanics, Addison-Wesley, Reading, Mass., 

1950. 
2 Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles 

and Rigid Bodies, Dover, New York, 1944 (originally published 1904). 
3 Routh, E. J., A Treatise on the Dynamics of a Particle, Cambridge 

University Press, Cambridge, 1898. 
4 Lur'e, A. I., Analytical Mechanics (in Russian), Gosudarstvennoe 

Izdat'elstvo Fiziko-Mat'emat' iskoi Literaturi, 1961, Moscow. 
5 Landau, L., and Lifshitz, E., Mechanics, Addison-Wesley, Reading, 

Mass., 1960. 
6 Gelfand, I. M., and Fomin, S. V., Calculus of Variations, Prentice-Hall, 

Englewood Cliffs, N. J., 1963. 
7 Smith, D. R., and Smith, C. V., "When is Hamilton's Principle an Ex

tremum Principle?, A1AA Journal, Vol 12,1974, pp. 1573-1576. 
8 Bottema, O., "Beispiele zum Hamiltonschen Prinzip," Monatshefte fur 

Mathematik, Vol. 66,1962, pp. 97-104. 
9 Leitmann, G., "Some Remarks on Hamilton's Principle," ASME 

JOURNAL OF APPLIED MECHANICS, Vol. 30,1963, pp. 623-625. 
10 Petrov, I. P., Variational Methods in Optimum Control Theory, Aca

demic Press, N.Y., 1968. 
11 Myskis, A. D., Advanced Mathematics for Engineers, Mir, Moscow, 

1975. 
12 Bieberbach, L., Theorie der Differentialgleichungen, Springer-Verlag, 

Berlin, 1930. 
13 Protter, M. H., and Weinberger, H. F., Maximum Principles in Differ

ential Equations, Prentice-Hall, Englewood-Cliffs, N.J., 1967. 
14 Kloetzler, R., Mehrdimensionale Variationsrechnung, Birkhauser, 

Basel-Stuttgart, 1970. 
15 Santilli, R. M., Foundations of Theoretical Mechanics: Part I, 

Springer-Verlag, NYC/Berlin, 1978. 

Theory of the Constant Force 
Spring 

C. -Y. Wang1 and L. T. Watson2 

Introduction 
The constant force spring, or Negator, is a coil of precurved flat 

spring which can be opened by opposite forces F' (Fig 1). These 
springs have been used in balancing mechanisms, feeding devices, 
brush holders for electric motors and as clamps for model makers 

[1]. 
Let the spring have a natural radius of R and an equivalent flexural 

rigidity EI (= (Young's modulus) (width) X (thickness)3/12 (1 -
(Poisson's ratio)2). We assume the thickness is negligible in com
parison to the other dimensions. Using the strain energy of flattening 
a precurved spring, Votta [2] suggested the force F' is independent 
of displacement 
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At<f. (13) 

Here r = t\ — to(ii > to), where t\ is the first zero of the solution to 
the initial-value problem (10), (11), z(t), to the right of t0, i.e., h is 
conjugate to to;8 Q (to) and q(ti) are known as conjugate kinetic foci. 
(13) shows that for sufficiently long intervals the action may be a 
maximum, provided that it attains an extremum. 

Since q(t) is unknown, unless one solves the nonlinear equation of 
motion (1) as in [6, 8, 9] further progress toward the application of (13) 
can be made only by utilizing some qualitative (inequality) result 
relating the distribution of zeros of z(t) with the structure of (10), 
i.e., with the general behavior of/(t) . 

This leads naturally to the well-known oscillation/comparison 
theorems for ODEs.9 Their application to the minimum problem 
enables us to state the following basic theorem: Consider the action 
integral (3), with (4)-(6). Left [ta, tb] = I, and ta < t0 < tb. Then 

1 If d2V/dq2 = —dQ/dq < 0 on / , the action's minimum occurs 
for any tx (>to) on / . 

2 If d2V/dq2 = —dQ/dq > 0 on / , the action's minimum occurs 
for any ti (>to) on / satisfying 

At < T, (14) 

where 

T = 7r[m/(d2V/dq2)M]i/2 = ir[m/(-dQ/dq)M]^2, (15) 

and (. . .)M - max (. ..) on / . 
In many cases of interest d2V/dq2 (or dQ/dq) keep a constant sign 

throughout the entire motion. In this case, 1 shows that the action 
is minimized for any t\ (>to), i.e., any At, whereas 2 provides the 
upper bound 

T = min[7r(m/(d2Wd<72))1/2] = min[w(m/(-dQldq)ll2}- (16) 

so long as At < r the action (3) can be guaranteed to be minimized 
by the actual motion (1). 

In the harmonic oscillator case Q(q) = —kq(k > 0), so (16) gives 

T = irim/k)1^2 = half period of free oscillation, (17) 

thus rediscovering the result of [4, 6-9]. 
For the harmonic oscillator with linear friction —fq(f > 0), and 

"damped" action10 

Mq)= C\-np(m-lft)[lmq2-lkq2\dt, (18) 
Jits 

one can easily deduce that: 1 if 4km < f2, then (18) is minimized for 
any t\, and 2 if 4km > f2, then (18) is minimized for any t i satisfying 
At < r, where 

r = (27rm)(4fem - / 2 ) - 1 / 2 

= half period of free (underdamped) oscillation; (19) 

(19) has been derived in [9] by ad hoc means. 

Discussion 
The first part of the theorem states that constant (dQ/dq = 0) or 

repulsive (dQ/dq > 0) forces always minimize the action; for example, 
Q(q) = fi2qn, /3: constant and n: odd. 

The second states that attractive (dQ/dq < 0) forces may minimize 
(3) or not depending on (14)-(16). It also indicates that r is of the 
order of the system's half period of oscillation; if the system cannot 
oscillate r —• °°. 

In (15) and (16) Q(q) is the force applied by the "spring" to the 
particle. If instead, one uses the force applied on the spring Qs = — Q, 
then as the "constitutive" Qs — q diagram shows, one can replace 
(—dQ/dq)M with: 

8 The t\ location is independent of a in (11). If At = T further investigation 
is needed to answer the extremum question. 

9 See, for example, [11, pp. 636-640], or [12, pp. 171-172], 
10 Actually, only the friction need be linear. 

1 The initial slope (dQs/dq)qo for soft springs. 
2 The maximum amplitude slope (dQs/dq)qma for hard springs; 

the energy equation and initial conditions supply qmm. 

The oscillation/comparison theorems methodology is worth ex
tending to several degrees-of-freedom and continuous systems, as well 
as to other mechanics areas, such as elastic stability; [13,14] seem to 
furnish appropriate tools. 

Finally, the interest in extremum principles has been recently re
newed, due to their relations with the "inverse problem" of mechanics; 
see [15]. 
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Theory of the Constant Force 
Spring 

C. -Y. Wang1 and L. T. Watson2 

Introduction 
The constant force spring, or Negator, is a coil of precurved flat 

spring which can be opened by opposite forces F' (Fig 1). These 
springs have been used in balancing mechanisms, feeding devices, 
brush holders for electric motors and as clamps for model makers 

[1]. 
Let the spring have a natural radius of R and an equivalent flexural 

rigidity EI (= (Young's modulus) (width) X (thickness)3/12 (1 -
(Poisson's ratio)2). We assume the thickness is negligible in com
parison to the other dimensions. Using the strain energy of flattening 
a precurved spring, Votta [2] suggested the force F' is independent 
of displacement 
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Fig. 1 

EI 

2R2 (1) 

Experimental data [2, 3] depicts the force rising abruptly, then in
creasing very slowly as the spring is further extended. 

Is the force really constant for a "constant-force" spring? The 
simplified theory of Votta could not be valid for all displacements, 
especially small displacements, since no part of the spring is truly 
flattened. We expect equation (1) serves as an asymptote of the force 
as the displacement tends to infinity. The present Note presents a 
concise theory for the constant-force spring. 

Formulation 
Since the thickness of the spring is small, we can use the theory of 

elastica to describe the spring. The equations [4] are 

„rde EI 
EI— = M' + F'y' 

ds' R * 
d^_ 

ds' 

dy' 

ds' 

(2) 

(3) 

where s' is the arc length, 0 is the local angle of inclination, M' is the 
maximum moment occurring at the point of symmetry, and x' and 
y' are Cartesian coordinates. LetL be the arc length of the unwound 
spring OA. The boundary conditions are 

* ' (O)=y(O) = 0(O) = O 

0(L) = - , y'(L) = M'/F' 

(4) 

(5) 

The unknowns are M', F', x', y', 8. We normalize all variables as fol
lows: 

s = s'/R, x = x'/R, y = y'/R, M = M'RIEI, F = F'R2/EI (6) 

Equations (2)-(5) become 

(7) 
d8 
— = 1 - M + Fy 
ds 

dx 

ds 

. dy 
• cos 8, — = sin ( 

ds 
(8) 

*(0) = y(0) = 0(0) = 0, 8(L/R) = TT/2, y(L/R) = M/F (9) 

We differentiate equation (7) once, multiply by d8/ds and integrate 
to get 

1 W „ „ 1 
- —- = - .Fcos0 + -
2 Ids 2 

(10) 

where the constant of integration is obtained by the boundary con
ditions at s = L/R. Integrating again, we have 

X d8 

o V l - 2 F c o s 0 V l + 2F 

I V 1 + 2F 2/ \ V 1 + 2F 2 
(ID 

where y is the elliptic function of the first kind. 

The solution in terms of elliptic functions is extremely inconvenient. 
Furthermore, the accuracy is limited by the accuracy of elliptic 
functions themselves, either obtained from tables or from numerical 
integration. 

Asymptotic Character as L/R -*• °° 
This corresponds to Votta's case when the spring is pulled far apart 

such tha tL » R. We set t = L/R — s in equation (10). As t -> °°, 8 ->• 
0, d8/dt - O w e find 

•1/2 (12) 

This yields exactly Votta's result. Also, since y -*• 0 as t ->• °>, equation 
(7) yields 

M- (13) 

The maximum moment is thus EI/R. Equations (9), (12), and (13) 
give 

IL\ 
b/R^y (14) 

As the spring is pulled apart, the height b increase from R to 2R. The 
exact form of 8(t) is 

8 = 4 tan" 1 tan —exp (—i/\/2) (15) 

Numerical Integration 
With the advent of the computer, it is simpler and more accurate 

to integrate equations (7)-(9) directly. One usually guesses M, F, and 
shoots for the boundary conditions at L/R. Newton's method is used 
to refine the guesses. However, this method may not be convergent 
unless the guesses M and F are extremely close to the true solution. 
We shall propose a method for which no initial guess is required. 

We transform the governing equations further by 

s = s(l-M), y = y(l-M), x = x(l - M) (16) 

Equations (7)-(9) become 

(17) 
dd dx dy 
— = 1 + Ky, — = cos 8, — = sin ( 
ds ds ds 

*(0) = 5K0) = 0(0) = 0 

where 

'\s=a-M)L/R - —, y\s=(l-M)L/R ' 

K = F/(l - M) 2 

(1 - M)M 

(18) 

(19) 

(20) 

The method is to choose any K, integrate equations (17) and (18) until 
8 reaches 7r/2 say at s = s*. Then we can solve for F, M from equations 
(19) and (20): 

F = K/(l+y(s*)K)2, M = y(s*)K/(l+y(s*)K) (21) 

The displacement is 

^^x(L/R)=p~ = x{s*)(l+y<,s*)K) (22) 
R 1 - M 

The arc length is 

R 
s*(l+y(s*)K) (23) 

If the exact shape of the spring is needed, one can integrate equation 
(7)-(9) with the correct values from equations (21), (23). 

Results and Discussion 
Fig. 2 is a graph of nondimensional force F and maximum nondi-

mensional moment M versus displacement a/R. It is obvious the force 
is not constant. However, if a/R > 2.62, F will be within 5 percent of 
its asymptotic value of V2. The maximum moment (a design paramter) 
approaches its asymptotic value much slower. Unfortunately, the 

Journal of Applied Mechanics DECEMBER 1980, VOL. 47 / 957 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

natural radii are not given in references [2, 3] and we are unable to 
compare their experimental results to our universal curve. 
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Transient Analysis of Stress 
Waves Around a Rectangular 
Crack Under Impact Load 

S. Itou1 

Introduction 
In an earlier paper [1], the steady-state problem with the time factor 

exp (iiot), has been resolved for an infinite elastic body weakened by 
a rectangular crack. In this paper, expressions are presented for the 
three-dimensional transient response of a solid containing a plane 
rectangular crack subjected to impact load. The problem is first for
mulated with the aid of Fourier and Laplace transforms and then 
reduced to the solution of dual integral equations in terms of the 
Laplace transform variable. These equations are solved with the same 
manner which is employed in reference [1], namely, the surface dis
placement is expanded in a double series of Jacobi polynomials and 
the Schmidt method is used. A numerical Laplace inversion techn 
nique, which is developed in reference [2] and is used in references 
[3, 4], is also taken to obtain the stresses in the physical space. 

Numerical calculations are carried out for the dynamic stress-in
tensity factors and compared with those of the corresponding static 
values given by Weaver [5] and Itou [1]. 

Formulation of Problem 
Consider an infinite elastic space with Cartesian coordinate x,-, i 

= 1, 2, 3. A rectangular crack is located along the xi-axis from -a to 
a and along the x3-axis from — b to b as shown in Fig. 1. 

For an incident displacement wave which impinges on the rectan
gular crack, the boundary condition equations are as follows: 
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Fig. 1 Geometry and coordinate system 

T22 = - P H ( t ) , forx2 = < 

0, for x2 = 0, 

0, for x2 = 0, 
u2- Xl 

| x i | < a , 

> a *3i 

|x 3 j<6 , 
>b, 

T12 - T23 : l * l | < <=> | * 3 | < °°, 

wi th 

P = (X + 2fi)e0, 

(1) 

(2) 

where H(t) is the Heaviside unite step function, T;; and u; are the 
stress and displacement components, respectively, X and JX are the 
Lame elastic constants, and e0 is a constant. 

Stress-Intensity Factors 
By comparing the Laplace transformed equation of motion with 

equation (4) in reference [6], we know that all expressions in a time-
harmonic steady-state space can be used in the Laplace transformed 
domain if we replace w2 by —s2. Therefore, the stress-intensity factors 
Ka* along Xi = a and Kb* along X3 = b in the Laplace transform do
main are easily defined in a manner similar to that employed by the 
author to solve the corresponding steady-state time-harmonic 
problem [1], 

Ka* = TJ2TT(X\ -a)T22*|ii—a+ 

= /—.. L L cmn(s) 
( - l ) 2 m + n r ( 2 m - | ) r ( 2 n - J ) 

(2m - 2)!(2ra - 1)! 

Xcos|(2re - D s i n " 1 (x3/6)| 

Kb* = V27T(XS- &)T22*|*3-6+ 

- ,—r L L Cmn(s) 

y/wby m=l n=l 

(-l)m+2nT(2m - h)T(2n - I) 

(2m - l)!(2re - 2)! 

X cos |2(m - D s i n - 1 (xi/o)| , (3) 

with 

K(b, f)/5 = K(ly)/y = (1 - a2)/a2 , 

a2 = (X + 2/i)//i, (4) 

where cmn(s) are the coefficients and can be solved by the Schmidt 
method [1], and T(m) is Gamma function. 

The Laplace inverse transformations in equation (3) are carried 
out by the numerical method given by Miller and Guy [2]. 

Numerical Examples and Results 
For a numerical calculation, Poisson's ratio v is taken as 0.2 and the 

shape of the crack is assumed to be a regular square, namely, alb = 
1.0. In Table 1, the values of Ka at X3 = 0 and Kb at X\ = 0 are given 
where C2 is the shear wave velocity. Since the ratio b/a is 1.0, it should 
hold that Ka = Kb. There is a difference between these. Since it is very 
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[3, 4], is also taken to obtain the stresses in the physical space. 

Numerical calculations are carried out for the dynamic stress-in
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Formulation of Problem 
Consider an infinite elastic space with Cartesian coordinate x,-, i 
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a and along the x3-axis from — b to b as shown in Fig. 1. 
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where H(t) is the Heaviside unite step function, T;; and u; are the 
stress and displacement components, respectively, X and JX are the 
Lame elastic constants, and e0 is a constant. 

Stress-Intensity Factors 
By comparing the Laplace transformed equation of motion with 

equation (4) in reference [6], we know that all expressions in a time-
harmonic steady-state space can be used in the Laplace transformed 
domain if we replace w2 by —s2. Therefore, the stress-intensity factors 
Ka* along Xi = a and Kb* along X3 = b in the Laplace transform do
main are easily defined in a manner similar to that employed by the 
author to solve the corresponding steady-state time-harmonic 
problem [1], 
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where cmn(s) are the coefficients and can be solved by the Schmidt 
method [1], and T(m) is Gamma function. 

The Laplace inverse transformations in equation (3) are carried 
out by the numerical method given by Miller and Guy [2]. 

Numerical Examples and Results 
For a numerical calculation, Poisson's ratio v is taken as 0.2 and the 

shape of the crack is assumed to be a regular square, namely, alb = 
1.0. In Table 1, the values of Ka at X3 = 0 and Kb at X\ = 0 are given 
where C2 is the shear wave velocity. Since the ratio b/a is 1.0, it should 
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Fig. 3 Dynamic stress-Intensity factor K, for c2t/a = 0.6, 1.6, 3.0 versus 
* 3 

Table 1 The values K„ at x3/b = 0.0 and Kb at x-,/a = 

c 2 t / a 

Ka /C/JFA'P) 

Kb / W ^ B P ) 

0.01 

0.05V 

0.035 

1.00 

0.850 

0.825 

1.60 

0.995 

0.986 

P.00 

0.963 

0.965 

0.0 

5.00 

0.786 

0.794 

small, it is considered that the accuracy of the present numerical 
calculations are satisfactory from an engineering viewpoint. 

In Fig. 2, Ka at X3 = 0 is plotted versus t, in which the broken lines 
are the corresponding static values given by Weaver [5] and Itou [1], 
There is a small difference between these static solutions. Therefore, 
it is considered that the dynamic stress-intensity factor exceeds the 
corresponding static value by the range from 29 to 35 percent. Fig. 3 
shows Ka versus xjb for at/a = 0.6,1.6,3.0. At the corner of the crack 
the stress-intensity factor drops to zero. This means that the singu
larity of the stress at the corner is different from the usual one. When 
we write T22 at the corners as the following: 

T22 = fca/Ul2 - O2)'1 + kb/(x3
2 - 62)« (5) 

with constants ka, ki,, (1, «2, the values of €1 and €2 are smaller than 
0.5. To obtain these exact values is beyond the present numerical 
analysis. However, an existing crack has a dull corner rather than a 
sharp one, and then the corner singularity is not so much interesting 
in fracture mechanics. For the contrary case of an external crack, €1 
and £2 may have the larger values than 0.5. 
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On the Analysis of First and 
Second-Order Shear 
Deformation Effects for 
Isotropic Elastic Plates1 

E. Reissner2 

Introduction 
In what follows we consider once more briefly the problem of 

transverse shear deformations for isotropic plates, within the 
framework of the two-dimensional sixth-order theory as derived from 
three-dimensional theory by a variational method [2] or, alternately, 
by means of self-contained two-dimensional considerations [3]. 

Specifically, we are here concerned with the fact that it is possible 
to distinguish between first and second-order shear deformation ef
fects, with the determination of the first-order effects depending on 
a rational analysis of edge-zone behavior and with the second-order 
effects requiring no such analysis [5]. As regards the nature of the two 
kinds of effects we note, in particular, that the second-order effect is 
a natural generalization of Timoshenko's analysis of shear deforma
tion in beams while the first-order effect disappears in a specialization 
of the plate problem to the corresponding problem of the beam. 

As regards the objects of this Note, these are as follows. 
Recent considerations by Simmonds [4], including a description 

of results by Goldenveiser [1] concerning the asymptotic derivation 
of a fourth-order plate theory in which first-order shear correction 
terms are accounted for by a modification of the classical Kirchhoff 
boundary conditions, make it seem worthwhile to indicate that results 
of the same nature are in fact implied by the writer's sixth-order 
two-dimensional plate theory.3 

Our results on modified Kirchhoff boundary conditions in [3] were 
stated for the case of straight edges only. It seems desirable to present 
a derivation of the corresponding results for the case of curved edges 
inasmuch as edge curvature brings with it a significant supplementary 
term in the relevant formulas. 

1 Supported by the Office of Naval Research. 
2 Department of Applied Mechanics and Engineering Sciences, University 

of California, San Diego, La Jolla, Calif. 92093. Fellow ASME. 
3 We note that we did not think of this possibility in the presentation of our 

earlier work [2], and that our later analysis by a direct two-dimensional approach 
[3] led us to this possibility without consciousness of its relation to Golden-
veiser's results. 
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Table 1 The values K„ at x3/b = 0.0 and Kb at x-,/a = 

c 2 t / a 

Ka /C/JFA'P) 

Kb / W ^ B P ) 

0.01 

0.05V 

0.035 

1.00 

0.850 

0.825 

1.60 

0.995 

0.986 

P.00 

0.963 

0.965 

0.0 

5.00 

0.786 

0.794 

small, it is considered that the accuracy of the present numerical 
calculations are satisfactory from an engineering viewpoint. 

In Fig. 2, Ka at X3 = 0 is plotted versus t, in which the broken lines 
are the corresponding static values given by Weaver [5] and Itou [1], 
There is a small difference between these static solutions. Therefore, 
it is considered that the dynamic stress-intensity factor exceeds the 
corresponding static value by the range from 29 to 35 percent. Fig. 3 
shows Ka versus xjb for at/a = 0.6,1.6,3.0. At the corner of the crack 
the stress-intensity factor drops to zero. This means that the singu
larity of the stress at the corner is different from the usual one. When 
we write T22 at the corners as the following: 

T22 = fca/Ul2 - O2)'1 + kb/(x3
2 - 62)« (5) 

with constants ka, ki,, (1, «2, the values of €1 and €2 are smaller than 
0.5. To obtain these exact values is beyond the present numerical 
analysis. However, an existing crack has a dull corner rather than a 
sharp one, and then the corner singularity is not so much interesting 
in fracture mechanics. For the contrary case of an external crack, €1 
and £2 may have the larger values than 0.5. 
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On the Analysis of First and 
Second-Order Shear 
Deformation Effects for 
Isotropic Elastic Plates1 

E. Reissner2 

Introduction 
In what follows we consider once more briefly the problem of 

transverse shear deformations for isotropic plates, within the 
framework of the two-dimensional sixth-order theory as derived from 
three-dimensional theory by a variational method [2] or, alternately, 
by means of self-contained two-dimensional considerations [3]. 

Specifically, we are here concerned with the fact that it is possible 
to distinguish between first and second-order shear deformation ef
fects, with the determination of the first-order effects depending on 
a rational analysis of edge-zone behavior and with the second-order 
effects requiring no such analysis [5]. As regards the nature of the two 
kinds of effects we note, in particular, that the second-order effect is 
a natural generalization of Timoshenko's analysis of shear deforma
tion in beams while the first-order effect disappears in a specialization 
of the plate problem to the corresponding problem of the beam. 

As regards the objects of this Note, these are as follows. 
Recent considerations by Simmonds [4], including a description 

of results by Goldenveiser [1] concerning the asymptotic derivation 
of a fourth-order plate theory in which first-order shear correction 
terms are accounted for by a modification of the classical Kirchhoff 
boundary conditions, make it seem worthwhile to indicate that results 
of the same nature are in fact implied by the writer's sixth-order 
two-dimensional plate theory.3 

Our results on modified Kirchhoff boundary conditions in [3] were 
stated for the case of straight edges only. It seems desirable to present 
a derivation of the corresponding results for the case of curved edges 
inasmuch as edge curvature brings with it a significant supplementary 
term in the relevant formulas. 
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3 We note that we did not think of this possibility in the presentation of our 

earlier work [2], and that our later analysis by a direct two-dimensional approach 
[3] led us to this possibility without consciousness of its relation to Golden-
veiser's results. 
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Two-Dimensional Plate Equations in Polar Coordinate 
Form 

We depart from our earlier Cartesian-coordinate statement of 

sixth-order two-dimensional theory for plates which are two-di-

mensionally isotropic and homogeneous [3] and rewrite these (for the 

case of absent distributed surface loads) with reference to polar 

coordinates r, d in the form 

Mrr = 

MUD •• 

-D 

•• - D 
V,r , VfiO 

1 — + VV rr 

2 Ix.llr X,0 

X2 

2 JXfir X,i 

\ A r r2 

Mro=-(l-v)D 
V,0r Vfi 

-D(V2u),r + — , 

<l>r' -Vr + B 
X,0 

+ — (*£ + K^\ _ 
X2 \r r2j 

„ (V2u),« 
= ~D X,r 

r 

In this we have 

1 - v 

X2 BD, u = w + BDV2w, 

(1) 

(2) 

(3)4 

(4a,6) 

(5a,6) 

(6a,6) 

with D and B being transverse bending and shear deformation factors, 

and w and x being solutions of the differential equations 

D V2V2w = 0, V2x - X2x = 0. (7a,6) 

The factors D and B are, for the case of a plate which is also homo

geneous in thickness direction 

Eh3 fi 
D-

12(1 - j;2) ' 
B 

5Gh 

Therewith, for this case 

1 Eh2 

(8a,b) 

(8c) 
X2 20(1 + v)G 

and then X = VTO/Ti for a three-dimensionally isotropic material as 

considered in [2]. 

Asymptotic Analysis 

Given a circular ring plate with inner edge r = a we consider the 

system of stress boundary conditions, 

r = a; Mrr = M„, Mr0 = Mr$, Qr = <3r, (9) 

and, alternately, the system of displacement boundary conditions, 

r = a; w = w, </>r = <j>n 4>o = ^o- (10) 

The possibility of an asymptotic analysis is given upon making the 

fundamental assumption 

1 « Xa, 

and upon making use of the order-of-magnitude relations 

(11) 

u , - 0 n ^ = O p ^ = 0 p , r = 0 (XX), (12) 
\al r \al r \a] 

with these depending on restrictive assumptions of the form Mrr>g = 

0(Mrr), etc. 

It follows from (12) and (6) that now 

u = w + 0 
X2o2, 

(13) 

and, if we designate u-contributions to M,T, etc., by a superscript i, 

the boundary conditions (9) may be written in the form 

4 The restatement of this expression involves a useful transformation with 
the help of the differential equation (7b). 

X2 \ r 

2 lx, 

—r = M„ 

M^rt+7f)-* 
r 

Mrl 

(14a) 

(146) 

(14c) 

for r = a, while the boundary conditions (10) may be written in the 
form 

w = w, (15a) 

-Do r + 
X,o 

- D ^ 

( l - ^ ) X 2 r 

2 

r (1 - i-)X2 

= D<j>r, 

X.r = Dtk 

(156) 

(15c) 

Having the systems (14) and (15) we now proceed to deduce from 

them a system of abbreviated relations, in such a way that terms of 

relative order 1/Xa are retained, while terms of relative order l/(Xa)2 

are being disregarded. To accomplish this reduction, it is necessary 

to stipulate at the outset a suitable order-of-magnitude relation be

tween the dependent variables v and x-

Inspection of the system (14) indicates that a reduction of this 

system is accomplished upon stipulating that 

a2x = O(Dv). (16) 

Therewith equations (14a,6) become, except for terms of relative order 

l/(aX)2, 

M' r + ^ ^ = M m MU + ^ - x ^ M n , , (lla,b) 
X2 r X2 r 

with the relevant expressions for ML, M'rt, Q'r now involving w rather 

than v directly, as a consequence of equation (13), and with equation 

(14c) remaining unchanged. 

The corresponding order-of-magnitude stipulation regarding v and 

X for the system (15) is 

a2
x = 0(XaDv). (18) 

Therewith the x-term in (15c) is of the same order of magnitude as 

the u-term, with the x-contribution in (156) now being of relative 

order 1/Xa. At the same time, because of (13), equations (156,c) may 

be written in terms of w rather than in terms of v, as follows: 

n , 2 X,o n T n
u , . ( ' 2 X,r n - , 1 ( . , . 

-Dm, + — - = D4>r, -D — = D(p0. (19a,6) 
1 — v Xzr r 1 — v X' 

Having the systems (17a,6) and (14c), and (19a,6) and (15a), we 

now use these for the derivation of equivalent systems which are of 

such nature as to allow a sequential determination of w and x, with 

the w -problem being the desired generalization of Kirchhoff s problem 

in which first-order transverse shear deformation terms are taken into 

account of entirely by modification of Kirchhoff's boundary condi

tions. 

In order to derive from the given systems of three boundary con

ditions for w and x separate systems of two conditions for w and one 

condition for x we make use of the differential equation V2x — X2x 

= 0 in the asymptotic form x.rr — X2x = 0, from which it follows that 

X = f{d)e~x^r~a) and therewith, except for terms of relative order 

1/Xa, 

- A * (20) 

The introduction of (20) into (17a,6) changes these relations 

into 

M'rr - — X,« = Mrr, Mi, 
ha Xa 

+ 1 \x = Mrll, (21a,6) 

for r = a. Equation (216) may be rewritten in the form 

r = a, x = (l--H(Mi
rll-Mrl,). (22) 
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A substitution of this in (21a) and (14c) then gives as modified 
Kirchhoff's boundary conditions, involving w alone 

Mrr - Mrr - — (Mm - Mrl,),„ = 0, (23a) 
Xa 

Q ' - V J l - ^ - ^ ' - O . (23b) 
\ Xaj a 

for r = a.5 It is evident from (23a,6) and (22), in conjunction with the 
differential equations (7a,6), that the asymptotic determination of 
w and x up to terms of relative order 1/Xa is now in fact of a sequential 
nature. The previous result [3] for the case of a straight boundary 
follow from (23a,6) by first setting (),«/a = 0,2 and by then going to 
the limit a —- <», with the term 2/Xa in (23i) disappearing in this 
process. 

The analogous reduction of the displacement boundary conditions 
(19a,6) comes out as follows. We first combine (20) and (196) in the 
form 

l — i/ , Iw it -
r = a, X = —— £ > A — + 0 „ 

2 \ a 
(24) 

and then use this relation in equation (19a) so as to obtain as second 
displacement boundary condition for w alone, in complementation 
of (15a), 

( iu , r+0r ) -— — + M = ° . Xa I a 
(25) 

for r = a. Equations (25), (24), and (15a) reduce directly to the cor
responding conditions in [3] for the case of a straight boundary. 
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Introduction 
The Stokes flow problem of an incompressible viscous fluid in 

corrugated channels was recently considered by Wang [1, 2] who ob-
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tained solutions for flow parallel to the corrugations [1] and transverse 
to them [2]. In the latter case it was shown that, for sinusoidal corru
gations of small amplitude e, the mean pressure drop increased over 
the noncorrugated value by a factor of 1 + e2B(A,<l>), where B is a 
function of the frequency (X) and the phase shift ($) of the corruga
tions in the channel walls. Numerical solutions to the same problem 
but allowing for inertia and diffusion effects were obtained by Chow 
and Soda [3] with a view of modeling blood oxygenators. 

An approximate solution to the corresponding pipe flow problem 
was derived by Langlois [4] who used the lubrication approximation 
to calculate the mean pressure drop. The prediction of this simple 
method agrees well with the exact value provided that the pipe radius 
varies slowly, i.e., the frequency of the corrugations should be small. 
Since Langlois' [4] paper, this present pipe flow problem has been 
considered by a number of authors. Tanner [5] extended the pertur
bation analysis of Blassius to predict the kinetic energy losses of vis-
cometric capillary tubes. However, as Manton [6] has pointed out, 
Tanner neglected second-order terms in the momentum equations 
so that the pressure was assumed to vary in the axial direction only. 
In applying the boundary condition (equation (2.6a) of [6]) 

d\p 
— = 0 on the radius of the pipe, 
dr 

Manton [6] also neglected terms of first and second-order; the exact 
expression is given in equation (3) of this communication. 

In view of the importance of this flow in Biomechanics [7] we at
tempt here to develop a perturbation solution to this problem. We 
also report the predictions of a lubrication approximation which is 
similar to that used by Langlois [4]. 

Analysis 
A good starting point of the analysis is the Stokes flow equation in 

cylindrical coordinates (r, 6, z) for an incompressible viscous fluid 

d i d d2 

Ety = 0, E2 = , — + 
dr r dr dz 2 ' (1) 

(2) 

(3) 

where \p is the Stokes dimensionless stream function. 
The boundary conditions on \(/ are 

1 d\l/ 
A t r = 0, i = 0, - — = 0 

r dz 

dt// 
A t r = 1 + esinXz, \b = 1, — = 0, 

dp 

where p is the direction normal to the boundary of the pipe. Note that 
we have nondimensionalized all length variables with respect to a, 
the mean radius of the pipe. 

We seek a perturbation solution of the form 

i = yl>0 + eh + eVa + 0(e3) (4) 

for which the boundary conditions (3) become 

<MD + e L ( D + sin \z ^ (1)) + e2 k ( « + sin Xz ^ (1) 
\ dr I \ dr 

+ i s i n 2 X z ^ ( l ) ) + 0(c3) = l (5) 
2 dr2 ) 

and 

dr 

M a¥o, (1) + ( — (1) + sin Xz — v (D - X cos Xz — (1) 
d'/'o, 

, dr dr2 
dz 

+ € 2 (M 2
( 1 ) + s i n X 2 ^ l ( 1 ) + I s i n 2 X 2 ^ ( 1 ) 

\ dr dr2 2 dr J 

1 \ 2 2 \ d^° ii\ \ \ ^ M I Xz cosz Xz (1) — X cos Xz (1) 
2 dr dz 

- X sin Xz cos Xz - ^ (1)1 + 0(«3) = 0 
dzdr I 

where the argument 1 denotes an evaluation at /• = 1. 

(6) 
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A substitution of this in (21a) and (14c) then gives as modified 
Kirchhoff's boundary conditions, involving w alone 

Mrr - Mrr - — (Mm - Mrl,),„ = 0, (23a) 
Xa 
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for r = a.5 It is evident from (23a,6) and (22), in conjunction with the 
differential equations (7a,6), that the asymptotic determination of 
w and x up to terms of relative order 1/Xa is now in fact of a sequential 
nature. The previous result [3] for the case of a straight boundary 
follow from (23a,6) by first setting (),«/a = 0,2 and by then going to 
the limit a —- <», with the term 2/Xa in (23i) disappearing in this 
process. 

The analogous reduction of the displacement boundary conditions 
(19a,6) comes out as follows. We first combine (20) and (196) in the 
form 
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and then use this relation in equation (19a) so as to obtain as second 
displacement boundary condition for w alone, in complementation 
of (15a), 
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for r = a. Equations (25), (24), and (15a) reduce directly to the cor
responding conditions in [3] for the case of a straight boundary. 
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tained solutions for flow parallel to the corrugations [1] and transverse 
to them [2]. In the latter case it was shown that, for sinusoidal corru
gations of small amplitude e, the mean pressure drop increased over 
the noncorrugated value by a factor of 1 + e2B(A,<l>), where B is a 
function of the frequency (X) and the phase shift ($) of the corruga
tions in the channel walls. Numerical solutions to the same problem 
but allowing for inertia and diffusion effects were obtained by Chow 
and Soda [3] with a view of modeling blood oxygenators. 

An approximate solution to the corresponding pipe flow problem 
was derived by Langlois [4] who used the lubrication approximation 
to calculate the mean pressure drop. The prediction of this simple 
method agrees well with the exact value provided that the pipe radius 
varies slowly, i.e., the frequency of the corrugations should be small. 
Since Langlois' [4] paper, this present pipe flow problem has been 
considered by a number of authors. Tanner [5] extended the pertur
bation analysis of Blassius to predict the kinetic energy losses of vis-
cometric capillary tubes. However, as Manton [6] has pointed out, 
Tanner neglected second-order terms in the momentum equations 
so that the pressure was assumed to vary in the axial direction only. 
In applying the boundary condition (equation (2.6a) of [6]) 

d\p 
— = 0 on the radius of the pipe, 
dr 

Manton [6] also neglected terms of first and second-order; the exact 
expression is given in equation (3) of this communication. 

In view of the importance of this flow in Biomechanics [7] we at
tempt here to develop a perturbation solution to this problem. We 
also report the predictions of a lubrication approximation which is 
similar to that used by Langlois [4]. 

Analysis 
A good starting point of the analysis is the Stokes flow equation in 

cylindrical coordinates (r, 6, z) for an incompressible viscous fluid 

d i d d2 

Ety = 0, E2 = , — + 
dr r dr dz 2 ' (1) 

(2) 

(3) 

where \p is the Stokes dimensionless stream function. 
The boundary conditions on \(/ are 

1 d\l/ 
A t r = 0, i = 0, - — = 0 

r dz 

dt// 
A t r = 1 + esinXz, \b = 1, — = 0, 

dp 

where p is the direction normal to the boundary of the pipe. Note that 
we have nondimensionalized all length variables with respect to a, 
the mean radius of the pipe. 

We seek a perturbation solution of the form 

i = yl>0 + eh + eVa + 0(e3) (4) 

for which the boundary conditions (3) become 

<MD + e L ( D + sin \z ^ (1)) + e2 k ( « + sin Xz ^ (1) 
\ dr I \ dr 

+ i s i n 2 X z ^ ( l ) ) + 0(c3) = l (5) 
2 dr2 ) 

and 

dr 

M a¥o, (1) + ( — (1) + sin Xz — v (D - X cos Xz — (1) 
d'/'o, 
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2 dr dz 

- X sin Xz cos Xz - ^ (1)1 + 0(«3) = 0 
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where the argument 1 denotes an evaluation at /• = 1. 
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The zeroth-order (e°) solution is the usual Poiseuille flow 

^o = r2(2 - r2) (7) 

The e1-solution is governed by 

£ 4 ^ i = 0 

l * 
^i(0) = 0, - — ( 0 ) = 0 

r dz 

d\pi 
i/'ill) = 0, — (1) = 8 sin Xz 

dr 
(8) 

In view of the boundary conditions, the solution to (8) is 

i/'i = 0i(r) sin Xz, (9) 

where 

d i d 
(D2 •0, D2 = r-

dr r dr 
(10,11) 

Rejecting the K^-solutions due to the boundedness of the velocity 
field, it can be verified that 4>\ is given by 

:h = arh(\r) + /3r2J0(Xr) (12) 

where l„(x), K„(x) are the Bessel functions of order v. 
After applying the boundary conditions (86-c), we have 

t , ^ „'-2/i(A)/o(Ar)-/-/o(X)/1(Xr) . 
\Pi(r,z) = 8 ; sin Xz (13) Vn MhHX) - /o(X)/2(X)] 

Next, the e2-solution is governed by 

E*fa = 0, 

^2(0) = 0, - - ^ ( o ) = 0, 
r dz 

iMD = - 4 sin2 Xz, — (1) = C sin2 Xz, 
dr 

C = 4 - 16Ji2(X)/[/i2(X) - Io(X)J2(X)] (14) 

A solution of (14) is 

fc = <fa(r) sin2 Xz + fcM cos2 Xz, (15) 

where 

D4(*2 + fc) = 0 

(£,2 -4X2)2(02 - fa) = 0 (16) 

Thus 02 and f2 also involve r/i(2X?-) and r2I0(2\r) and can be written 
down easily. However, if one wishes to calculate the mean value then 
from (15) and (16a) we have 

<<M = V2(<fe + fc) 

= V2br2 - Br4, (17) 

where (•) denotes the z-average of (•). 
In effect, we have preaveraged the "biharmonic" equation (14a) 

as Wang did in his paper [2] for the two-dimensional case. However, 
in proceeding this way, full information about 1̂2 is also available if 
needed. 

In (17) we have b = - 4 + 2B and 

B = - 3 + 4/!2(X)/[/i2(X) - 7o(X)/2(X)] 

The mean dimensional pressure gradient is given by 

(18) 

27ra4 \r dr 

- (1 + e2S), (19) 

where Q is the flow rate and TJ is the fluid viscosity. 
As sketched in Fig. 1, B(X) is always positive indicating an increase 

in the pressure drop. At low frequency X, B is quadratic in X and is 
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given by 5 + %X2. At large X, B(X) tends asymptotically to 4X which 
agrees qualitatively with the two-dimensional value (6X) derived by 
Wang [2]. This dependence on X is seen here primarily as an area ef
fect; that is, the wetted area increases with X and gives rise to an in
crease in the pressure drop. 

Note that B(X - • 0) ^ 0 is an artifice of the method of average 
chosen here (i.e. (sin2 \x) = Y2, all X ^ 0) and by no means is it a 
contradiction to the Poiseuille result. 

Lubrication Approximation 
The essence of the lubrication argument [4] is that the axial velocity 

profile at any station z can be approximated by the Poiseuille pro
file 

2Q_ 

TTR4 
(R2 - r2), (20) 

where Q is the constant flow rate (which can be shown by integrating 
the continuity equation) and R is the radius of the tube 

R = a[ l + en(z)], e « l (21) 

It should be noted that n can be allowed to depend on 8 as well in 
which case <•) denotes an average with respect to z and 8. 

To obtain information about the pressure drop, we assume that P 
is essential uniform over the cross section of the pipe in which case 
we have 

• — (PR2) = 2RT(1 + R'2)1*2, 
dz 

(22) 

dR/dz. Here, we have ne-where T is the wall shear stress and R' = 
glected any normal stress that may arise. 

It is not unreasonable to define an area-average pressure gradient 
by 

dP 

dz 

from which (22) becomes 

VR~2^R2P) 

dz R 
(23) 

962 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

When R' = 0 (noncorrugated pipe), (23) is seen to be the customary 
global balance of momentum. 

For a Newtonian fluid, r = rjK, where K is the shear rate at the 
wall, 

K = - rf3' 
we have 

dz 

SQr, 
[1 - Am + e2 (10n2 + V2 n'2) + 0((3)} 

Thus we can approximate the mean pressure gradient by 

/3F\ 

dz 
[1 + f2 (10<n2> + % (rc'2»] 

(24) 

(25) 

For the sinusoidal corrugations (25) shows that the mean pressure 
drop increases over its noncorrugated value by a factor of 1 + (5 + 
V4\2)62. For low values of X (X < 1) this approximation agrees well with 
the exact value (at X = 1 this underestimates the true pressure drop 
by 8 percent). This reasonably good agreement at low values of X lends 
more confidence to the lubrication argument and we propose that (25) 
is a good estimate of the pressure drop in corrugated pipes carrying 
viscous fluids as long as the fundamental frequency of n(z) is less than 
1. This simple approach can be easily extended to the corresponding 
non-Newtonian problem once a constitutive equation for the fluid 
is nominated. However, since normal stresses may be significant, this 
approach may not give a good estimate of the pressure drop and we 
close the subject here. 
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middle surface of an elastic plate subjected to torsion about an axis 
normal to its faces. This is an extension of the work of Sih and Embley 
[1] who considered the sudden twisting of a penny-shaped crack in 
infinite elastic medium. 

The analysis presented is applicable to the twisting of a thin disk 
whose faces are bonded to rigid dies and the method of solution pro
vides an indication of how certain problems of dynamic fracture in 
a finite body can be analyzed. 

F o r m u l a t i o n of P r o b l e m 
Stresses and displacements are referred to cylindrical polar coor

dinates (r, <j>, z) and the usual notation is used. 
The plate occupies the region —h<z<h,0<r<R and the 

penny-shaped crack is assumed to form suddenly and occupy the 
region z = 0, a > r. It is further assumed that R » a and R » h. 

Torsion of the plate may be achieved by the prescribed nonzero 
tangential displacement 

Uj,(r, ±h, t) = ±rd 

on z = ±h which gives nonzero stress and displacement compo
nents 

lirB 

h 

rzl 
u* = — 

* h 

before the crack forms, where n is the shear modulus and 6 is constant. 
The stress-intensity factor is the same as for an equivalent problem 
in which the plate is initially undeformed, and at rest, and the 
stress 

' h 
Hit), 

where H(t) is the unit function, is applied to the faces of the crack with 
the faces z = ±h of the plate held fixed. Boundary conditions for the 
equivalent problem are 

utir, 0, t) = 0, a<r 

u^r, ±h, t) = 0, 0 < r 

T24,(r,Q,t) = -—H(t), 0<r<a 

(1) 

(2) 

(3) 

where T = jiadlh. 
Torsion of the plate may also be achieved by the nonzero shearing 

stress 

TV 
Tztir, ±h, t) = —> 

a 

on z = ±h, where r is constant and this gives nonzero stress and dis
placement components 

rr 
—, 
a 

rrz 
u* = 

a/x 

before the crack forms. Again the stress-intensity factor is the same 
as for an equivalent problem. In the equivalent problem the stress 

rr 
i> 2 = H(t), 

is applied to the faces of the crack and the faces z = ±h are stress-free. 
Boundary conditions for this equivalent problem are 

r2*(r, 0, t) = H(t), 
a 

0 <r <a 

u*(r, 0, t) = 0, a < r 
Tz0(r, ± M ) = 0, 0 < r 

(4) 

(5) 
(6) 

When boundary conditions (l)-(3) are applicable the problem is 
henceforth called Problem I and when (4)-(6) are applicable it is called 
Problem II. 

The nonzero displacement component is u^, and the nonzero stress 
components are given by 
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middle surface of an elastic plate subjected to torsion about an axis 
normal to its faces. This is an extension of the work of Sih and Embley 
[1] who considered the sudden twisting of a penny-shaped crack in 
infinite elastic medium. 

The analysis presented is applicable to the twisting of a thin disk 
whose faces are bonded to rigid dies and the method of solution pro
vides an indication of how certain problems of dynamic fracture in 
a finite body can be analyzed. 

F o r m u l a t i o n of P r o b l e m 
Stresses and displacements are referred to cylindrical polar coor

dinates (r, <j>, z) and the usual notation is used. 
The plate occupies the region —h<z<h,0<r<R and the 

penny-shaped crack is assumed to form suddenly and occupy the 
region z = 0, a > r. It is further assumed that R » a and R » h. 

Torsion of the plate may be achieved by the prescribed nonzero 
tangential displacement 

Uj,(r, ±h, t) = ±rd 

on z = ±h which gives nonzero stress and displacement compo
nents 

lirB 

h 

rzl 
u* = — 

* h 

before the crack forms, where n is the shear modulus and 6 is constant. 
The stress-intensity factor is the same as for an equivalent problem 
in which the plate is initially undeformed, and at rest, and the 
stress 

' h 
Hit), 

where H(t) is the unit function, is applied to the faces of the crack with 
the faces z = ±h of the plate held fixed. Boundary conditions for the 
equivalent problem are 

utir, 0, t) = 0, a<r 

u^r, ±h, t) = 0, 0 < r 

T24,(r,Q,t) = -—H(t), 0<r<a 

(1) 

(2) 

(3) 

where T = jiadlh. 
Torsion of the plate may also be achieved by the nonzero shearing 

stress 

TV 
Tztir, ±h, t) = —> 

a 

on z = ±h, where r is constant and this gives nonzero stress and dis
placement components 

rr 
—, 
a 

rrz 
u* = 

a/x 

before the crack forms. Again the stress-intensity factor is the same 
as for an equivalent problem. In the equivalent problem the stress 

rr 
i> 2 = H(t), 

is applied to the faces of the crack and the faces z = ±h are stress-free. 
Boundary conditions for this equivalent problem are 

r2*(r, 0, t) = H(t), 
a 

0 <r <a 

u*(r, 0, t) = 0, a < r 
Tz0(r, ± M ) = 0, 0 < r 

(4) 

(5) 
(6) 

When boundary conditions (l)-(3) are applicable the problem is 
henceforth called Problem I and when (4)-(6) are applicable it is called 
Problem II. 

The nonzero displacement component is u^, and the nonzero stress 
components are given by 
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BRIEF NOTES 

(7) 

(8) 

dz 

for both problems, and u ,̂ satisfies the equation of motion, 

d2u$ 1 du$ u$ d2u$ 1 d2U0 

dr2 r dr r2 dz2 c2 dt2 

where c2 = fi/p and p is the material density. 
We adopt the usual definition of the Laplace transform with respect 

to the variable t and with this definition the solution of equation (8) 
in the Laplace transform domain is 

u^,(r,z,p) = I [A(s, p) exp (-yz) 
Jo 

+ B(s, p) exp (yz)]Ji(sr)ds (9) 

where Jv( ) denotes a Bessel function of the first kind and order v, a 
superposed bar denotes the Laplace transform, 

7 = (s2 + p2 /c2)! /2 , 
and A and B are functions to be determined. 

Since the problem is symmetric about z = 0 we consider the region 
0 < z <h. 

The stress-intensity factor k is defined as 

A _ pa a 
c h 

It follows from equations (7) and (9) that 

!

/• = 
I sD(s, p)Ji(rs)ds 

Jo 

+ f h coth (yh) - s]D(s, p)Ji(rs)ds\, 0 <r < co 

and with the use of equation (18) this becomes 

Tz<i,(r, 0,p) 
2fi 

wp 

2a2i/ '(l,p) 2a ("> \a 

3r(r2 - a2)1'2 3r J o {r2 - tf) f 
Jo 

W-,0|di? 
U / 2 

2a fi 

l p ~ 

X [7 coth (yh) - s]Ji(rs)J3/2(us)ds|, a < r, (21) 

where the prime denotes differentiation with respect to rj. 
The stress-intensity factor in the Laplace transform domain is given 

by 

An= lim \2(r-a)\1'27z<l>(r>0,p). (22) 

kh2(t) = lim \2(r-a)\l^T^(r,0,t) (10) 

where the subscript 1 is used for Problem I and subscript 2 for Prob
lem II. 

P r o b l e m I 
Equations (l)-(3) become 

u,i,(ry 0, p) = 0, a < r-

u<p(r, h,p) = 0, 0 < r 

It follows from equations (21) and (22) that the stress-intensity factor 
in the nondimensional Laplace transform domain is given by 

4 T a 1 / 2 -
k^p)=-—7-i>(l,p), 

3irp 

consequently the stress-intensity factor as a function of the nondi
mensional time t = ct/a is given by 

Tzt(r, 0 ,p) = — , 0 < r < a 
ap 

(11) 

(12) 

(13) 

3irki(i) 

4ra! / 2 ' 
[*(!./»' (23) 

in the Laplace transform domain. Condition (12) is satisfied if 

B(s, p) = -A(s, p) exp (-2yh) (14) 

where A and B are the functions which appear in equation (9). Con
ditions (11) and (13) are then satisfied if 

where L 1 denotes the inverse Laplace transform from the p domain 
to the t domain. 

P r o b l e m II 
Problem II is solved by the same method as for Problem I, except 

that boundary conditions (4)-(6) are used, to obtain 

X 

3k2(t) 

4 r a 1 / 2 ' 
•L~l 

F(l,p)\ 
(24) 

D(s, p) y coth (yh)Ji(rs)ds = , 0 < r < a, (15) 
0 a)xp 

r 
Jo 

D(s, p)Ji(rs)ds = 0, a<r, 

where 

D(s,p)= [1-exp (-2yh)]A(sp). 

(16) 

(17) 

The solution of the dual integral equations (15) and (16) can be ob 
tained by using the method described by Copson [2] and is 

4 T g 5 / 2 s i / 2 r i 

3MP(2TT) 

4 „ 5/2 1/2 r l 

3up(27r)1/2 Jo 
(18) 

where \p(£, p) satisfies the following Fredholm integral equation of 
the second kind: 

<A(£,P)+ C:$(.u,P)Kl(u,P, H)du = i2,. 0 < £ < 1 , (19) 
Jo 

Ki(u, p, f) = (£u)1/2 f " |(s2 + p 2 ) 1 / 2 coth [(s2 + p2)1/2/t} - s\ 
Jo 

X J3/2(us)JS/2^s)ds, (20) 

and 

where the function F(!~, p) satisfies the Fredholm integral equation 

Fit P)+ f F(u, p)K(u, p, $)du = £2, 0 < £ < 1 (25) 
Jo 

with 

K(u, p, £) = (£u)i/2 f ° \(s2 + p2)1'2 tanh [(s2 + p 2 ) 1 ^ ] - s\ 
Jo 

X J3/2(us)J3/2(^)ds. (26) 

N u m e r i c a l R e s u l t s 
In order to obtain the relation between the nondimensional 

stress-intensity factor 3Trki/2(t)/(4Ta112) and nondimensional time 
t an integral equation, equation (19) for Problem I and equation (25), 
for Problem II, is solved numerically. Discrete values of the function 
\p(l, p) and F(l, p) for Problems I and II, respectively, are thus ob
tained and the Laplace transform inversions indicated in equations 
(23) and (24) are then done numerically using the method of Miller 
and Guy [3]. The integrals appearing in the kernals (20) and (26) pose 
a numerical difficulty due to the slowly decaying integrands. To re
solve this problem the part of each integrand in curly brackets is ex
panded as a power series in lis and the contributions of 0(s~l) and 
0(s~3) are evaluated analytically. The remaining function converges 
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Fig. 1 Stress-intensity factors for Problem I 

much more rapidly, and is evaluated by adding contributions between 
successive zeros of Ja/2(us) and J3/2<£s). 

Results are shown graphically in Figs. 1 and 2 for different values 
of e. For c < 1.0 the results for the two problems are almost identical 
and independent of e. The time-dependent stress-intensity factor rises 
rapidly from zero in each case and then has the form of a damped 
oscillation about the static value. Results for c > 1.0 are quantitatively 
different for the two problems since the limiting value of the stress-
intensity factor, as t —• °°, decreased with increasing e for Problem 
I and increases for Problem II. 

2.0 3.0 4.0 S.0 

t 

Fig. 2 Stress-intensity factors for Problem II 
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Heat Transfer Due to the Flow 
Between Infinite Plates—One 
Rotating and the Other at Rest 
Under Transverse Magnetic 
Field 

A. K. Borkakati1 

The magnetohydrodynamic flow between two infinite parallel 
plates, one rotating and the other at rest, has been analyzed by Sri-
vastava and Sharma [1], who have imposed the condition that the 
Reynolds number R « the Hartmann number M2. Stephenson [2] 
has pointed out that in finding out the value of radial current, the 
foregoing workers have omitted one term with the results that (i) their 
expansions are valid only if the stationary disk is a perfect conductor, 
or has infinite thickness (and is not an insulator) and (ii) their ex
pressions are completely erroneous. He has calculated the modified 
expressions of the velocity components. 

We consider the motion of an incompressible electrically conducting 
viscous fluid between two infinite parallel disks at a distance d apart, 
one of which (z = 0) is rotating with constant angular velocity about 
an axis (r = 0) pependicular to the plates and the other (z = d) is at 
rest. A transverse magnetic field B0 is imposed perpendicular to the 
plates. The induced magnetic field being small in comparison to the 
imposed magnetic field, is neglected which is valid for small magnetic 
Reynolds number. The rotating plate is maintained at a temperature 
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To while the other plate is kept at T\(T\ > To). The boundary con
ditions are 

T = To, ur = uz = 0, u0 = rQ. at z = 0, 

T = Th ur = uo = uz = 0 at 2 = d, (1) 

where ur, u<i, uz are the velocity components in the directions of r, d, 
2, respectively. 

The equations of motion and continuity are same with those of 
Stephenson [2]. The energy equation is 

J 2 

pCp 
dT dTl 

Ur r Uz 
dr d2 

k 
d 2 T l d T d2T] 

dr2 r dr dz2 (2) 

where Cp is the specific heat at constant pressure, k is the thermo
metry conductivity, a is the electrical conductivity, and J = {Jr, Jn, 
Jz) is the current density. 

The dissipation function </> is 

<j> = 2pv 
•I r2 [dzj 2\dzj 

1 Idi^ duA2 1 ldu« _ Uo\2 

2 1 dz dr J 2 1 dr r / . 

Let us consider the following similarity solutions: 

ur = rdWF(ri), 

Un = rQG(ri), 

Uz = dVH(ri), 

(3) 

T = T0 + — v(v) +^f(v) 

•PM + 
\r 

d2 p = pvQ 

X = constant, 

where r\ = z/d = dimensionless axial distance, 

(4) 
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viscous fluid between two infinite parallel disks at a distance d apart, 
one of which (z = 0) is rotating with constant angular velocity about 
an axis (r = 0) pependicular to the plates and the other (z = d) is at 
rest. A transverse magnetic field B0 is imposed perpendicular to the 
plates. The induced magnetic field being small in comparison to the 
imposed magnetic field, is neglected which is valid for small magnetic 
Reynolds number. The rotating plate is maintained at a temperature 

1 Department of Mathematics, Dibrugarh University, Dibrugarh 786004 
(Assam) India. 

Manuscript received by ASME Applied Mechanics Division, June, 1978; final 
revision, June, 1980. 

To while the other plate is kept at T\(T\ > To). The boundary con
ditions are 

T = To, ur = uz = 0, u0 = rQ. at z = 0, 

T = Th ur = uo = uz = 0 at 2 = d, (1) 

where ur, u<i, uz are the velocity components in the directions of r, d, 
2, respectively. 

The equations of motion and continuity are same with those of 
Stephenson [2]. The energy equation is 

J 2 

pCp 
dT dTl 

Ur r Uz 
dr d2 

k 
d 2 T l d T d2T] 

dr2 r dr dz2 (2) 

where Cp is the specific heat at constant pressure, k is the thermo
metry conductivity, a is the electrical conductivity, and J = {Jr, Jn, 
Jz) is the current density. 

The dissipation function </> is 

<j> = 2pv 
•I r2 [dzj 2\dzj 

1 Idi^ duA2 1 ldu« _ Uo\2 

2 1 dz dr J 2 1 dr r / . 

Let us consider the following similarity solutions: 

ur = rdWF(ri), 

Un = rQG(ri), 

Uz = dVH(ri), 

(3) 

T = T0 + — v(v) +^f(v) 

•PM + 
\r 

d2 p = pvQ 

X = constant, 

where r\ = z/d = dimensionless axial distance, 

(4) 
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B R I E F N O T E S 

1 — 
Fig. 1 Graph of (T - r0)/( T-, - T0) for EPX1 = 20 

Imposing axial symmetry, and. using curl E = 0, we get 

Eg = 0 everywhere, 

where E = (Er, Eg, Ez) is the electric field. 
Neglecting induced magnetic field, we get 

Jfl = — aBoUr = —oBoSlrF{Tj), 

Jz = <rEz, 

where So is the magnitude of the imposed magnetic field. 
The tangential equation of motion may be written as 

v a2 

(5) 

: ("») - — uru0 + — — (uo) 
r' r 02 

BaJr 

r2 or2 

which with (4), shows that 

Jr = a[Er — BQUO] = r X function of z 

Using div J = 0, we get 

aJz 1 d 

oz r or 
(rJr) = function of z 

Therefore 

aEz = function of r + function of z 

(6) 

(7) 

(8) 

(9) 

(10) 

Now we consider a surface where a conducting medium adjoins a 
nonconducting medium; such surfaces exist (a) between a conducting 
fluid and an insulating disk and (b) between a conducting disk if 
present and the environment. It has been seen that there will always 
be at least one surface of this kind. At such a surface, we have Jz = 0 
and therefore in the conducting medium 

Jz — oEz = function of z 

where x is the constant to be determined. 
Integrating (17), and substituting J V Jrdz = 0 we get 

Jo 
Gdv = x . 

Again, integrating equation (9), we have 

Jz = -2o-S0fi(£ - K), 

(19) 

(20) 

(21) 

where 

and 

Jo 

K-

(G — x)dt) = function of i) 

f Ldi]-
Jo 

constant. (22) 

Substituting (4) in the equations of motion, continuity and energy, 
we get 

F" = R[F2 -G2 + F'H + X] + M2F, 

G" = R[2FG + G'H] + M2[G - x ] , 

H' + IF = 0 

1 
R[Hd' - 4F2 - 2H'2 - 4M2(L - K)2 [4x1/ + !?"], 

R[2F\p + H\p' - (F'2 + G'2) - M2\(G - x ) 2 + F2\] = - \\i" (23) 

where R( = Ud2/v) is the Reynolds number, M = Bod(<r/pc)I/2 is 
Hartmann number and P = Cp vp/k is the Prandtl number. 

If we consider R « M 2 and substitute JV = M2IR, the unknown 
quantities may be formally expanded in powers of JV as follows: 

a = £ aJNn, 
n = 0 

(24) 

where a can be replaced by F, G, H, $, \p, X, x-
Substituting these expressions in (23) and equating the coefficients 

of like powers of JV from both sides of the equations, we get linear 
differential equations in 

/o, go, h0, \p, i?o, f\, gi, hi, ipu i5i, etc. 

This method of expansion has been adopted by Srivastava in 
solving similar problems in Reiner-Rivlin fluid [3], in electrically 
conducting fluid [1] as well as in second-order fluid [4]. 

Boundary conditions reduces to 

(25) 

Jz = aEz = function of z 

From curl E = 0, we obtain 

d o 
- (Ez) = — (Er), 
or Oz 

which gives, Er = function of r. Hence, with (8), 

Er = r X constant 

Now, we have 

Er = r X constant = —x5ofir (say), 

E„ = 0, 

Ez = function of z, 

Jr = rQaB0[G(7,) - X ] , 

Js= -aB0rQF(ri), 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

/o = h0 = t>o = ^o = t>i = ^ i = 0, go = 1) t 
) a t ?7 = 

/ i = g i = / t i = 0, ) 

/o = go = h0 = A = gi = hi = ipo = i>i = f i = 0 

!?0 = S 

= 0 

at J; = 1 

where 

o _ ( T , - T 0 ) C p . 

Solving these equations subject to the boundary conditions (25), 
/o, ho, go, f\, hi, gi, \po, \p\, i?o» <5i are determined. Substituting them 
in 

T - Tp = 1 

71! - To S 
^o + f r ^ i + ^ l ^ o + T ; ^ 

JV JV 
(26) 

We can get the expression for the dimensionless temperature distri
bution which, for moderate distances from the axis of rotation, reduces 
to 

T - T 0 

Ti - To ' 
V ~ 

pEX2 

: [cosh 2M(1 - T/) + cosh 2M77 
16 sinh2 M 

+ 2 cosh M(l - 277) - cos 2M - 2 cosh M - 1] (27) 

966 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

0 1 M - 2 

Fig. 2 Heat flux from the lower plate 

0 1 M — 2 

Fig. 3 Heat flux from the upper plate 

creasing the maximum temperature between the plates goes on in
creasing. 

Srivastava [4] has studied the effects of nonlinear terms on the 
temperature distribution in non-Newtonian fluids. From the results 
obtained here, it has been observed that the effect of magnetic field 
in electrically conducting fluid and that of nonlinear terms in non-
Newtonian fluids, on the temperature distribution are qualitatively 
similar. 

The heat flux from the plates r\ = 0 and r\ = 1 are, respectively, given 
by 

and 

9i 

d \d?7/)i=o 

= _kldVi 

d\c)r}jn=i 
(28) 

Neglecting edge effects, the heat transfer per unit time from a circular 
disk of radius "a" coinciding with the planes r\ = 0 and i\ = 1, re
spectively, are given by 

1 fa 

Jo = — - I 2irrq0dr 
7TGT « /0 

1 fa 
>i = — - I 2irrqidr 

•wai Jo 

(29) 

For finite "a", (29) reduce to 

„ (To - T{)k ME* 
1 + (1 + cosh M) 

(To - Tt)k 

4 sinh M 

ME* 

4 sinh M 
(1 + cosh M) (30) 

where E* = PEa2/2d2 is a dimensionless number. The variation of 
(Qod/k(T0 - Ti)) and (Qtdlk(Ta - Tt)) for different values of M 
when E* = 1, 2, 3, have been plotted. It has been observed that the 
magnitudes of the heat flux from both the plates increase with the 
increase of the Hartmann number, i.e., the heat flux increases with 
the increase of the strength of the magnetic field. Thus the magnitudes 
of the heat flux are more in the conducting fluid in presence of mag
netic field than that in an ordinary Newtonian viscous fluid. 

From the equation of energy for the MHD flow, we see that the term 
J2/<r is added to the equation, which depends on the electric field, the 
magnetic field and the velocity. Also electric field depends on the 
velocity and the magnetic. Therefore, we can say that the current 
depends on the magnetic field when the velocity and the applied 
electric field are kept constant. Hence the temperature distribution 
in the medium increases with the increase of the Hartmann number, 
i.e., the magnetic field though the boundary mediums are kept at 
constant temperature. 

The studies of these types of problems help in understanding many 
geophysical and technological problems. It has been observed that 
uses of conducting fluid in presence of a magnetic field, increase the 
temperature distribution in the medium. This temperature distri
bution depends on the strength of the magnetic field as well as the 
conductivity of the medium. By decreasing the strength of the mag
netic field or the conductivity of the substance, we can cool the me
dium. Thus the results can be used for cooling the nuclear reactor. 

where 

X = r/d, and E = R/S. 

The variations of (T — T0/Ti - T0) against rj = z/d have been 
plotted graphically for M = 1, 2, 3 when PEX2 = 20. From the graphs, 
it has been observed that the plane of maximum temperature is at the 
mid-distance between the plates. As Hartmann number goes on in-
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On the Stokes Second Problem 
of Slightly Non-Newtonian 
Fluids 

N. Phan-Thien1 

Adopting the perturbation scheme (5), then it is easy to show that 
UQ is the Newtonian velocity given by (2) and ui is governed by 

dui d2Ui dro 
P~ZT= V 

dt dy2 dy 

where 

(9) 

1 I n t r o d u c t i o n 
The description of the Stokes second problem is trivially simple: 

a flow field is set up on the upper half plane (y > 0) by oscillating the 
boundary y = 0 in time so that the fluid velocity at the wall is given 

by 

u(0, t) = Ueu 
-1 

If the fluid is Newtonian of kinematic viscosity v = i\lp, the exact so
lution can be easily shown to be 

u(y, t) = Ue- ah y+iut (2) 

This solution indicates that, at a distant & from the wall given by 

8 = 2 (3) 

the amplitude of the motion is about 13 percent of its maximum value 
U. That is, viscous effects extend over a distance ~<5 (boundary-layer 
thickness). 

The solution to the corresponding non-Newtonian problem is not 
yet known for the simple reason that the nonlinearity in any reason
able constitutive equation adopted defeats exact analytical attempts. 
However, if the fluid is slightly non-Newtonian in the sense of Kazakia 
and Rivlin [1], then analytical progress is possible and we can make 
some simple qualitative statements about the boundary layer of such 
a fluid. 

2 A n a l y s i s 
Basically, we consider fluids obeying the following constitutive 

equation 

r = 2r,D + e •£ [Bt(s)) 
s=0 

(4) 

where T is the extra stress tensor, D, the strain rate, r], the fluid New
tonian viscosity, eF, the extra non-Newtonian stress (c « 1), and B((s) 
is a strain tensor [B((s) = 0 is the rest history]. 

In flow fields where the velocity is a perturbation about the New
tonian velocity we have 

u = uo + eui + . . . 

B,(s) = B(«»(S) + 6B(<»(S) + . . . 

(5) 

(6) 

and thus 

T. [Bt(s)] = £ [B,»>(*)] + d £ [Bt<°>(*)/eBt»>(*)] (7) 
s=0 s=0 s=0 

In (7) dF is a term of order 0(e). Hence, the first-order non-Newtonian 
extra stresses are fully de termined once the Newtonian velocity, uo, 
is specified. 

Returning to the problem at hand, the relevant equation of motion 
is 

du d2u dr 
P — = V—o + f — 

dt dyz dy 
(8) 

where u is the x -component velocity which satisfies the boundary 
condition (1) and T is t he extra non-Newtonian shear stress. 

1 Lecturer, Department of Mechanical Engineering, University of Sydney, 
N.S.W., 2006, Australia. 
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r o = £ [B t«»(s)] 
s=0 

In view of the boundary conditions, U\ takes the form 

" l = L wn(y)einat 

(1) where ' = d/dy and 

wn wn 

v 

w r 

2riir Jo 

2ir/u> 

2-qic To e 
ntdt 

(10) 

(11) 

(12) 

io„(0) = 0. 

To obtain specific solutions we adop t the following consti tut ive 
relations for TO: 

TO = r)ka + fjko + r/ko3 

and 

TO : ("° G(s)k0(t-s)ds 
Jo 

(13) 

(14) 

In (13) fi, fi, T\ are constants and ko is the Newtonian shear rate given 
by 

duo /iu> . 
k0 = = -U\ — e x p - • 

dy 

- y + i(xit\ (15) 

In (14), G(s) is a "relaxat ion spec t rum." 
T h e s ta tus of the approximat ion (13) has been discussed a t length 

in [1]. Equat ion (14) is only an empirical approximation (the integral 
Maxwell model) and does not enjoy any special s ta tus in the con
struct ion of a hierarchy of const i tut ive equat ions. 

In a constant shear rate experiment, (13) and (14) predict t ha t the 
fluid viscosity takes the form, respectively, 

and 

n(y) = v + «ry2 

M(7) = 1 + e ("°G(s)ds 
Jo 

(16) 

(17) 

In an oscillatory shear ra te experiment, (13) and (14) demand t h a t 
the fluid complex viscosity be given by, respectively, 

and 

where 

li* (w) = T) — £?)<A>2 + ie?}a> = if — it]" 

H*{w) = J? + £i?* =7f — it)" 

r\* = f G(s)e~iasds 
Jo 

Now, using (13), equat ion (12) becomes 

incc Ua>2 / r - j -
wn wn = (ij + l<«Ji))c-v>»/«yg ln 

v r\v 

(18) 

(19) 

(20) 

from which it can be verified t h a t 

Ua2 fV 
Wl = * / -— (rj + iwri)ye-v'"""' y 

2-qv V ios 

+ 3 - , - r 3 v » J S 3 n (21) 
TfV* 

(22) 

and 

968 / VOL. 47, DECEMBER 1980 Transactions of the ASME 

Copyright © 1980 by ASME
Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



w3 = — U3-(e 
2v ?) 

<"/•> .y) (23) 

all o the r wn are zero. 

T h u s t h e fluid velocity, neglect ing t e r m s of order 0((2) is 

u = u0 + eU\ \l — (rp 
2i) \ v 

w/2» y+i(o>t-^/l>/2if y-ir/4+0) 

where 

2v i) 

, = t a n - i ^ U t a n - W l ^ l 

(24) 

(25) 
VI \ V" I 

T h u s whe the r t h e b o u n d a r y layer (say, t h e d i s tance over which u 

decreases to 1/e2 ^ 13 p e r c e n t of its m a x i m u m value U) is th icker 

t h a n its Newton ian c o u n t e r p a r t d e p e n d s on 6, i.e., d e p e n d s on t h e 

fluid p roper t i es . In fact, neglect ing t h e second t e r m inside t h e curly 

b racke t s of (24), t h e b o u n d a r y layer of t h e fluid is th icker t h a n its 

N e w t o n i a n value if t a n 6 > 1 or 

V -V 

V" 
> 1 (26) 

On t h e o ther h a n d , if we a d o p t (14) as t h e cons t i tu t ive equa t ion , 

t h e n (9) becomes 

dui d 2 m i(o _ 
p = ?j — + U— 7)*(co)e 

dt dy2 v 
/iu/i> y+iwt 

where J)*(OJ) is def ined by (20). 

T h e solut ion to (27) is 

« i : 
UT)* 

277 V K 

a n d t h e fluid velocity u p to 0(t) is 

ua + 
e\y*\U 

2>7 

where 

ye 

• t an 

BRIEF NOTES 

,-Jiu/ii y+iut ( 28 ) 

^2?y+Uut-y/u/2vy+ir/4-4,) ( 29 ) 

7)" 
(30) 

v -v 
Again, t h e b o u n d a r y layer of t h e fluid is th icker t h a n its Newton ian 

va lue if t a n <h < 1 or 

y" 
> 1 

which is equ iva len t to condi t ion (26). 

M o s t polymeric l iquids possess a posit ive r\" and TJ > r\'. T h u s , in 

th i s flow field, the b o u n d a r y layer of a slightly non -Newton ian fluid 

is t h i n n e r t h a n t h a t of a N e w t o n i a n fluid having the same viscosity. 

T h i s is t r u e even if t h e fluid is fully Maxwell ian in which case the 

velocity is given by 

U exp -y + iwt (31) 

T h e generalization of th is s t a t emen t to other flow fields mus t be taken 

wi th cau t ion [2], 

(27) References 
1 Kazakia, J. Y., and Rivlin, R. S., "The Influence of Vibration on Poiseuille 

Flow of a Non-Newtonian Fluid," Rheology Acta, Vol. 17, 1978, pp. 210-226. 
2 Denn, M. M., "Boundary Layer Flows For a Class of Elastic Fluids," 

Chem. Eng. Sci, Vol. 22, 1967, pp. 395-405. 

Force of Extraction for a 
Cylinder Buried in Sand1 

S. C. Cowin,2 and L. E. Trent3 

Lower bounds are derived for the force needed to extract a cylinder 

from a larger cylinder when the annular region between the two 

cylinders contains a granular material. 

Introduction 
In th i s No te , we solve for t h e lower b o u n d on t h e force (F) t h a t is 

necessary to extract a cylinder from a larger cylindrical container when 

t h e annu la r region be tween the two cylinders is filled with a granular 

mate r i a l such as sand or grain. In our analysis, the extracted cylinder 

a n d the conta iner are very rigid compared t o the granular mater ia l . 

Also, t h e g ranu la r mate r i a l is cohesionless (has no tensile s t r eng th ) 

a n d is porous enough so the re are no p n e u m a t i c effects dur ing ex

tract ion. For the coefficients of friction, the coefficient for the granular 

ma te r i a l on itself is grea ter t h a n those for t h e g ranu la r mate r i a l on 

the surface of the extracted cylinder or on the surface of the container. 

T h e ex t rac t ion force is the force necessary to in i t ia te mot ion of t h e 

cyl inder from the g ranu la r mate r ia l . 

P e r h a p s more interesting t h a n the problem addressed is the method 

1 This work was performed under the auspices of the U. S. Department of 
Energy by the Lawrence Livermore Laboratory under Contract Number 
W-7405-Eng-48. 

2 Consultant to Lawrence Livermore Laboratory. Permanent Address: School 
of Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, La. 
70118. Mem. ASME. 

3 University of California, Lawrence Livermore Laboratory, Livermore, Calif. 
94550. 

Manuscript received by ASME Applied Mechanics Division, March, 1980; 
final revision, May, 1980. 

of solut ion. T h e m e t h o d is unusua l in t h a t it employs for g ranu la r 

ma te r i a l a s imple cons t i tu t ive a s sumpt ion in t roduced in 1895 by 

J a n s s e n [1] a n d improved recent ly by Cowin [2]. T h e cons t i tu t ive 

a s s u m p t i o n is t h a t t h e ra t io of the hor izonta l s t ress exer ted by a 

granular mater ia l on t h e vertical walls of its container (averaged over 

the container perimeter) to the vertical stress in the granular material 

(averaged over t h e cross-sect ional a rea occupied by the g ranu la r 

mater ia l ) is a cons tant . Th i s cons tan t is called the pressure rat io and 

is d e n o t e d by K. T h e values of K r epor t ed by Caughey, e t al., [3] are 

0.61 for wheat , 0.6 for shelled corn, 0.38 for soy beans , 0.4 for cement , 

0.39 for sand , and 0.33 for pea gravel. A reassessment of the experi

m e n t a l d e t e r m i n a t i o n of X-va lues is given in [4]. T h i s cons t i tu t ive 

assumpt ion , the equat ions of equilibrium, and the frictional propert ies 

of the surface lead to a differential inequal i ty for the vertical s t ress 

in t h e g ranu la r mate r ia l . Solut ion of th i s differential inequal i ty and 

s u b s e q u e n t in tegra t ions yield the ext rac t ion force. 

S t a t e m e n t o f t h e P r o b l e m 

W e let F d e n o t e t h e force necessary to ex t rac t the bur ied cylinder 

of weight W, bu r i ed length /, and cross-sectional pe r imete r Lt. T h e 

bur ied cylinder is contained in a larger cylinder of length greater t han 

or equa l to / and of cross-sect ional pe r ime te r LQ. T h e annu la r region 

be tween t h e two cyl inders is filled with a granular mater ia l and has 

corss-sect ional a rea A. 

Fig. 1 i l lus t ra tes t h e hor izonta l cross section of the two cyl inders 

a n d t h e g ranu la r mate r ia l . Fig. 2 gives a perspect ive view of the 

problem and illustrates the surface surcharge stress P. T h e coefficient 

of friction be tween t h e g ranu la r mate r i a l and the cylinder to be ex

t r ac t ed is d e n o t e d by ixt, and t h e coefficient be tween the granular 

mater ia l and t h e larger cylinder is denoted by /x. T h e weight per un i t 

vo lume of t h e g ranu la r mate r i a l is y. For general i ty, we assume t h a t 

t h e p res su re ra t io K m i g h t be different for t h e two surfaces, because 

one will be general ly concave and the o ther generally convex. T h e 

p re s su re ra t ios for t h e smal ler and larger cyl inders will be deno ted 
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w3 = — U3-(e 
2v ?) 

<"/•> .y) (23) 

all o the r wn are zero. 

T h u s t h e fluid velocity, neglect ing t e r m s of order 0((2) is 

u = u0 + eU\ \l — (rp 
2i) \ v 

w/2» y+i(o>t-^/l>/2if y-ir/4+0) 

where 

2v i) 

, = t a n - i ^ U t a n - W l ^ l 

(24) 

(25) 
VI \ V" I 

T h u s whe the r t h e b o u n d a r y layer (say, t h e d i s tance over which u 

decreases to 1/e2 ^ 13 p e r c e n t of its m a x i m u m value U) is th icker 

t h a n its Newton ian c o u n t e r p a r t d e p e n d s on 6, i.e., d e p e n d s on t h e 

fluid p roper t i es . In fact, neglect ing t h e second t e r m inside t h e curly 

b racke t s of (24), t h e b o u n d a r y layer of t h e fluid is th icker t h a n its 

N e w t o n i a n value if t a n 6 > 1 or 

V -V 

V" 
> 1 (26) 

On t h e o ther h a n d , if we a d o p t (14) as t h e cons t i tu t ive equa t ion , 

t h e n (9) becomes 

dui d 2 m i(o _ 
p = ?j — + U— 7)*(co)e 

dt dy2 v 
/iu/i> y+iwt 

where J)*(OJ) is def ined by (20). 

T h e solut ion to (27) is 

« i : 
UT)* 

277 V K 

a n d t h e fluid velocity u p to 0(t) is 

ua + 
e\y*\U 

2>7 

where 

ye 

• t an 
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,-Jiu/ii y+iut ( 28 ) 

^2?y+Uut-y/u/2vy+ir/4-4,) ( 29 ) 

7)" 
(30) 

v -v 
Again, t h e b o u n d a r y layer of t h e fluid is th icker t h a n its Newton ian 

va lue if t a n <h < 1 or 

y" 
> 1 

which is equ iva len t to condi t ion (26). 

M o s t polymeric l iquids possess a posit ive r\" and TJ > r\'. T h u s , in 

th i s flow field, the b o u n d a r y layer of a slightly non -Newton ian fluid 

is t h i n n e r t h a n t h a t of a N e w t o n i a n fluid having the same viscosity. 

T h i s is t r u e even if t h e fluid is fully Maxwell ian in which case the 

velocity is given by 

U exp -y + iwt (31) 

T h e generalization of th is s t a t emen t to other flow fields mus t be taken 

wi th cau t ion [2], 

(27) References 
1 Kazakia, J. Y., and Rivlin, R. S., "The Influence of Vibration on Poiseuille 

Flow of a Non-Newtonian Fluid," Rheology Acta, Vol. 17, 1978, pp. 210-226. 
2 Denn, M. M., "Boundary Layer Flows For a Class of Elastic Fluids," 

Chem. Eng. Sci, Vol. 22, 1967, pp. 395-405. 

Force of Extraction for a 
Cylinder Buried in Sand1 

S. C. Cowin,2 and L. E. Trent3 

Lower bounds are derived for the force needed to extract a cylinder 

from a larger cylinder when the annular region between the two 

cylinders contains a granular material. 

Introduction 
In th i s No te , we solve for t h e lower b o u n d on t h e force (F) t h a t is 

necessary to extract a cylinder from a larger cylindrical container when 

t h e annu la r region be tween the two cylinders is filled with a granular 

mate r i a l such as sand or grain. In our analysis, the extracted cylinder 

a n d the conta iner are very rigid compared t o the granular mater ia l . 

Also, t h e g ranu la r mate r i a l is cohesionless (has no tensile s t r eng th ) 

a n d is porous enough so the re are no p n e u m a t i c effects dur ing ex

tract ion. For the coefficients of friction, the coefficient for the granular 

ma te r i a l on itself is grea ter t h a n those for t h e g ranu la r mate r i a l on 

the surface of the extracted cylinder or on the surface of the container. 

T h e ex t rac t ion force is the force necessary to in i t ia te mot ion of t h e 

cyl inder from the g ranu la r mate r ia l . 

P e r h a p s more interesting t h a n the problem addressed is the method 

1 This work was performed under the auspices of the U. S. Department of 
Energy by the Lawrence Livermore Laboratory under Contract Number 
W-7405-Eng-48. 

2 Consultant to Lawrence Livermore Laboratory. Permanent Address: School 
of Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, La. 
70118. Mem. ASME. 

3 University of California, Lawrence Livermore Laboratory, Livermore, Calif. 
94550. 

Manuscript received by ASME Applied Mechanics Division, March, 1980; 
final revision, May, 1980. 

of solut ion. T h e m e t h o d is unusua l in t h a t it employs for g ranu la r 

ma te r i a l a s imple cons t i tu t ive a s sumpt ion in t roduced in 1895 by 

J a n s s e n [1] a n d improved recent ly by Cowin [2]. T h e cons t i tu t ive 

a s s u m p t i o n is t h a t t h e ra t io of the hor izonta l s t ress exer ted by a 

granular mater ia l on t h e vertical walls of its container (averaged over 

the container perimeter) to the vertical stress in the granular material 

(averaged over t h e cross-sect ional a rea occupied by the g ranu la r 

mater ia l ) is a cons tant . Th i s cons tan t is called the pressure rat io and 

is d e n o t e d by K. T h e values of K r epor t ed by Caughey, e t al., [3] are 

0.61 for wheat , 0.6 for shelled corn, 0.38 for soy beans , 0.4 for cement , 

0.39 for sand , and 0.33 for pea gravel. A reassessment of the experi

m e n t a l d e t e r m i n a t i o n of X-va lues is given in [4]. T h i s cons t i tu t ive 

assumpt ion , the equat ions of equilibrium, and the frictional propert ies 

of the surface lead to a differential inequal i ty for the vertical s t ress 

in t h e g ranu la r mate r ia l . Solut ion of th i s differential inequal i ty and 

s u b s e q u e n t in tegra t ions yield the ext rac t ion force. 

S t a t e m e n t o f t h e P r o b l e m 

W e let F d e n o t e t h e force necessary to ex t rac t the bur ied cylinder 

of weight W, bu r i ed length /, and cross-sectional pe r imete r Lt. T h e 

bur ied cylinder is contained in a larger cylinder of length greater t han 

or equa l to / and of cross-sect ional pe r ime te r LQ. T h e annu la r region 

be tween t h e two cyl inders is filled with a granular mater ia l and has 

corss-sect ional a rea A. 

Fig. 1 i l lus t ra tes t h e hor izonta l cross section of the two cyl inders 

a n d t h e g ranu la r mate r ia l . Fig. 2 gives a perspect ive view of the 

problem and illustrates the surface surcharge stress P. T h e coefficient 

of friction be tween t h e g ranu la r mate r i a l and the cylinder to be ex

t r ac t ed is d e n o t e d by ixt, and t h e coefficient be tween the granular 

mater ia l and t h e larger cylinder is denoted by /x. T h e weight per un i t 

vo lume of t h e g ranu la r mate r i a l is y. For general i ty, we assume t h a t 

t h e p res su re ra t io K m i g h t be different for t h e two surfaces, because 

one will be general ly concave and the o ther generally convex. T h e 

p re s su re ra t ios for t h e smal ler and larger cyl inders will be deno ted 
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BRIEF NOTES 

Perimeter of 
length LQ-

Perimeter of 
length L„ 

Rigid cylinder 
containing granular 

material and cylinder 
to be extracted 

Granular material 
occupying cross 
sectional Area A 

Fig. 1 Horizontal cross section of the two cylinders and the granular mate
rial 

by K^ and KQ, respectively. We let C% denote the curve coincident 
with the perimeter of the cylinder to be extracted and Co the curve 
coincident with the inner surface of the container. 

The problem is to determine the force F in terms of the quantities 
introduced in the previous paragraph. The solution can be presented 
more concisely if two-dimensionless parameters a and /? are intro
duced. They are defined by 

HOKQLO 
and 0 = 

I 
(1) 

fitKtLt 

The principal results of this Note are the following lower bounds 
on the force of extraction F. If slip occurs at the surface C0 of the 
containing cylinder (a < 1), the lower bound is 

Aly I [1 - exp [-0(1 - a] 
F> W + -

1-a (3(1- • a ) 

aAP 
(1 - exp[-f3(l - «)]). (2) 

If slip occurs simultaneously on both surfaces (a = 1) or if slip occurs 
at the surface C t of the cylinder being extracted (a > 1), the lower 
bound is 

F> W + 
Aly 

1 + a 
1 -

1 - exp [-13(1 + a)] 

0(1 + a) 
AP 

1 + a 
(1 - exp [-0(1 + <*)]|. (3) 

Equilibrium Analysis 
In this section, we derive an appropriate form of the stress equation 

of equilibrium. We let Ty denote the components of the stress tensor 
and n; denote the components of the two-dimensional unit vector 
normal to the inner or outer cylindrical surface. The components t; 
of the stress vector that act on one of the cylindrical surfaces are then 
related to the stress-tensor components Tij by £,- = Tyrij, where the 
summation convention over repeated indices is to be employed. The 
component of the stress tensor acting on the cylindrical surfaces in 
the direction normal to the surfaces is denoted by Tnn and related to 
ti and Tij by Tnn = tim = TijUiUj. In our analysis, we are concerned 
with the components Tnn and Tzz of the stress tensor and the com
ponent tz of the stress vector acting on the vertical cylindrical sur
faces. 

The analysis involves three different averages of the stress com-

- Surface 
surcharge 
stress P 

Fig. 2 Perspective view of the problem 

ponents. Some components of the stress tensor will be averaged over 
the cross-sectional area A of the granular material and others will be 
averaged over the inner and outer perimeters C^ and Co, respectively, 
of the cross-sectional area. The average of the function f{x,y,z) over 
the cross-sectional area is defined by 

?(z) = jfAj'f(x,y,z)dxdy, 

and the perimeter averages are defined by 

/*(z) = — f f(x,y,z)ds 

and 

fob) = 
L0 J c0 

y, z)ds. 

In the notation we have introduced, the stress equation of equilibrium 
necessary for the present analysis is 

dT 
L0tz°-Lttz* + A—^ + Ay-

dz 
0. (4) 

This equation may be derived either by the differential slice method 
used in strength of materials and by Janssen [1] or by integration of 
the stress equations of equilibrium as done by Cowin [2]. 

Constitutive Assumption 
Following Janssen [1] and Cowin [2], the constitutive assumption 

used for the granular material is that the ratio of the boundary average 
of the normal stress Tnn to the cross-sectional average of the vertical 
stress Tzz is a constant. One cylinder surface is concave and the other 
is convex. To account for this geometric difference, two pressure ratios 
are introduced, one for the inner and one for the outer perimeter, 

K„ (5) 
T * T O 
—— and Ko = ——, 
T T 
1 ZZ 1 22 

respectively. In Janssen's original work, Tnn and Tzz were assumed 
to be uniform over the perimeter and cross section, respectively; hence, 
from Janssen's viewpoint, there would be no distinction between Kt 

andifo- There are no measurements of the difference between Kt and 
KQ, and there may be no actual difference. 
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B R I E F N O T E S 

So lu t ion W h e n S l ip O c c u r s a t the S u r f a c e of the 
E x t r a c t e d Cyl inder 

When slip is about to occur on a surface, the full frictional force is 
being applied. Thus, at the surface of the cylinder to be extracted, we 
assume that the average boundary shear stress tz* equals the normal 
stress Tnn times the firctioh coefficient fi'. 

tz* = -f-tTn, (6) 

where both sides of (6) are positive numbers. There are two consid
erations that lead to the negative sign in (6). First, the average 
boundry shear stress is positive upward on the inner cylindrical sur
face of the sand, as it should be if the extracted cylinder is slipping 
relative to the granular material. Second, because T„„ must be com
pressive, the sign convention that tensile stress is positive is being 
employed in this Note. 

We assume that slip is not occurring at the outer cylindrical surface. 
The average boundary shear stress t2° acting on that surface is re
quired to satisfy the "no-slip" inequalities, e.g., 

MoT„„o < tzo < _/loTn (7) 

When the definitions in (5) for the pressure ratios Kt and KQ are 
employed in formulas (6) and (7), we find that 

and 

-M.K.T,, 

lx0KQTzz < t z° < -noKoT* 

(8) 

(9) 

A differential inequality in T22 is obtained by placing (8) and the 
equilibrium condition (4) into the left inequality of (9) and then 
employing definition (1). Thus 

—— + 7 < - — - 0 ( 1 + a), 
dz I 

(10) 

The right inequality of (9) leads to a contradiction unless a < 1, a 
condition corresponding to slip at the outer cylindrical surface rather 
than at the inner. 

The solution to the differential inequality (10) subject to the 
boundary condition Tzz = —P at z = 0 is 

- T 2 i 

yl 

0(1 + a) 

yl 
exp -0(1 + a) (11) 

0(1 + a ) ] 

The solution of the differential inequality (10) subject to this 
boundary condition is straightforward and is given in the Appendix 
of the paper by Cowin [2], From (1) and (11), an inequality involving 
the average boundary shear stress on the surface of the cylinder to be 
extracted is determined, 

tz* > 
0(1 + a) 

+ / « . * . P--
yl 

exp - 0 ( 1 + a) (12) 
0(1 + a)\ 

This inequality is the key to construction of the lower bound on the 
force of extraction F (determined in the next paragraph). 

We consider now a free-body diagram of the cylinder to be ex
tracted. The force of extraction F must equal the weight W plus the 
shear force acting on the sides of the cylinder. Thus 

W + 
Jo 

tz*LAz. (13) 

Because the granular material in which the cylinder rests is cohe-
sionless, the granular material across the container bottom offers no 
resistance to the upward motion of the cylinder. The final result, (3), 
follows when (12) and (13) are combined and the indicated integration 
accomplished. This result also holds in the case where slipping occurs 
on both cylindrical surfaces bounding the granular material. 

taining the granular material, a must be less than one. In this case the 
average stress tz° for the outer-perimeter is given by 

tz -HoK0TZ! (14) 

and the average boundary stress tz* on the inner perimeter must 
satisfy the inequalities 

(15) /x„K»T22 < tz* < -ixtK,T„ 

A differential inequality in T22 is obtained by placing (14) and the 
equilibrium condition (4) into the right inequality of (15). Thus 

dTzz 

dz 

Similar treatment of the left inequality in (15) does not produce any 
new results. The solution to (16) subject to the boundary condition 
Tzz = -P at z = 0 is 

• + 7 -0(1 + a) ^ . (16) 

yl 

" 0(1 
Hence from (14), 

•a) 

yl 

t 2 ° > - - r + Mo^o 
0(1 - a) 

0(1 - a)\ 

yl 

exp - 0 ( 1 - a) 

exp - 0 ( 1 - a) 

(17) 

(18) 
0(1 - « ) ] 

This inequality is necessary in the construction of the lower bound 
on the extraction force (given in the next paragraph). 

We now consider a free-body diagram consisting of the cylinder to 
be extracted and the annular volume of granular material surrounding 
the cylinder. The force of extraction F must be equal to the weight 
W of the cylinder plus the weight Ayl of the annular volume of the 
granular material plus shear force acting on the outer perimeter of 
the annular granular-material volume; thus 

F= W + Ayl+ f tz°L0dz. 
Jo 

(19) 

The granular material across the container bottom offers no resistance 
to the upward motion of the cylinder, because the material in which 
the cylinder rests is cohesionless. This is because cohesionless granular 
materials can sustain no tensile stresses. The final result (2) follows 
when (18) and (19) are combined and the indicated integration ac
complished. 

R e f e r e n c e s 
1 Janssen, H. A., "Versuche iiber Getreidedruck in Silozellen," Zeitschrift 
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APPLIED MECHANICS, Vol. 44,1977, pp. 409-412. 
3 Caughey, R. A., Tooles, C. W., and Scheer, A. C, "Lateral and Vertical 

Pressure of Granular Material in Deep Bins," Bulletin No. 173, Iowa Engi-
neering Experiment Station, Iowa State College, Ames, Iowa, November 14, 
1951. 
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The objective of this work is to study the general problem of frac-
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B R I E F N O T E S 

So lu t ion W h e n S l ip O c c u r s a t the S u r f a c e of the 
E x t r a c t e d Cyl inder 

When slip is about to occur on a surface, the full frictional force is 
being applied. Thus, at the surface of the cylinder to be extracted, we 
assume that the average boundary shear stress tz* equals the normal 
stress Tnn times the firctioh coefficient fi'. 

tz* = -f-tTn, (6) 

where both sides of (6) are positive numbers. There are two consid
erations that lead to the negative sign in (6). First, the average 
boundry shear stress is positive upward on the inner cylindrical sur
face of the sand, as it should be if the extracted cylinder is slipping 
relative to the granular material. Second, because T„„ must be com
pressive, the sign convention that tensile stress is positive is being 
employed in this Note. 

We assume that slip is not occurring at the outer cylindrical surface. 
The average boundary shear stress t2° acting on that surface is re
quired to satisfy the "no-slip" inequalities, e.g., 

MoT„„o < tzo < _/loTn (7) 

When the definitions in (5) for the pressure ratios Kt and KQ are 
employed in formulas (6) and (7), we find that 

and 

-M.K.T,, 

lx0KQTzz < t z° < -noKoT* 

(8) 

(9) 

A differential inequality in T22 is obtained by placing (8) and the 
equilibrium condition (4) into the left inequality of (9) and then 
employing definition (1). Thus 

—— + 7 < - — - 0 ( 1 + a), 
dz I 

(10) 

The right inequality of (9) leads to a contradiction unless a < 1, a 
condition corresponding to slip at the outer cylindrical surface rather 
than at the inner. 

The solution to the differential inequality (10) subject to the 
boundary condition Tzz = —P at z = 0 is 

- T 2 i 

yl 

0(1 + a) 

yl 
exp -0(1 + a) (11) 

0(1 + a ) ] 

The solution of the differential inequality (10) subject to this 
boundary condition is straightforward and is given in the Appendix 
of the paper by Cowin [2], From (1) and (11), an inequality involving 
the average boundary shear stress on the surface of the cylinder to be 
extracted is determined, 

tz* > 
0(1 + a) 

+ / « . * . P--
yl 

exp - 0 ( 1 + a) (12) 
0(1 + a)\ 

This inequality is the key to construction of the lower bound on the 
force of extraction F (determined in the next paragraph). 

We consider now a free-body diagram of the cylinder to be ex
tracted. The force of extraction F must equal the weight W plus the 
shear force acting on the sides of the cylinder. Thus 

W + 
Jo 

tz*LAz. (13) 

Because the granular material in which the cylinder rests is cohe-
sionless, the granular material across the container bottom offers no 
resistance to the upward motion of the cylinder. The final result, (3), 
follows when (12) and (13) are combined and the indicated integration 
accomplished. This result also holds in the case where slipping occurs 
on both cylindrical surfaces bounding the granular material. 

taining the granular material, a must be less than one. In this case the 
average stress tz° for the outer-perimeter is given by 

tz -HoK0TZ! (14) 

and the average boundary stress tz* on the inner perimeter must 
satisfy the inequalities 

(15) /x„K»T22 < tz* < -ixtK,T„ 

A differential inequality in T22 is obtained by placing (14) and the 
equilibrium condition (4) into the right inequality of (15). Thus 

dTzz 

dz 

Similar treatment of the left inequality in (15) does not produce any 
new results. The solution to (16) subject to the boundary condition 
Tzz = -P at z = 0 is 

• + 7 -0(1 + a) ^ . (16) 

yl 

" 0(1 
Hence from (14), 

•a) 

yl 

t 2 ° > - - r + Mo^o 
0(1 - a) 

0(1 - a)\ 

yl 

exp - 0 ( 1 - a) 

exp - 0 ( 1 - a) 

(17) 

(18) 
0(1 - « ) ] 

This inequality is necessary in the construction of the lower bound 
on the extraction force (given in the next paragraph). 

We now consider a free-body diagram consisting of the cylinder to 
be extracted and the annular volume of granular material surrounding 
the cylinder. The force of extraction F must be equal to the weight 
W of the cylinder plus the weight Ayl of the annular volume of the 
granular material plus shear force acting on the outer perimeter of 
the annular granular-material volume; thus 

F= W + Ayl+ f tz°L0dz. 
Jo 

(19) 

The granular material across the container bottom offers no resistance 
to the upward motion of the cylinder, because the material in which 
the cylinder rests is cohesionless. This is because cohesionless granular 
materials can sustain no tensile stresses. The final result (2) follows 
when (18) and (19) are combined and the indicated integration ac
complished. 
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BRIEF NOTES 

ture initiation from singular points of the boundary of a rigid inclusion 
embedded in a matrix. 

Consider a rigid inclusion with a singular corner 0 perfectly bonded 
to an infinite isotropic elastic plate which is subjected to a system of 
stresses at infinity. A reference frame of Cartesian coordinates is at
tached to the point 0 with the x -axis along the tangent of the boundary 
of the inclusion at 0. For this situation Panasyuk, et al. [1], gave the 
following expressions for the polar components of stress oy, crg, rro in 
the vicinity of the point 0: 

1 

4s/2r 

Co = 

TrO ' 

4y/2r 

A\/2r 
ki 

0 , 30 
5 cos - + (2K + 1) cos — 

2 2 

-k. 

0 , , 3 0 ' 
3 cos (2K + 1) cos — 

2 2 

-k2 

' • 8 , „ , . 301 
sin (2K + 1) sin — 

2 2 

. 0 , , 30' 
5 sin - + (2K - 1) sin — 

2 2 

0 , 30' 
3 sin (2K - 1) sin — 

2 2 

+ k2 COS (2K — 1) COS 
2 2 

(1) 

where the coefficients h\ and k2 depend on the loading conditions, 
the material of the plate and the geometrical shape of the inclusion 
at the singular corner. In the foregoing relations K = (3 - c)/(l + v) 
or K = 3 — 4» for plane stress or plane strain conditions, respectively, 
with v representing the Poisson's ratio of the material of the plate. 

For the determination now of the failure mode of the composite 
plate we make the hypothesis that the fracture of the plate starts from 
the singular corner 0. On the basis of this hypothesis we will now an
alyze the fracture behavior of the composite plate using the maximum 
hoop stress and the minimum strain-energy density models as they 
were developed by Erdogan and Sih [2] and Sih [3], respectively. 

According to the maximum hoop stress model fracture initiation 
is controlled by the maximum hoop stress at in the vicinity of the 
singular corner. Thus we have the following relations: 

dap 

d0 
= 0 

302 < 0 (2) 

Introducing the value of u8 from the second of relations (1) into the 
above first equation, the following equation is obtained: 

(1 + K) fe i t an 3 -+ (3K-
2 

1) k2 tan2 -

- ( l + 3 / 0 f t i t a n - - ( K - l ) f e 2 = 0 (3) 

For any given set of values k\ and k2 and the material constant K 
solution of equation (3) enables the determination of the critical angle 
0i which the fracture path will follow with respect to the x -axis of the 
inclusion at 0. 

The critical stress of fracture <xicr is determined by calculating the 
value of no for 0 = 0j from the second of relations (1). For this reason 
a critical value c of the radial distance r at which the stress 0icr is 
measured should be introduced. Thus the critical stress (7iCI is de
termined from the relation 

Cfl(fflc: l ) (4) 

where a„ is the allowable stress of the material of the matrix. 
According to the minimum strain-energy-density model fracture 

is controlled by the minimum strain energy in the vicinity of the 
singular corner. The value of the strain-energy-density factor S, as 
it was defined in reference [3], is given by the following relation: 

S = aiifci2 + 2a nkikz + a22k2
2 

(5) 

with 

50* 6CT 

Fig. 1 Variation of the fracture angle di versus the angle 8 for tensile applied 
loads according to the maximum hoop stress and minimum strain-energy-
density models. Regions where fracture initiation starts from either of the 
corners / = 0 or / = 2 are indicated in the figure. 

16 Gau = 2(K - 1) cos2 - + K2 + (2K + 1) cos2 0 

I6G012 = - [(K - 1) + 2K cos 0] sin 0 

16Ga22 = 2(K - 1) sin2 - + K2 - (2K - 1) cos2 0 (6) 

Applying now the principles of the strain-energy-density model [3] 
we obtain the following relations: 

[(K - 1) + 2(2K + 1) cos 0] sin 0k x
2 

+ 2[(K - 1) cos 0 + 2K cos 20}kxk2 

+ [ - (K - 1) - 2(2K - 1) cos 0] sin 0k2
2 = 0 (7) 

[ - (K - 1) cos 0 - 2(2K + 1) cos 20}ki2 

+ 2[(K - 1) + 8K COS 0] sin 0kxk2 

+ [ ( K - 1 ) C O S 0 + 2 ( 2 K - 1 ) C O S 2 0 ] £ 2
2 > O (8) 

Solution of equation (7) in combination with inequality (8) enables 
the determination of the value 61 of the angle 0 which the fracture path 
of the composite plate starting from the singular corner at 0 will form 
with the x-axis. 

If we introduce the value of 0i into relations (5) and (6) we obtain 
the critical value Smin of the strain-energy-density factor. It is as
sumed, that S m i n represents a material constant and therefore ex
perimental determination of Sm i n enables the subsequent calculation 
of the critical fracture stress aa of the composite plate. 

The foregoing developed maximum hoop stress and minimum 
strain-energy models were applied to the case of a composite plate 
reinforced by a hypocycloidal inclusion with three singular corners 
(Fig. 1). If B is the angle that the applied stress a subtends with the 
x-axis then the coefficients ki and k2 are given by [1] 
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ki^ = a + cos — - - 2/3 
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/— ( 9 ) 
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with j = 0, 1, 2 for the three corners of the inclusion (Fig. 1). 
Introducing these values of kfi) and k^ into equation (3) of the 

maximum hoop stress model and solving the resulting equation the 
values of angles 8\^ for each particular corner of the inclusion were 
determined. For each such angle 0\^ the corresponding critical stress 
0cr

<j) required for fracture initiation from the corner; was calculated. 
The critical stress <xcr of the composite plate corresponds to the 
minimum of the aforementioned three stresses act^^ (j = 0,1, 2). The 
same procedure was then followed for the case of the minimum 
strain-energy-density model. Fig. 1 presents the variation of the 
fracture angle 8\ versus angle /3 according to the maximum hoop stress 
and the minimum strain-energy models. Comparing the values of 0\ 
as they are determined by both models we observe that they are in 
satisfactory agreement. 
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On The Nonbuckling of a 
Circular Ring Under a 
"Wrapping" Loading 

T. J. Lardner1 

Introduction 
In a recent unpublished manuscript, Farris and Filippov [1] note 

the interesting result that a thin-walled circular cylinder wrapped by 
a high tension band will not buckle from the pressure load imposed 
on the cylinder by the wrapping. Furthermore, they found that this 
absence of buckling is independent of the material behavior of the 
cylinder. As a consequence, they conclude that this type of loading 
allows for the convenient investigation of the behavior of the material 
in the cylinder under high compressive loading, a situation important 
for the study of polymeric materials. The proof they offer for the result 
on nonbuckling is based on a specific set of equilibrium equations for 
circular cylindrical shells for which buckling solutions are sought 
under perturbations from the initial state. 

The purpose of this Note is to present a different derivation for 
circular rings which relies directly on the exact form of the equilibrium 
equations. 

We show that for circular rings (long circular cylinders) that the 
conclusion of Farris and Filippov can be demonstrated in a very simple 
way, that is, we show that circular rings with arbitrary material 
properties will not buckle under a wrapping load (in the absence of 
friction). The wrapping load can be visualized as placing a string 
around the ring (as in the nature of a capstan) and pulling tightly on 
both ends. 

1 Professor, Department of Civil Engineering, University of Massachusetts, 
Amherst, Mass. 01003. Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, April, 1980. 

Since a wrapping load is an intrinsic geometric loading, we write 
the equations in an intrinsic form which exhibits the changes in ge
ometry through changes in angles independent of the displacements. 
We also obtain en passant the buckling load for an inextensible ring 
with an active pressure loading. 

Formulation 
Consider a circular ring of radius a; the equilibrium equations of 

the ring can be derived following the formulation of Simmonds [2]. 
The equations expressed in terms of the axial force F, the shear force 
Q, and the bending moment M are 

F' - (1 + 8')Q + aPT(l + T) = 0 

Q' + (1 + d')F + O P N ( 1 + r ) = 0 (1) 

M' + a ( l + T)Q = 0 

where primes indicate differentiation with respect to <j>, the position 
on the undeformed ring, PN and PT are the loadings per unit length 
of the deformed ring in the normal and tangential directions of the 
deformed ring, 1 + T is the stretch ratio of the ring center line, T is 
the extensional strain, and 8 is the change of the tangent angle of the 
ring. 

Upon elimination between the three equilibrium equations in (1), 
we find 

/ i / M> yy / w \ 
[l + 0' U l + T)j j + U l + DJ 

I (1 + 8') J 
Equation (2) is a consequence of equilibrium alone. Of importance 
for our later consideration is the combination of the loading terms in 
(2). 

Consider first the case of a nearly inextensible elastic ring for which 
1 + T = 1 and 

M = aBAK = B8' 

We obtain from (2) 

(Jl.V + (1 + fl,r + ^ ^ L _ _ ^ l _ + P r = o (3) 
11 + 8'j (1 + 8')2 (1 + 8') 

where the nondimensional pressures are p = a2P/B. 

We consider now an "active" pressure loading for which 

PN = P, a constant 

For small 8, we have from (3) 

0IV + 8"(l + p) = 0 (4) 
It follows that periodic solutions of (4) for small 8 of the form cos 2</> 
are possible if p = 3, corresponding to the classical buckling load of 
an inextensible ring.2 

Finally, if the loading on the ring is that of a pressure induced from 
a string with constant tension T wrapped around the ring, we have 
(in the absence of friction) 

P N = TK; PT = 0 (5) 

or 

PN(1 + D = T( l + 8')(lla) (6) 

where K is the curvature of the deformed ring. Equation (2) be
comes 

li + 0'Wi + r ) j / Wi + r)j 
The periodic solution in <f> of (7) is M = 0. Hence no buckling occurs 

2 For loadings of the form P = Pn , we find p = 4. 
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with j = 0, 1, 2 for the three corners of the inclusion (Fig. 1). 
Introducing these values of kfi) and k^ into equation (3) of the 

maximum hoop stress model and solving the resulting equation the 
values of angles 8\^ for each particular corner of the inclusion were 
determined. For each such angle 0\^ the corresponding critical stress 
0cr

<j) required for fracture initiation from the corner; was calculated. 
The critical stress <xcr of the composite plate corresponds to the 
minimum of the aforementioned three stresses act^^ (j = 0,1, 2). The 
same procedure was then followed for the case of the minimum 
strain-energy-density model. Fig. 1 presents the variation of the 
fracture angle 8\ versus angle /3 according to the maximum hoop stress 
and the minimum strain-energy models. Comparing the values of 0\ 
as they are determined by both models we observe that they are in 
satisfactory agreement. 
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On The Nonbuckling of a 
Circular Ring Under a 
"Wrapping" Loading 

T. J. Lardner1 

Introduction 
In a recent unpublished manuscript, Farris and Filippov [1] note 

the interesting result that a thin-walled circular cylinder wrapped by 
a high tension band will not buckle from the pressure load imposed 
on the cylinder by the wrapping. Furthermore, they found that this 
absence of buckling is independent of the material behavior of the 
cylinder. As a consequence, they conclude that this type of loading 
allows for the convenient investigation of the behavior of the material 
in the cylinder under high compressive loading, a situation important 
for the study of polymeric materials. The proof they offer for the result 
on nonbuckling is based on a specific set of equilibrium equations for 
circular cylindrical shells for which buckling solutions are sought 
under perturbations from the initial state. 

The purpose of this Note is to present a different derivation for 
circular rings which relies directly on the exact form of the equilibrium 
equations. 

We show that for circular rings (long circular cylinders) that the 
conclusion of Farris and Filippov can be demonstrated in a very simple 
way, that is, we show that circular rings with arbitrary material 
properties will not buckle under a wrapping load (in the absence of 
friction). The wrapping load can be visualized as placing a string 
around the ring (as in the nature of a capstan) and pulling tightly on 
both ends. 

1 Professor, Department of Civil Engineering, University of Massachusetts, 
Amherst, Mass. 01003. Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, April, 1980. 

Since a wrapping load is an intrinsic geometric loading, we write 
the equations in an intrinsic form which exhibits the changes in ge
ometry through changes in angles independent of the displacements. 
We also obtain en passant the buckling load for an inextensible ring 
with an active pressure loading. 

Formulation 
Consider a circular ring of radius a; the equilibrium equations of 

the ring can be derived following the formulation of Simmonds [2]. 
The equations expressed in terms of the axial force F, the shear force 
Q, and the bending moment M are 

F' - (1 + 8')Q + aPT(l + T) = 0 

Q' + (1 + d')F + O P N ( 1 + r ) = 0 (1) 

M' + a ( l + T)Q = 0 

where primes indicate differentiation with respect to <j>, the position 
on the undeformed ring, PN and PT are the loadings per unit length 
of the deformed ring in the normal and tangential directions of the 
deformed ring, 1 + T is the stretch ratio of the ring center line, T is 
the extensional strain, and 8 is the change of the tangent angle of the 
ring. 

Upon elimination between the three equilibrium equations in (1), 
we find 

/ i / M> yy / w \ 
[l + 0' U l + T)j j + U l + DJ 

I (1 + 8') J 
Equation (2) is a consequence of equilibrium alone. Of importance 
for our later consideration is the combination of the loading terms in 
(2). 

Consider first the case of a nearly inextensible elastic ring for which 
1 + T = 1 and 

M = aBAK = B8' 

We obtain from (2) 

(Jl.V + (1 + fl,r + ^ ^ L _ _ ^ l _ + P r = o (3) 
11 + 8'j (1 + 8')2 (1 + 8') 

where the nondimensional pressures are p = a2P/B. 

We consider now an "active" pressure loading for which 

PN = P, a constant 

For small 8, we have from (3) 

0IV + 8"(l + p) = 0 (4) 
It follows that periodic solutions of (4) for small 8 of the form cos 2</> 
are possible if p = 3, corresponding to the classical buckling load of 
an inextensible ring.2 

Finally, if the loading on the ring is that of a pressure induced from 
a string with constant tension T wrapped around the ring, we have 
(in the absence of friction) 

P N = TK; PT = 0 (5) 

or 

PN(1 + D = T( l + 8')(lla) (6) 

where K is the curvature of the deformed ring. Equation (2) be
comes 

li + 0'Wi + r ) j / Wi + r)j 
The periodic solution in <f> of (7) is M = 0. Hence no buckling occurs 

2 For loadings of the form P = Pn , we find p = 4. 
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and this result is independent of the material properties of the 
ring. 

Conc lus ion 
We have presented an additional derivation to confirm the inter

esting result that circular rings under wrapping type loads will not 
buckle, a result first noted by Farris and Filippov [1]. 
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I On Laminar Dispersion for 
Flow Through Round Tubes1 

W. N. Gill2 and R. S. Subramanian.3 Professor Yu's article1 

represents a timely contribution to dispersion theory. However, his 
comments and analysis in the section "Gill's Approach as a Special 
Case of the Present Method" are wrong because he has erroneously 
neglected the mixed derivatives 

a2-/-™ 
(m = 0,1, . . . ) 

S r d f 

in his equation (31). Therefore, we must disagree with him on his in
terpretation of our work on generalized dispersion theory [1, 2], and 
we will show that his solution and ours are formally identical if his 
incorrect equation (33) is replaced by our equation (8). Thus what Yu 
refers to as Gill's approach is not a special case of Yu's method. 

Professor Yu compares his solution form in equation (7) with ours 
in his equation (28). The coefficient functions fm (T, £) in his equation 
(28) may be expanded naturally in the form of Yu's equation (7) as 
may be seen in [1, 2]. That is, 

where 

fm(r, £) = E Anm(r) 

Ji(Bn) = 0 

JoWnt) 

Jo(Bn) 
(1) 

(2) 

for the type of problem investigated by Yu. Thus Yu's \pn(L T) may 
be represented by 

dmi/'o 
iMf, T)= E A n m ( T ) — P ( n = 1,2, 3 . 

m=l dj™ 
.) (3) 

in terms of the Fourier coefficients Anm (T) of our functions fm (T, £) 
and the derivatives of t/'o. Thus the two methods are formally equiv
alent. 

Professor Yu's equation (31) for \pn contains mixed derivatives of 
the form 

a 2 * * 
(m = 0 ,1 , 2 . . . ) 

d r d f 

which he neglects and consequently draws erroneous conclusions 
regarding our work. It is important to retain all the terms on the 
right-hand side of his equation (31), and to express the mixed deriv
atives of \j/n in terms of purely axial derivatives. Gill, in Yu's reference 
[5], first showed how to deal with the mixed derivatives. As we have 
shown (2), (3), in the case of i/'n, the procedure is to use equation (29) 
which involves no assumptions, and is a direct consequence of the 

1 By J. S. Yu, and published in the December, 1979, issue of the ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 46, pp. 750-756. 

2 Chemical Engineering Department, State University of New York at Buf
falo, Amherst, N. Y. 14260. 

3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak 
Grove Drive, Pasadena, Calif. 91103; on Sabbatical leave from Clarkson College 
of Technology, Potsdam, N. Y. 13676. 

solution form in equation (28). Differentiation of equation (29) with 
respect to f will provide an expression for d^o /d rd f in terms of purely 
axial derivatives of \po. The intimate coupling among the \pn's makes 
it more difficult to express i>2\j/m /d i d f immediately in terms of the 
axial derivatives of \po- However, we will show how this may be 
done. 

Start with Yu's equation (31). Then differentiate his equation (9) 
with respect to f which gives d 2 ^ n / d f d r = d2\pn/drd^ on the left-
hand side in terms of derivatives with respect to f only. Insert the 
resultant expression on the right-hand side for the mixed derivatives 
in Yu's (31) to obtain 

iMf , T) 

+ c„ 

^ ( 1 - * - ' » * * ) dfo 

[ l - e - f t . , ' ( j 8 B *T + l)] 

' 2^ cnm .. 
m=l d f . 

CnO I 1 . Com _ . „ 
m = 0 diz 

d r m=i \ df /=o df2 

+.. (4) 

Note that Bo = 0. Thus we have \pn in terms of derivatives with respect 
to f only. Now to evaluate dij/m/d£ and d2i^m/df2, differentiate 
equation (4) once or twice. If we are interested only in determining 
Kn (r) for re = 1 to 3, we can neglect all f derivatives of \po higher than 
the third and write 

where An = an cn0 

af2 ' 

e>¥o 
1,2. 

An 
d?> 

Bn = bn 

and 

Cn0C„ T.'cn > Cmo + E ' am cmo cnm (a„ 
m=\ 

(5) 

(6) 

Bm2bn) 

._L (1. 
(3„2 

K-J?[l'e- 0 3 „ 2 T + 1 ) ] 

Consequently, inserting equations (5) and (6) in (4) we get for 
re > 1, 

$n = An —— + B„ —— + . . . 
af af2 

Now, inserting (7) in Yu's equation (9) we get 

di/'o 1 di/'o 

dr ~Pe*d? ^iCoi\Aj <>? +BrdP, 

d2fo d3^o' 

(7) 

(8) 

Thus we are able to derive the proper version of Yu's equation (33), 
presumably by following the procedure he used, but without ne
glecting the mixed derivatives. 
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DISCUSSION 

In view of the foregoing, we must disagree with Professor Yu's 
comments presented immediately after his equation (34) regarding 
our work. We are aware of the fact that for symmetric initial condi
tions, the two-term dispersion equation will predict only symmetric 
concentration profiles (see reference [3] for instance). However, the 
inclusion of terms of order re > 2 on the right-hand side of equation 
(29) will introduce asymmetry in the axial profiles. This is clear from 
an examination of the axial moments of such higher-order models. 
Thus Professor Yu's statement expressing doubt about the utility of 
equation (29) with higher-order terms in predicting the mean con
centration at small values of time is quite unjustified. Our statements 
regarding the validity of our approach are supported by the recent 
work of DeGance and Johns [4, 5] who have shown that rath-order 
dispersion approximations obtained by truncating our generalized 
dispersion equation predict precisely the first (n + 1) coefficients in 
a uniformly convergent modified Hermite expansion of the local 
concentration field. 

In conclusion, we believe Professor Yu's article constitutes a useful 
contribution to the theory of solute dispersion. The only reservation 
we have expressed concerns his comments regarding the validity of 
our approach which we believe is formally equivalent to his, the dif
ferences being only a matter of the routes used. 

R e f e r e n c e s 
1 Gill, W. N., and Sankarasubramanian, R., "Exact Analysis of Unsteady 

Convective Diffusion," Proceedings of the Royal Society, London, Series A, 
Vol. 316, 1970, pp. 341-350. 

2 Gill, W. N., and Sankarasubramanian, R., "Dispersion of a Nonuniform 
Slug in Time-Dependent Flow," Proceedings of the Royal Society, London, 
Series A, Vol. 322,1971, pp. 101-117. 

3 Jayaraj, K., and Subramanian, R. S., "On Relaxation Phenomena in 
Field-Flow Fractionation," Separation Science and Technology, Vol. 13 (9), 
1978, pp. 791-817. 

4 DeGance, A. E., and Johns, L. E., "The Theory of Dispersion of Chemi
cally Active Solutes in a Rectilinear Flow Field," Applied Scientific Research, 
Vol. 34, 1978, pp. 189-225. 

5 DeGance, A. E., and Johns, L. E., "On the Dispersion Coefficients for 
Poiseuille Flow in a Circular Cylinder," Applied Scientific Research, Vol. 34, 
1978, pp. 227-258. 

Author's Closure 

The author wishes to thank Professors Gill and Subramanian for 
pointing out the mistake that appeared in my paper in the section 
where equation (31) is made to compare with their general model of 
dispersion by diffusion approximation (henceforth the G-S model) 
and for pointing out that the general validity of the G-S model has 
been rigorously proved by DeGance and Johns (see Discussers' ref
erences [4, 5]) who used the technique of expanding the local con
centration in Hermite polynomials in the axial coordinate. Neglecting 
the mixed derivatives in equation (31) gives an equation which, de
scribing the change of the mean concentration, is correct only when 
terms involving d3\pa/dP and higher can be ignored in the G-S 
model. 

The general comparison between the G-S model and the present 
approach which uses the Green's function technique may be dem
onstrated as follows. The connection is made here by observing that 
equation (16) in my paper applies to ra = 0 (/3o = 0) as well. Let the last 
term on the RHS of equation (16) arising from the initial conditions 
be symbolically represented by F„(f, T) , i.e., 

Fn(l r) 
Pe -B 2T f ° 

V 7TT J — V 
i M f , 0)exp 

peHi-i'Y' 
4 T 

df 

(1) 

It can be shown that in the axial coordinate moving with the mean flow 
velocity, (f, T), 

» r»+i 2» (-.iy2f~" 
US, r) = - E i c0m z — X. - 2(M_„)(2y _ 1)I(/t _ v)) 

o"+Vm 

and 

l M f , r) •• 

X 

x E 

Qg2<ji-i>) + ldT2v-i, + ^0; (2) 

E Cnm E A,-« '+ 1> 
m^n i)=0 

-Pn2T V\ 
; ( j 3 „ 2 r ) — 

„=o (v - a)! 

cnn
s i>»+x\j/m 

2" (-1)' '2' ' - ' ' 
E —-— 
fi!, Pe2^-"Hii-v)l 

+ Fn, ra>Q, (3) 
lo s\(2v - n - s)\ df20.-»)+s+idT2»-M-« 

where the velocity profile factors are defined by equation (10) of my 
paper and coo = 0 has been used in equation (2). 

Now as it has been so importantly pointed out by Professors Gill 
and Subramanian, the mixed derivatives in the foregoing equations 
can all be eliminated by repeated applications of equation (9) in my 
paper. Thus symbolically equations (2) and (3) may be written in the 
form 

m=l*=l df* 
+ F0, 

and 

lMf,T)= E E A „ m ( « ( r ) ^ + Fn, ra > 0. 

We now form 

where 

: RnF0, 

(4) 

(5) 

(6) 

R„ •• FJFo 

is given by the initial condition and FQ in equation (6) can be replaced 
by the expression given by equation (4). Thus we obtain 

Fn=Rn\*0- E E A0m 
m = l k = l 

( * ) -
df* 

(7) 

and by substituting equation (7) into equation (5) we get 

iMf,r) = «„*„+ E A „ „ < * ) ^ + E E Bnm^^, n> 1, 

where 

Bnmm = Anm<-kHl - &nm) - RnA0 .<*) 

(8) 

(9) 

with &nm being the Kronecker delta. Equation (8) is the desired 
equation relating \j/n (ra > 0) to the transverse mean concentration \po 
in reference to the context of the G-S model. It is apparent that the 
effective use of equation (8) is through successive approximations. 
If the zeroth approximation for \[/n is 

^ n (o) : Rn+o+ E ^o{k)—rr-

,&**» (0) 

df* 

then the first approximation is given by 

*n
(1) = fn

(0) + E E B -
m = l k = l 

' and in general the p th approximation has the form 

a** 
f„(p) = f„(o)+ E E B, 

m = \ k = l 
(*) 

(10) 

(11) 

(12) 

The procedure thus reduces \j/n (ra > 0) to a form completely expressed 
in terms of i/'o and its axial derivatives and a close representation for 
4>n can always be obtained by increasing the order of approximation. 
It can be shown by deduction that, like in the formulations of DeGance 
and Johns, the p th approximation of ypn provides the exact coeffi
cients of d^o/df* . 0 < k < p. Once the factors Anm(r) defined in 
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equations (4) and (5) in relation to equations (2) and (3) are alge
braically spelled out, the present procedure can be used for the de
termination of the dispersion coefficients in the G-S model to any 
desired order. 

Amplitude-Frequency 
Characteristics of Large-
Amplitude Vibrations of 
Sandwich Plates1 

Yi-Yuan Yu.2 The writer is glad to see that his earlier work [1] 
on the nonlinear vibrations of sandwich plates was cited and used by 
the author as a basis of comparison and that the author's results based 
on the approximate method of Berger came out to be close to the 
writer's. However, special attention should be called to the author's 
opening statement and closing paragraph, where the writer's work 
[1] was referred to specifically, but not appropriately. 

1 By B. M. Karmakar, and published in the March, 1979, issue of the ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 46, pp. 230-231. 

2 Executive Engineer, Research and Engineering, Rockwell International, 
Energy Systems Groups, Canoga Park, Calif. Mem. ASME 

The author's opening statement that the writer has "treated non
linear vibrations of sandwich plates applying von Karman equations" 
is in fact incorrect. As is well known, the von Karman equations do 
not include the effect of transverse shear deformation. In contrast, 
the writer's equations [1] not only were his own but also were derived 
to include the transverse shear effect particularly, as was one of the 
main purposes of the paper. 

In his closing paragraph the author attempted to compare his or 
Berger's method with the writer's "method." As Berger emphasized 
in his original paper [2], no satisfactory physical justification could 
be given for his approximation, and any justification would have to 
be based on comparison with other available exact solutions (which 
should be called, more properly, "better" solutions, as theories of 
plates and shells and solutions based on them are inherently not 
exact). Since the author was apparently using the writer's earlier re
sults as a basis of comparison and justification, it does not seem to be 
appropriate to claim that the method used by the author has an ad
vantage over the writer's. Indeed, the writer's paper [1] was not meant 
to present a method of solution. But, as has been stated clearly, aside 
from deriving the equations of motion, it was to show the fre
quency-amplitude relations as well as the importance of transverse 
shear for nonlinear vibrations of sandwich plates, all for the first 
time. 
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DISCUSSION 

equations (4) and (5) in relation to equations (2) and (3) are alge
braically spelled out, the present procedure can be used for the de
termination of the dispersion coefficients in the G-S model to any 
desired order. 

Amplitude-Frequency 
Characteristics of Large-
Amplitude Vibrations of 
Sandwich Plates1 

Yi-Yuan Yu.2 The writer is glad to see that his earlier work [1] 
on the nonlinear vibrations of sandwich plates was cited and used by 
the author as a basis of comparison and that the author's results based 
on the approximate method of Berger came out to be close to the 
writer's. However, special attention should be called to the author's 
opening statement and closing paragraph, where the writer's work 
[1] was referred to specifically, but not appropriately. 

1 By B. M. Karmakar, and published in the March, 1979, issue of the ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 46, pp. 230-231. 

2 Executive Engineer, Research and Engineering, Rockwell International, 
Energy Systems Groups, Canoga Park, Calif. Mem. ASME 

The author's opening statement that the writer has "treated non
linear vibrations of sandwich plates applying von Karman equations" 
is in fact incorrect. As is well known, the von Karman equations do 
not include the effect of transverse shear deformation. In contrast, 
the writer's equations [1] not only were his own but also were derived 
to include the transverse shear effect particularly, as was one of the 
main purposes of the paper. 

In his closing paragraph the author attempted to compare his or 
Berger's method with the writer's "method." As Berger emphasized 
in his original paper [2], no satisfactory physical justification could 
be given for his approximation, and any justification would have to 
be based on comparison with other available exact solutions (which 
should be called, more properly, "better" solutions, as theories of 
plates and shells and solutions based on them are inherently not 
exact). Since the author was apparently using the writer's earlier re
sults as a basis of comparison and justification, it does not seem to be 
appropriate to claim that the method used by the author has an ad
vantage over the writer's. Indeed, the writer's paper [1] was not meant 
to present a method of solution. But, as has been stated clearly, aside 
from deriving the equations of motion, it was to show the fre
quency-amplitude relations as well as the importance of transverse 
shear for nonlinear vibrations of sandwich plates, all for the first 
time. 
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Fracture Mechanics Applied to Brittle Materials. Edited by S. 
W. Freiman. American Society for Testing and Materials, Phil
adelphia, Pa. 1979. ASTM Special Technical Publication 678. 
Pages 232. Price $25. 

REVIEWED BY A. S. KOBAYASHI1 

This state-of-the-science publication on fracture test techniques 
for glass, ceramics, rocks, and cementitious composites is a compila
tion of 14 papers which were presented at the Eleventh National 
Symposium on Fracture Mechanics, which was held June 12-14,1978, 
at Virginia Polytechnic Institute and State University, Blacksburg, 
Va. These papers can be grouped into three categories: papers which 
relate to the theoretical and experimental details of test techniques; 
papers which describe the applications of these test techniques; and 
a paper which explains the use of fracture data in life time prediction 
of structural components. 

Although Griffith fracture theory was motivated by fracture of 
glass, its modern application to brittle materials is complicated by 
the unforgiving nature of such materials. Additional complication is 
introduced in the high temperature test environment of some struc
tural ceramics. These unique test requirements promote the use of 
double torsion, notch bend, and short bar specimens which are dis
cussed in detail by Fuller, Pletka, et al., Bansal, et al., and Barker. 
A unique ceramic fracture specimen which uses an indentation gen
erated surface flaw in a bend specimen is discussed by Petrovic, et al., 
Marian and Evans. 

As for material characterization, dynamic fracture response of a 
birefringent polymer is discussed by Fourney, et al., and Mecholsky, 
et al., reported on ceramic fracture toughness obtained through 
fractographic analysis. Fracture toughness of alumina and Westerly 
granite are reported by Buresch and Schmidt, et al. The complex 
fracture behavior of cementitious composites is discussed by Naaman, 
et al. 

The last paper by Wiederhorn, et al , presents a fracture mechanics 
approach for improving the reliability of structural ceramics. 

As is the recent ASTM practice, this STP contains a thorough 
summary by the editor, S. W. Freiman to which the JAM readers are 
referred to for further details short of reading each of the 14 pa
pers. 

Techniques of Finite Elements. By B. Irons and S. Ahmad. Halsted 
Press, A Division of John Wiley & Sons, Inc. 1979, Pages 529. 
Price, $72.50. 

REVIEWED BY TED BELYTSCHKO2 

This is certainly the most unusual book on finite elements. Pre
sented in an interesting and witty manner with tremendous insight 
and intuition, it will intrigue some readers, dismay or infuriate others. 
The flavor of the book is best transmitted by some quotations. For 

example, the chapter Nonlinearity begins with "Medical Aspects: 
We have no idea how many nervous breakdowns are precipitated by 
the persistent failure of computer programs to solve nonlinear prob
lems . . . We suspect the incidence of convulsive iteritis is steadily 
increasing . . . because of the incurable foolhardiness of certain fi
nite-element users in attempting nearly impossible jobs." 

The viewpoint is sometimes rather narrow: "Finite elements are 
already a billion dollar industry. We feel the time is past when we 
should confirm our answers by experiment, or compare them with 
other people's answers." Perhaps the last remark is tongue-in-cheek; 
it is certainly not shared by all finite-element users. 

Another feature which sets this book apart from other finite-ele
ment books is the wealth of insights into finite-element concepts. 
Physical intuition is used with great ingenuity, and many concepts 
are presented with clarity and succinctness. The book is divided into 
7 parts, 29 chapters. The first three parts are devoted to the presen
tation of the finite-element method to primarily linear problems: with 
emphasis on energy methods, shape functions, computer pro
gramming aspects, shortcomings and pitfalls and the patch test. Part 
5 deals with symmetry, eigenvalue problems and, briefly, nonlinear-
ities. Part 6, entitled "Speculations," is precisely that, though spec
ulations are not limited to Part 6. Part 7 gives the theoretical details 
for the material in the preceding parts. A computer code, with pro
gram descriptions is also given; exercises and puzzles are scattered 
throughout, with solutions (or sketches thereof) in the back. 

Although the book is intended as an introductory textbook, its 
suitability for beginning student is questionable. There is more fi
nite-element "lore" than can be found in any other finite-element 
book; on the other hand, mundane details are often skimmed over, 
which sometimes leaves a beginner, or for that matter, a self-professed 
expert like the reviewer, baffled. However, for an advanced student 
or a teacher of the finite-element method, this book is invaluable. It 
is original, thought-provoking, and at the same time, very enter
taining. 

Stratified Flows. By Chia-Shun Yih. Academic Press, Inc. 1980. 
Pages xvii-418. Price $29.50 

REVIEWED by R. R. LONG3 

This book is a second edition, with some new material and with a 
new title, of "Dynamics of Nonhomogeneous Fluids" which appeared 
about 15 years ago. There is not a great deal of difference between the 
present and earlier version. The book has an improved appearance 
with glossy paper, for example, but in general it follows the same 
format of the earlier work except for a last chapter which extends the 
analogy between gravitational flows and other flows to the electro
magnetic problem. Chapters 1 and 2, for example, still contain the 
same material, essentially, except for a considerable discussion on 
internal waves in basins of variable depth in Chapter 2. In Chapter 
3 there is an added discussion of waves of permanent form including 
the work of Benjamin and some added material on shallow water 
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theory in three dimensions and on edge waves in stratified fluids. 
Chapter 4 has some added material on the stability of stratified 
flows. 

The amount of work done on stratified flows has greatly increased 
in the past 15 years and even more people will now find this book 
useful. The material reflects the author's interests rather closely. This 
is not a criticism, really, because Professor Yih is well recognized as 
the leading theoretician in this area and his book sets a standard for 
careful development and rigor which is and was needed to help to 
insure high standards in this area of research. At a recent meeting on 
stratified flows in Norway, Professor Yih was honored, and quite 
rightly so, as a pioneer in this area. 

The new edition has a set of notes at the end of each chapter which 
contain chatty, historical, and reflective material which I rather liked 
and which adds a pleasant note to the book in general. I think my only 
comment on the adequacy and usefulness of the book is the lack of 
material on turbulence in stratified flows. At the Trondheim meeting 
there were, certainly, a large proportion of papers which attacked the 
problem of turbulence so that it is an important aspect of stratified 
flows. If I had been given the task of revising Professor Yih's excellent 
book I would have added a chapter on this subject-

Dislocations in Solids: The Elastic Theory. Vol. 1. Edited by F. R. 
N. Nabarro. North-Holland. 1978. Pages 350. Price $47. 

REVIEWED BY T. MURA4 

This is the first of five volumes devoted to the behavior of disloca
tions and their influence on the properties of solids. It contains five 
review papers on the fundamental theories of dislocations. The author, 
title of paper, and summary of contents of each of these papers are 
listed below. 

J. Friedel, "Dislocations—An Introduction," Pages 3-32. 
Volterra's process constructing dislocation and disclination lines is 
explained. It is concluded that a rotational dislocation (disclination) 
is equivalent to a continuous distribution of infinitesimal translational 
dislocations. The reviewer thinks that this is only true for a discrete 
disclination. Continuously distributed disclinations cannot be 
equivalent to any distribution of translational dislocations. Interesting 
pictures of rotational dislocations are shown for molecular and liquid 
crystals. Brief discussion is given about the cores of translational 
dislocations and physical properties other than plasticity. 

A. M. Kosevich, "Crystal Dislocations and the Theory of 
Elasticity," Pages 33-141. This chapter is well suited as a textbook 
for an introductory course on dislocations for graduate students in 
mechanics. Although the contents are not particularly new, the ma
terial is well organized, giving the important equations and examples. 
The article treats discrete dislocations, pileup of dislocations, con
tinuous distribution of dislocations, dynamics of dislocation motion, 
the effective mass of a dislocation, dislocation damping, interaction 
with point defects, the helical dislocation, and the prismatic dislo
cation loop, among other topics. 

J. W. Steeds and J. R. Willis, "Dislocations in Anisotropic 
Media," Pages 144-165. When J. W. Steeds wrote his book "In
troduction to Anisotropic Elasticity Theory of Dislocations," (Oxford: 
Clarendon Press), I criticized in a book review that he made no 
mention of the series of works done by myself, Willis, Barnett, and 
his coworkers. However, this time Steeds has Willis as a coauthor. The 
present article exactly supplements the weak points in Steeds' last 
book. Willis performed the Fourier integrals involved in my formula 
(elastic distortion expressed by a line integral of Green's function 
along a dislocation segment). Since my formula reveals its value by 
Willis' work, I do not mind it being referred to as the Mura-Willis 

4 Professor, Department of Civil Engineering, The Technological Institute, 
Northwestern University, Evanston, 111. 60201. 

formula. The corresponding formulas of Lothe Brown, and Indenbom 
and Orlov are derived from the Mura-Willis formula by a simple 
geometrical consideration. 

J. D. Eshelby, "Boundary Problems," Pages 168-221. The 
elastic field in a body whose outer boundary S is subjected to a traction 
T and a displacement U is the same as it would be if the material inside 
S formed part of an infinite medium provided S, now merely a surface 
marked out in the infinite medium, is covered with a layer of body 
force of surface density T and is the seat of a Smigliana dislocation 
whose variable discontinuity vector is equal to U. This theorem by 
Geffia leads to the integral equation for U. The article introduces many 
solutions obtained for a dislocation inside or outside of a circular in-
homogeneity. The free boundary is a special case when the shear 
modulus of the inhomogeneity or that of the matrix becomes zero. A 
new solution is given for a screw dislocation in a cylinder of a general 
cross section by the use of the conformal mapping. The article also 
treats dislocations in a semi-infinite medium, plates, and disks. Ele
mentary beam theory is proposed as an approximate method for an 
edge dislocation in a beam as well as the elementary torsion theory 
for a screw dislocation in a rod. 

B. K. D. Gairola, "Nonlinear Elastic Problems," Pages 222-342. 
A nonlinear elastic theory is needed to investigate the strain field close 
to the dislocation core. Another example is the effect of dislocations 
on the macroscopic density of crystals. The linear theory of elasticity 
predicts a vanishing effect, although it has been known for a long time 
that dislocations lead to a positive volume expansion. The scattering 
of elastic waves by straight dislocations and kinks and the small-angle 
scattering of X-rays by dislocation lines and rings also need the 
nonlinear elastic theory. After a lengthy introduction of nonlinear 
elasticity, an example of an infinitely long and straight screw dislo
cation is shown. The solution calculated only up to the second-order 
is given from the work of Seeger and Mann for vanishing tractions on 
the core boundary and by the use of Signorini's method for nonvan-
ishing tractions. These solutions are reexamined by the method of 
Seeger and Wesotowski and that of Green, Rivlin, and Shield. The 
article also contains the large deformation geometry of continuous 
distribution of dislocations. 

Dislocations in Solids: Dislocations in Crystals. Vol. 2. Edited by 
F. R. N. Nabarro. North-Holland. 1979. Pages 562. Price $75. 

REVIEWED BY T. MURA^ 

The aritcles in Vol. 2 shows how the simple models of a dislocation 
in an elastic continuum developed in Vol. 1 are modified when the 
dislocation is formed in a periodic structure. The author, title of paper, 
and summary of contents of each paper are listed below. 

R. Bullough and V. K. Tewary, "Lattice Theories of Disloca
tions," pp. 1-65. The Peierls-Nabarro model is explained as a par
tially discrete model of a straight dislocation. According to this model, 
the strain immediately below the dislocation is too large to be con
sistent with the assumption of a linear Hooke's law in the elastic block. 
The corresponding tensile stress exceeds the theoretical tensile 
strength of many materials. The parametric modification by Foreman 
is introduced as well as other modifications by van der Merwe. 

As a lattice model for a screw dislocation, Maradudin's equation 
of equilibrium for atoms and his solution are introduced. I don't think 
that most of readers understand this section unless they read the 
original paper of Maradudin. The article also treats dislocation-
phonon interactions and computer simulation with a suitable inter
atomic potential. 

S. Amelinckx, "Dissociations in Particular Structures," pp. 
67-460. This is a richly illustrated chapter with about 400 pages. "As 
soon as we consider structures with more than one atom in the unit 

5Professor, The Technological Institute, Department of Civil Engineering, 
Northwestern University, Evanston, 111. 60201. 
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cell, even simple structures such as the face and body-centered cubes, 
new considerations arise. In particular stacking faults of low energy 
surrounded by partial dislocations may be formed." Heidenreich and 
Shockley's partial dislocations are observed by transmission electron 
microscopy. More than 300 pictures and photographs are illustrated 
to discuss detail of the Heidenreich-Shockley model. Amelinckx 
published a book, "The Direct Observation of Dislocations," Academic 
Press, 1964. Comparing the present article with his previous book, 
we can see an advancement of electromicroscopy technique in the past 
10 years. The article further discusses the geometry (atomic ar
rangement), force, and energy associated with dislocations in ordered 
alloys and covalent structures, dislocations in layer structures and 
ionic crystals. 

J. W. Matthews, "Misfit Dislocations," pp. 461-545. If a pair 
of crystals with the same orientation but different lattice parameter 
are placed in perfect contact, the atoms near the interface adjust their 
position a little. This results in interfacial regions of good and bad 
register. The regions of bad register resemble crystal dislocations 
(interfacial or misfit dislocations). Many examples of misfit disloca
tions have been found in interfaces between face-centered cubic metal 
films. Misfit dislocations have also been observed in semiconducting 
devices on the boundary between two differently doped regions. 
Numerous examples of misfit dislocations have been seen at precip
itates in alloys. The mathematical definition of misfit dislocations 
could be improved if the author employs the concept of surface dis
locations used by Bullough and Bilby, Proceedings of the Physical 
Society, Vol. 69, Series B, 1956, p. 1276. Misfit dislocations sur
rounding an inclusion, for instance, can well be defined by the surface 
dislocations of Bullough and Bilby when Eshelby's concept of inclu
sion is additionally considered. The article treats observation of co
herent interfaces, examples of misfit dislocations, mechanism for the 
generation of misfit dislocations, behavior of misfit dislocations during 

diffusion, and effect of misfit dislocations on interdiffusion. Quanti
tative tests of predictions and use of misfit strain to improve the 
perfection of crystals are also discussed. 

Two-Phase Flows (Vieweg Tracts in Pure and Applied Physics). By 
Shih-I Pai. Heyden & Son Inc. 1979. Pages xii-359. Price 
$49.50 

REVIEWED BY M. S. PLESSET6 

This book covers topics in fluid dynamics which are of increasing 
interest and importance. The text very well illustrates the variety of 
rather distinct topics which are part of multiphase flow dynamics. As 
would be expected, the author covers the various aspects of this 
subject with exceptional clarity. 

Some readers might be surprised that the author chose to include 
aeroelasticity and hydroelasticity in this text. Other readers might 
be surprised that the author has devoted his two last chapters to 
plasma theory and electromagneto-fluid dynamics. Among this same 
group of readers are some who would have preferred a more extended 
treatment of interfacial waves, including nonlinear effects; this subject 
is now of particular interest to many fluid dynamicists. Nevertheless, 
one must admit that the choice of topics is the author's prerogative, 
and one must further admit that the treatment of plasma theory, 
aeroelasticity, and hydroelasticity are indeed excellent. 

This book can be strongly recommended to persons with any in
terest in continuum mechanics. It is a most lucid and readable 
text. 

Professor Emeritus of Engineering Science, California Institute of Tech
nology, Pasadena, Calif. 91125 
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